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1. Introduction. This paper continues a study appearing in (5) of the 
combinatorial properties of a matrix A of m rows and n columns, all of whose 
entries are O's and l's. Let the sum of row i of A be denoted by r* and let the 
sum of column i of A be noted by st. We call R = (ri, . . . , rm) the row sum 
vector and S = (si, . . . , sn) the column sum vector of A. The vectors R and 5 
determine a class §1 consisting of all (0, 1)-matrices of m rows and n columns, 
with row sum vector R and column sum vector S. Simple arithmetic properties 
of R and 5 are necessary and sufficient for the existence of a class 21 (1 ; 5). 

Let 8i = (1, . . . , 1, 0, . . . , 0) be a vector of n components, with l's in the 
first r i positions, and O's elsewhere. A matrix of the form 

A = 
«1 

is called maximal, and A is called the maximal form of A. Note that A is formed 
from A by a rearrangement of the l 's in the rows of A. It is clear that for Â 
maximal, the class 31 contains the single entry Â. 

Consider the 2 by 2 submatrices of A of the types 

^ = Lo ÎJ and A2 = ii oJ-
An interchange is a transformation of the elements of A that changes a minor 
of type A i into type A2j or vice versa, and leaves all other elements of A 
unaltered. The interchange theorem (5) asserts that if A and A* are arbitrary 
in 21, then A is transformable into A* by a finite sequence of interchanges. 

The term rank p of A is the order of the greatest minor of A with a non-zero 
term in its determinant expansion (4). This integer is also equal to the minimal 
number of rows and columns that collectively contain all the non-zero elements 
of A (3). Let p be the minimal and p the maximal term rank for the matrices 
in 21. The interchange theorem (5) implies the existence of an A in 21 of term 
rank p, an arbitrary integer in the interval p ^ p ^ p. In what follows we 
derive a simple formula for p and study further combinatorial consequences 
of the term rank concept. 

2. The maximal term rank. Let 21 be the class of all (0, 1)-matrices A 
of m rows and n columns, with row sum vector R and column sum vector 5. 
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We suppose throughout that the components of the row sum vector R and 
column sum vector S of A are positive. This is no genuine restriction on A in 
the study of term rank. We proceed to evaluate p, the maximal term rank for 
the matrices in 21. 

For this purpose, let R' = <ji — 1, . . . , rm — 1), where rt — 1 > 0. Let 
A' be the maximal matrix of m rows and n columns having row sum vector 
R', and let the column sum vector of A.' equal 

S'= (5/ §„'). 

Note that if Â is the maximal form of A and if the column sum vector of Â 
is (si, . . . , sn), then s/ = si+i (i = 1, . . . , n — 1) and sn

f = 0. Renumber 
the subscripts of the column sum vector S = (si, . . . , sn) of A so that 

si > . . . > sn, 

and define the integers s/ > 0 by 

s / = ^ — 1 (i = 1, . . . , »). 

Finally, let 
5 / = s0' = 0. 

THEOREM 2.1. Ze/ p egwa/ ^ e maximal term rank for the matrices in %. Let 
M equal the largest integer in the set 

È (*/ - §/) (* = 0, 1 n). 

77tew 
p = m — M. 

Let 4̂p be the m by n matrix with maximal term rank p. Without loss of 
generality, we may assume that the row sum vector R = (ri, r^, . . . , rm) and 
column sum vector 5 = (si, s2, . . . , sn) of 4̂p satisfy ri > . . . > rOT and 
Si > . . . > s». We select a specified set of p l's of 4̂p accounting for the 
maximal term rank and call them the essential l 's of A-p. All other l 's of Ap- are 
then referred to as unessential. 

We derive two Lemmas. 

LEMMA 1. For 0 < k < n} 

S (Si — «/) < m — P' 
i=0 

Let J3 be formed from A-p by replacing the p essential l 's of A-p by 0's. We 
agree to write A-p so that 

si > . . . > s»; &i > . . . > 6W; &* = Si + et — 1. 

Here Si and 6* denote the sums of column i of A-p and 5 , respectively, and 
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column i of A-p contains an essential 1 if and only if et = 0. Note e* = + 1 for 
exactly n — p values of i. 

Let B be the maximal form of B} with column sums 6i > . . . > 5n. Then 
for each k, 0 < k < n, 

Z St < Z bi < Z 6*. 
i=0 i=0 i=0 

From the definitions of the s/ and the S*, 
* k 

whence 
A A 

Z s/ < Z «/ + (w — J5). 

