THE TERM RANK OF A MATRIX
H. J. RYSER

1. Introduction. This paper continues a study appearing in (5) of the
combinatorial properties of a matrix 4 of m rows and # columns, all of whose
entries are 0’s and 1’s. Let the sum of row 7 of 4 be denoted by 7; and let the
sum of column ¢ of 4 be noted by s;,. We call R = (74, ..., rn) the row sum
vector and S = (s1, ..., s,) the column sum vector of A. The vectors R and S
determine a class I consisting of all (0, 1)-matrices of m rows and # columns,
with row sum vector R and column sum vector .S. Simple arithmetic properties
of R and .S are necessary and sufficient for the existence of a class U (1; 5).

Leté; = (1,...,1,0,...,0) be a vector of # components, with 1’s in the
first 7; positions, and 0’s elsewhere. A matrix of the form
01
A=\
S

is called maximal, and A is called the maximal form of A. Note that A is formed
from A by a rearrangement of the 1’s in the rows of A. It is clear that for A
maximal, the class ¥ contains the single entry A.

Consider the 2 by 2 submatrices of 4 of the types

1 0 0 1
Al—[o 1] and A2=[1 O]'

An interchange is a transformation of the elements of 4 that changes a minor
of type A; into type A, or vice versa, and leaves all other elements of 4
unaltered. The interchange theorem (5) asserts that if 4 and A* are arbitrary
in U, then 4 is transformable into 4* by a finite sequence of interchanges.

The term rank p of A is the order of the greatest minor of 4 with a non-zero
term in its determinant expansion (4). This integer is also equal to the minimal
number of rows and columns that collectively contain all the non-zero elements
of A4 (3). Let 5 be the minimal and 5 the maximal term rank for the matrices
in . The interchange theorem (5) implies the existence of an 4 in U of term
rank p, an arbitrary integer in the interval 5 < p < 5. In what follows we
derive a simple formula for  and study further combinatorial consequences
of the term rank concept.

2. The maximal term rank. Let ¥ be the class of all (0, 1)-matrices 4
of m rows and % columns, with row sum vector R and column sum vector S.
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We suppose throughout that the components of the row sum vector R and
column sum vector S of 4 are positive. This is no genuine restriction on 4 in
the study of term rank. We proceed to evaluate 5, the maximal term rank for
the matrices in 9.

For this purpose, let R = (ry — 1,...,7, — 1), where r; — 1 > 0. Let
A’ be the maximal matrix of m rows and # columns having row sum vector
R’, and let the column sum vector of A’ equal

S =Gl,...,8).
Note that if 4 is the maximal form of 4 and if the column sum vector of A
is (§81,...,8,), then §/ =38,41 ¢ =1,..., n — 1) and §’ = 0. Renumber
the subscripts of the column sum vector S = (s1,...,s,) of 4 so that
S1 2 e > Spy
and define the integers s,/ > 0 by
4

si =s5;,—1 (z ., m).

Il
p—t

Finally, let
5 =35/ =0.

THEOREM 2.1. Let p equal the maximal term rank for the matrices in N. Let
M equal the largest integer in the set

k
;} (si/ — &) (k=0,1,...,n).

Then

p=m— M.

Let A; be the m by » matrix with maximal term rank p. Without loss of
generality, we may assume that the row sum vector R = (71,72, ..., 7,) and
column sum vector S = (s1,52,...,58,) of A4; satisfy 1> ... > r, and
S1>...> 5. We select a specified set of 5 1's of 4; accounting for the
maximal term rank and call them the essential 1's of A;. All other 1’s of 4; are
then referred to as unessential.

We derive two Lemmas.

LEMMA 1. For 0 < k < n,
k
2 (sd —5) <m—p.
i=0

Let B be formed from A4; by replacing the p essential 1's of 4; by 0’s. We
agree to write 4; so that
S1 2> oo 22 Sns b1>...>bn; b¢=81+€¢—1.

Here s; and b; denote the sums of column 7 of 45 and B, respectively, and
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column 7 of 4; contains an essential 1 if and only if ¢; = 0. Note ¢; = + 1 for
exactly # — p values of 4.