LEMMA 2. Let f be such that 0 < / < n and 

f 

Z 0 / - s/) = m - p. 

Then the matrix A-p of maximal term rank p may upon permutations of rows and 
columns be written in the form 

\"S Ei * * "] 
E2 0 0 0 

' * 0 / 0 ' 
L* 0 0 OJ 

Here S is a matrix entirely of Y s of size e by f. The matrices Ei and E2 are 
square of orders e and / , respectively, I is an identity matrix of order g, with 
P = e + f + g, and the 0's denote zero blocks. The p essential Vs of A-p appear 
on the main diagonals of E\, E2, and I. The degenerate cases e = 0 and g = 0 
are not excluded. 

Reading the inequalities of Lemma 1 as equalities, we obtain 
/ / / _ / 

Z s/ = Z °i = Z bi = Z St + O - ?)• 
z=0 i=0 z=0 i=0 

This tells us that the matrix B may be written in the form 

B = 

where S is the e by / matrix of Ts, and where the matrix X has at least one 
1 in each row. Now 

/ / / 
Z Si = Z St - f = Z bi 
z=0 i=0 z=0 

\ S XI 
L Y 0 J 
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implies that essential l's occur in the first/ columns of A-p, and they may be 
placed on the main diagonal of E2. 

The equation 
/ / 

Z) si= H s/ + m - p+f 
i=0 i=0 

implies that there are m — p + / rows of A-p in which 0's occur in each of the 
columns / + 1, . . . , ft. Let ef < e essential l's of A-p occur in rows 1, . . . , e 
of A-p, and let g essential l's occur in rows e + / + 1, . . . , m of A-p. Then 
e' + / + g = p and m — p+f+g=m— e, whence e' = e. Hence essential 
l's occur in the first e rows of A~p, and these may be placed on the main 
diagonal of E\. 

To prove Theorem 2.1 it suffices to establish the existence of a k = / for 
which equality holds in Lemma 1. The theorem is valid for m by 1 and 1 by 
n matrices. The induction hypothesis asserts the statement of the theorem for 
all matrices of size m — 1 by ft', with 1 < ft' < ft, and we shall prove the 
theorem for matrices of size m by ft. Moreover, if p = m, then 

s0' — s0
f = rn — p = 0 . 

Also, if p = ft, then 

n n / n \ 
X (5/ — §/) = ^ 5* "~ w — ( E St — m) = m — p. 
i=0 i=0 \ i=0 / 

Since the theorem is valid in each of these cases, we may assume that p < m 
and p < ft. 

In yip suppose that s* > sy. Then we may normalize the first row of A-p in 
one of two ways. Either an = 1 or, in the other case, an = 0 and aij = 0 or 
1, with aij = I a n essential 1 of A -p. For otherwise we must have an = 0 and 
aij = 1, an unessential 1 of A~p. But then there exists an unessential 1 of A~p 

such that aui = 1 and auj = 0. We may then perform an interchange that 
does not affect the term rank and obtain an = 1 and aij = 0. We agree to 
normalize the first row of A p to fulfill this requirement. ' 

Now delete row 1 from the normalized A-p- of maximal term rank p. Also 
delete any zero columns from the resulting [m — 1)-rowed matrix. We then 
obtain a matrix C of m — 1 rows and n' columns, 1 < ft' < ft. Let C belong to 
the class S. The maximal term rank for the matrices in S equals p or p — 1. 

Suppose there exists a C of term rank p in (5. To C we may adjoin ft — ft' 
columns of 0's and the first row of A-, and thereby obtain a matrix A1 = [ars

f] 
in the class 31. Now if a\{ = 1, where column i does not contain an essential 1 
of C, then this contradicts the maximality of p in 21. Suppose then that 
dii = 0 for each column i that does not contain an essential 1 of C. Since 
r\ > rjy we may perform an interchange involving row 1 and some other row 
of A' to obtain a\{ — 1 for some column i not containing an essential 1 of C . 
This again contradicts the maximality of p in 21. Hence we conclude that p — 1 
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is the maximal term rank for the matrices in S. This term rank is attained by 
C. The p — 1 essential l 's of C plus one essential 1 from the first row of Ap 

comprise the p essential l 's of A p. 
We permute the columns of C so that C\ > c2 > . . . > cn> and apply the 

induction hypothesis to C. Then there exists a n / , 0 < / < nf, such that 

X) °l = JL Ci + (m - P). 

We may suppose that 0 < f <nf. For if / = 0, then p = m and the theorem 
is valid. Also if / = n', then p = nf + 1. This implies that n' < n. If n' = n — 1, 
then p = n and the theorem is valid. Thus if / = nf, we may suppose that 
n' < n — 2. But in this case the last n — n' > 2 columns of 4̂p must have 
l's in the first row, and only one of them can be essential. By the normalization 
process applied to A-p, every column of A-p headed by 0's must have column 
sum equal to 1 and these columns occupy the last of the first n' positions in 
A-p. If such columns exist we may take a smaller value of/ in C. If all of the 
columns of A-p are headed by l's, the theorem is valid for A-p w i t h / = n'. 

Thus we may suppose that 0 < / < n', and upon permutations of rows 
and columns, we may write the matrix C in the form given by Lemma 2: 

V S Di * * "1 
LD2 o o o 

* 0 / 0 ' 
L * 0 0 0 J 

Here S is the matrix of l 's of size e by / , and the orders of Z>i, Z>2, and / 
total p — 1. The p — 1 essential l 's of C appear on the main diagonals of 
Z>i, D2} and / . The matrix / need not appear, but we may assume that g ^ O . 
For if e = 0, we again obtain p — 1 = n' . 

We restore now to C the n — nf zero columns, and finally a row of r\ l 's 
and n — Y\ 0's. We thereby obtain A, where A = [aT8] is the same as A-p 

apart from possible row and column permutations. Suppose that an = 1 
( i = l , . . . , / ) . T h e n 

/ 
2 (s/ - s/) = m - p, 
1=0 

and the theorem follows. 
Suppose that on the other hand some a\j = 0, where 1 < j < / . If we per­

mute the first/columns of A, then we may assume that du == 1 (i = 1, . . . , h) 
and that dij = 0 (j = h + 1, . . . , / ) . The case h = 0 is not to be excluded. 
If h — 0, then dij = 0 (j = 1, . . . , / ) . Now there must exist an essential 1 of 
the form dlu = 1 for some u, where u satisfies e + / + l < ^ < ^ . H there 
does not exist an unessential 1 of the form div = 1, where v satisfies 
/ + 1 < v < n, then 

J2 (st' - s/) = m - p, 
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and the theorem is valid. Suppose then that one or more unessential l 's exist 
of the form aiv = 1, where v satisfies/ + 1 < v < n. We assert that then an 
unessential 1 cannot occur in the intersection of rows e + 2 , . . . , m and columns 
h + 1, . . . , / o f A. For suppose that an unessential 1 appears in this position. 
Then by our normalization process, for each v associated with the unessential 
l 's of the form alv — 1, / + 1 < i; < », we must have ajv = 1 (.7 = 1 , . . . , 
e + 1). Furthermore, there must exist in each of these columns an essential 
1 of the form atv = 1, for some / satisfying e + / + 2 < / < m . All of the 
remaining entries of these columns must be 0. But consider now row 1 and 
row 2 of A. A 1 in row 1 may appear directly above a 0 in row 2 only in the 
column of the essential 1 of the form aiu = 1. However, a 0 in row 1 must 
appear directly above a 1 in row 2 in at least two columns. But this contra­
dicts the fact that the number of l's in row 1 of A is greater than or equal to 
the number of l's in row 2 of A. Thus an unessential 1 cannot occur in the 
intersection of rows e + 2, . . . , m and columns h + 1, . . . , / of A. Hence 
it follows that 

h h 

X St — X «/ = m — P-
i=0 i=0 

Note that the degenerate case h = 0 gives p = m. This completes the proof. 

3. Applications. In the following applications we continue to require 
positive components for the vectors R and 6* that determine the class 21. 
A (0,1)-matrix A = [ars] may be regarded as an incidence matrix distributing 
n elements Xi, . . . , xn into m sets Si, ... , Sm. Here atJ — 1 or 0 according as 
Xj is or is not in 5*. From this approach the term rank of a matrix generalizes 
the concept of a system of distinct representatives for subsets Su . . • , Sm of a 
finite set (2). The subsets S±, . . . , Sm possess a system of distinct representa­
tives if and only if the term rank of the associated incidence matrix satisfies 
p = m. In this case we say A possesses a system of distinct representatives. 

THEOREM 3.1. There exists an A in 31 possessing a system of distinct representa­
tives if and only if 

£ (s/ -s/) < 0 (* = 0 , 1 , . . . , » ) . 

This is the special case of Theorem 2.1 with p = m. 
For a (0, l)-matrix A, let No (A) denote the number of 0's in A and let 

Ni(A) denote the number of l's in A. 