Let B be the maximal form of B, with column sums b; > ... > b, Then
for each k,0 < k < 7,

k k k
Z si < Z b: < Z b..
=0 i=0 i=0
From the definitions of the §; and the b,

k

k
Zgi’+(m_l_7)>z_:06i’

i=

whence
k k

2_:0 s < ZO 5/ + (m — p).
LEMMA 2. Let f be such that 0 < f < n and
s

> s/ —5)=m—5

=0

Then the matrix A; of maximal term rank § may upon permutations of rows and
columns be written in the form

S E{ x =*
B0 0 0
Az = * 0O I O
* 0 0 O

Here S is a matrix entirely of 1's of size ¢ by f. The matrices E, and E. are
square of orders e and f, respectively, I is an identity matrix of order g, with
p=c¢+f+ g and the O's denote zero blocks. The p essential 1's of A; appear
on the main diagonals of E., E., and I. The degenerate cases ¢ = 0 and g = 0
are not excluded.

Reading the inequalities of Lemma 1 as equalities, we obtain
s

s s 5
Zsi’=;0bi=Z=Obi=2'§i,+(m'—5)-

=0 i=0

This tells us that the matrix B may be written in the form

S X
B = [ Y 0 ]
where S is the ¢ by f matrix of 1’s, and where the matrix X has at least one
1 in each row. Now
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implies that essential 1's occur in the first f columns of 4;, and they may be
placed on the main diagonal of E.,.
The equation
s s

2 si=2 8 +m—p+f

i=0 =0
implies that there are m — p + f rows of A5 in which 0’s occur in each of the
columns f + 1,...,%n. Let ¢ < ¢ essential 1's of A; occur in rows 1,...,e
of A;, and let g essential 1’s occur in rows e+ f + 1,...,m of 4;. Then
e +f+g=pandm —p5+f+ g =m — ¢, whence ¢ = e. Hence essential
1’s occur in the first e rows of A;, and these may be placed on the main
diagonal of E;.

To prove Theorem 2.1 it suffices to establish the existence of a & = f for
which equality holds in Lemma 1. The theorem is valid for m by 1 and 1 by
n matrices. The induction hypothesis asserts the statement of the theorem for
all matrices of size m — 1 by »n’, with 1 < #’ < n, and we shall prove the
theorem for matrices of size m by n. Moreover, if 5 = m, then

s, =8 =m—p=0.

Also, if p = n, then

n

> (si’—gi’):‘éosi_n_<ii=osi'—m)=m—ﬁ.

=

Since the theorem is valid in each of these cases, we may assume that 5 < m
and 5 < n.

In A4; suppose that s; > s;. Then we may normalize the first row of 4; in
one of two ways. Either a1; = 1 or, in the other case, a1; = 0 and a¢1; = 0 or
1, with @1; = 1 an essential 1 of 4;. For otherwise we must have a¢1; = 0 and
a1; = 1, an unessential 1 of 4;. But then there exists an unessential 1 of 4;
such that a,; = 1 and a,; = 0. We may then perform an interchange that
does not affect the term rank and obtain a;; = 1 and a1; = 0. We agree to
normalize the first row of 4; to fulfill this requirement. '

Now delete row 1 from the normalized A4; of maximal term rank 5. Also
delete any zero columns from the resulting (m — 1)-rowed matrix. We then
obtain a matrix C of m — 1 rows and #»’ columns, 1 < #" < %. Let C belong to
the class €. The maximal term rank for the matrices in € equalsporp — 1.

Suppose there exists a C’ of term rank 5 in €. To C’ we may adjoin n — n’
columns of 0’s and the first row of 43, and thereby obtain a matrix A’ = [a,,]
in the class . Now if ¢;;/ = 1, where column 7 does not contain an essential 1
of C’, then this contradicts the maximality of 5 in A. Suppose then that
a1/ = 0 for each column 7 that does not contain an essential 1 of C’. Since
71 > r; we may perform an interchange involving row 1 and some other row
of A’ to obtain a1/ = 1 for some column 7 not containing an essential 1 of C’.
This again contradicts the maximality of 5 in U. Hence we conclude thatp — 1
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is the maximal term rank for the matrices in €. This term rank is attained by
C. The p — 1 essential 1's of C plus one essential 1 from the first row of 4;
comprise the p essential 1's of 4;.

We permute the columns of C so that ¢1 > ¢2 > ... > ¢, and apply the
induction hypothesis to C. Then there exists an f, 0 < f < #’, such that

s 7
E ¢ = Z ¢/ + (m — p).
i=0 =0

We may suppose that 0 < f <#’. For if f = 0, then § = m and the theorem
is valid. Also if f = #’, then p = »’ + 1. This implies that »' <#n. lf n’' =n—1,
then p = n and the theorem is valid. Thus if f = #/, we may suppose that
n’ < m — 2. But in this case the last # — #’ > 2 columns of 4; must have
1’s in the first row, and only one of them can be essential. By the normalization
process applied to 43, every column of 4; headed by 0’s must have column
sum equal to 1 and these columns occupy the last of the first #’ positions in
As;. If such columns exist we may take a smaller value of f in C. If all of the
columns of A; are headed by 1’s, the theorem is valid for 4; with f = #»’.

Thus we may suppose that 0 < f < 7', and upon permutations of rows
and columns, we may write the matrix C in the form given by Lemma 2:

S Dy x =

| p. 0 0 0
C=1s 0 I o0
* 0 0 O

Here S is the matrix of 1's of size e¢ by f, and the orders of Dy, D,, and 7
total 3 — 1. The 5 — 1 essential 1's of C appear on the main diagonals of
Dy, D,, and I. The matrix I need not appear, but we may assume that ¢ # 0.
For if e = 0, we again obtaing — 1= n'.

We restore now to C the n — »n’ zero columns, and finally a row of »; 1’s
and # — 7; 0's. We thereby obtain A, where 4 = [@,,] is the same as 4;
apart from possible row and column permutations. Suppose that @;; = 1

(¢z=1,...,f). Then
7

E (si —5/) =m—p,

=0

and the theorem follows.
Suppose that on the other hand some @;; = 0, where 1 < j < f. If we per-

mute the first f columns of 4, then we may assume that @, = 1 (¢ = 1,..., k)
and that @, =0 (j =%+ 1,...,f). The case b = 0 is not to be excluded.
If2=0,thend; =0 ((=1,...,f ). Now there must exist an essential 1 of

the form &@,, = 1 for some %, where u satisfies ¢ + f + 1 < u# < n. If there
does not exist an unessential 1 of the form @;, = 1, where v satisfies
f+1<v<n, then

7

> s/ =8)=m—p,

i=0
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and the theorem is valid. Suppose then that one or more unessential 1's exist
of the form @;, = 1, where v satisfies f + 1 < v < n. We assert that then an
unessential 1 cannot occur in the intersection of rowse + 2, ..., m and columns
h+41,...,fof A. For suppose that an unessential 1 appears in this position.
Then by our normalization process, for each v associated with the unessential
1's of the form @, = 1,f+ 1 < v < #n, we must have@;, =1 (G=1,...,
e + 1). Furthermore, there must exist in each of these columns an essential
1 of the form @,, = 1, for some ¢ satisfying e + f + 2 < ¢t < m. All of the
remaining entries of these columns must be 0. But consider now row 1 and
row 2 of 4. A 1 in row 1 may appear directly above a 0 in row 2 only in the
column of the essential 1 of the form @, = 1. However, a 0 in row 1 must
appear directly above a 1 in row 2 in at least two columns. But this contra-
dicts the fact that the number of 1’s in row 1 of 4 is greater than or equal to
the number of 1’s in row 2 of 4. Thus an unessential 1 cannot occur in the
intersection of rows e + 2,...,m and columns # + 1,...,f of A. Hence
it follows that

Note that the degenerate case # = 0 gives § = m. This completes the proof.

3. Applications. In the following applications we continue to require
positive components for the vectors R and S that determine the class .
A (0,1)-matrix 4 = [a,;] may be regarded as an incidence matrix distributing
n elements ¥, . . ., x, into m sets Sy, . . ., S,. Here a;; = 1 or 0 according as
x;is or is not in S;. From this approach the term rank of a matrix generalizes
the concept of a system of distinct representatives for subsets Sy, ..., S, of a
finite set (2). The subsets Sy, . . ., Sy, possess a system of distinct representa-
tives if and only if the term rank of the associated incidence matrix satisfies
p = m. In this case we say 4 possesses a system of distinct representatives.

THEOREM 3.1. There exists an A in U possessing a system of distinct representa-
tives if and only if

x
Z(si’_gi,)<0 (B=0,1,...,n).
=0

This is the special case of Theorem 2.1 with p = m.
For a (0, 1)-matrix 4, let No(4) denote the number of 0’s in 4 and let
Ni(A) denote the number of 1’s in 4.