THEOREM 3.2. Let A be in 31 and let p < nt, n. Then upon permutations of 
rows and columns-, A may be reduced to the form 
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Here Wis of size e byf(0 <e<m, 0 < / < n ) and N0(W) + N1(Z) =p-(e+f). 
For A-p, we have N0(W) = 0 and Ni(Z) = p - (e+f). 

In the equation 

X) 0 / - s/) = m - p, 

we have 0 < / < n, for otherwise p = m or p = w. Also for the matrix A-p of 
Lemma 2, 0 < e < m and 

É r« + E ^ + P ~ (« +/) - ef = NMt). 

But 
e f 

E r< + £ *i = N^X) + Ni(Y) + 2N1(W) 

and 

Ni(W) + Nl(X) + iVx(F) + Nl(Z) = NiiAJ. 

Hence 

e / - ^ i ( t t O + iVi(Z) = p - ( * + / ) 

and 
N0(W) + iYi(Z) = p - ( * + / ) . 

Let A = [ars] be in 2Ï. Suppose an element auv = 1 of 4̂ is such that no 
sequence of interchanges applied to A replaces auv = 1 by 0. Then auv = 1 is 
called an invariant 1 of A. An analogous definition holds for an invariant 0. 

THEOREM 3.3. Let auv be an invariant 1 of A. If A' = [ars
f] is in 91, then auv' 

is an invariant 1 of A'. 

For if for some A* = [ars*] in 21, auv* = 0, then transforming A into A * 
by interchanges contradicts the hypothesis that auv = 1 is an invariant 1 of A. 
Thus all or none of the matrices in St contains an invariant 1, and we refer 
to 31 as being with or without an invariant 1. 

THEOREM 3.4. Let A contain an invariant 1. Then by permutations of rows 
and columns, A may be reduced to the form 

L Y 0 J * 

Here S is the matrix of Y s and contains the invariant 1 of A. 

For by permutations of rows and columns we may reduce A to the following 
form: 
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1 1 

1 5 S* 

1 

. Co 

0 . . . 0 

Ri 

iS * M 

0 
1 R, N 0 

0 

0 

Ci 

0 

0 0 

Here the 1 in the (1,1) position of A* is the invariant 1. The block in the lower 
right hand corner is then composed entirely of O's. We permute rows so that 
Ri contains at least one 1 in each row, and then permute columns so that C\ 
contains at least one 1 in each column. The intersection of the rows of A* 
containing R± and the columns of A* containing C\ is S, a matrix of l's. We 
now permute columns so that S* is a matrix of l's and Co contains at least 
one 0 in each column. Next we permute rows so that S is a matrix of l 's and 
Ro contains at least one 0 in each row. The intersection of the columns of A* 
containing C0 and the rows of A* containing R0 is a zero matrix. If one or more 
of S1*, Co, 8, Ro do not appear, the theorem follows. If all appear, we replace 
M by a matrix of the form 

L o J 
and N by a matrix of the form [Ci* 0], where Ri* has at least one 1 in each row 
and Ci* has at least one 1 in each column, and then continue as before. This 
procedure must terminate, and upon termination we obtain the matrix of the 
theorem. 

Note that X and Y may contain further invariant l's and the normalizing 
procedure may be applied to each of these blocks separately. Also, iî A, X, 
and Fare of term ranks p, px, and pv, respectively, and if S has size e' by / ' , then 

P = Px + py + min (e' — px,f — py), 

whence 
p = min (e' + Py,f + Px). 

THEOREM 3.5. 7/21 is without an invariant 1 and if p < m, n, then the minimal 
term rank p for the matrices in % must satisfy p < p. 
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In the matrix A-p of Theorem 3.2, the 1 in the (1, 1) position is not invariant. 
But by Theorem 3.2, N0(W) + Ni(Z) = p- (e+f). This means that there 
are matrices in 31 with fewer than p — (e + / ) l 's in Z. Hence p < p. 

Note that Theorem 3.5 is not necessarily valid for p = m. For we may let 
m = n, and let 31 be the class of all (0,1)-matrices with exactly k l 's in each row 
and column, 1 < k < m. Then 31 is without an invariant 1, but p = p = m (3). 
Also Theorem 3.5 need not hold for a class 31 with an invariant 1. For example, 
let A be maximal. Then A is the only matrix in 31, and we must have p = p. 

In conclusion, a deeper insight into the structure of p would be of consider­
able interest. An arithmetic formula for p analogous to the formula for p given 
in §2 would be especially desirable. 
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