THEOREM 3.2. Let A be in N and let p < m, n. Then upon permutations of
rows and columns, A may be reduced to the form

=177
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Here W is of size e byf (0 <e<m,0<f<n) and No(W)+ N1(Z) =p— (e+f).
For A5, we have No(W) = 0 and N1(Z) =p — (e + f).

In the equation
s

Z (si/ = 8/) =m—p,

we have 0 < f < #u, for otherwise p = m or § = %. Also for the matrix 4; of
Lemma 2,0 < e < m and

(2

4
2orit 2 st s (et f) - of = Nuldp).

=0

But
; Z&—M@HWMWMMW)
and
Ni(W) 4+ Ni(X) 4+ N1(Y) + N:1(Z) = N:1(45).
Hence
of = Ni(W) + Ni(Z) =5 — (e + )
and

No(W) 4+ Nu(Z) =p — (e + f).

Let 4 = [a,,] be in Y. Suppose an element a,, = 1 of 4 is such that no
sequence of interchanges applied to 4 replaces a,, = 1 by 0. Thena,, = 1is
called an invariant 1 of A. An analogous definition holds for an invariant 0.

TaeorREM 3.3. Let ay, be an invariant 1 of A. If A’ = [a,/'] is in W, then ay,
is an invariant 1 of A’

For if for some 4* = [a,*] in ¥, a,,* = 0, then transforming 4 into 4 *
by interchanges contradicts the hypothesis that a,, = 1 is an invariant 1 of 4.
Thus all or none of the matrices in ¥ contains an invariant 1, and we refer
to A as being with or without an invariant 1.

THEOREM 3.4. Let A contain an invariant 1. Then by permutations of rows
and columns, A may be reduced to the form

73]
vV o0 4°
Here S is the matrix of 1's and contains the invariant 1 of A.

For by permutations of rows and columns we may reduce 4 to the following
form:
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1 1 1 0 0
1 S S* Co R
S * M
0
0
C 0 0
0

Here the 1 in the (1, 1) position of A* is the invariant 1. The block in the lower
right hand corner is then composed entirely of 0's. We permute rows so that
R; contains at least one 1 in each row, and then permute columns so that C,
contains at least one 1 in each column. The intersection of the rows of A*
containing R; and the columns of A4* containing C; is .S, a matrix of 1's. We
now permute columns so that $* is a matrix of 1's and C, contains at least
one 0 in each column. Next we permute rows so that S is a matrix of 1’s and
R, contains at least one 0 in each row. The intersection of the columns of 4*
containing C and the rows of 4* containing Ry is a zero matrix. If one or more
of S*, Cy, S, Ry do not appear, the theorem follows. If all appear, we replace
M by a matrix of the form
[5]
0

and N by a matrix of the form [C1* 0], where R,* has at least one 1 in each row
and C;* has at least one 1 in each column, and then continue as before. This
procedure must terminate, and upon termination we obtain the matrix of the
theorem.

Note that X and ¥ may contain further invariant 1's and the normalizing
procedure may be applied to each of these blocks separately. Also, if 4, X,
and Y are of term ranks p, p,, and p,, respectively, and if S has size ¢’ by f/, then

p = p:+ py + min (¢ — pr, f' — p,),

whence

p = min (¢’ + py, f" + p2).

THEOREM 3.5. If W ¢s without an tnvariant 1 and iof p < m, n, then the minimal
term rank p for the matrices in A must satisfy p < p.
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In the matrix 4; of Theorem 3.2, the 1 in the (1, 1) position is not invariant.
But by Theorem 3.2, No(W) 4+ N1(Z) = p — (e + f). This means that there
are matrices in ¥ with fewer than 3 — (e + f) 1'sin Z. Hence 5 < 5.

Note that Theorem 3.5 is not necessarily valid for 5 = m. For we may let
m = n, and let A be the class of all (0, 1)-matrices with exactly & 1’s in each row
and column, 1 < 2 < m. Then Y is without an invariant 1, but 5 = 5 = m (3).
Also Theorem 3.5 need not hold for a class A with an invariant 1. For example,
let 4 be maximal. Then 4 is the only matrix in ¥, and we must have 5 = 5.

In conclusion, a deeper insight into the structure of 5 would be of consider-
able interest. An arithmetic formula for g analogous to the formula for 5 given
in §2 would be especially desirable.
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