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Interactions between shock waves and gas bubbles in a liquid can lead to bubble collapse
and high-speed liquid jet formation, relevant to biomedical applications such as shock
wave lithotripsy and targeted drug delivery. This study reveals a complex interplay
between acceleration-induced instabilities that drive jet formation and radial accelerations
causing overall bubble collapse under shock wave pressure. Using high-speed synchrotron
X-ray phase contrast imaging, the dynamics of micrometre-sized air bubbles interacting
with laser-induced underwater shock waves are visualised. These images offer full
optical access to phase discontinuities along the X-ray path, including jet formation, its
propagation inside the bubble, and penetration through the distal side. Jet formation from
laser-induced shock waves is suggested to be an acceleration-driven process. A model
predicting jet speed based on the perturbation growth rate of a single-mode Richtmyer—
Meshkov instability shows good agreement with experimental data, despite uncertainties
in the jet-driving mechanisms. The jet initially follows a linear growth phase, transitioning
into a nonlinear regime as it evolves. To capture this transition, a heuristic model bridging
the linear and nonlinear growth phases is introduced, also approximating jet shape as
a single-mode instability, again matching experimental observations. Upon piercing the
distal bubble surface, jets can entrain gas and form a toroidal secondary bubble. Linear
scaling laws are identified for the pinch-off time and volume of the ejected bubble relative
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to the jet’s Weber number, characterising the balance of inertia and surface tension. At
low speeds, jets destabilise due to capillary effects, resulting in ligament pinch-off.

Key words: bubble dynamics, nonlinear instability, jets

1. Introduction

The interaction of bubbles with pressure waves is a complex and dynamic multiphase
process that occurs in a broad spectrum of hydraulic applications, including
turbomachinery (Ligrani et al. 2020; Lui et al. 2022), materials processing and cleaning
(Lauterborn & Vogel 2013; Mason 2016), therapeutic shock wave lithotripsy (Sackmann
et al. 1988; Johnsen & Colonius 2008; Loske 2017), as well as biomedical ultrasound
(Apfel 1982; Ohl, Klaseboer & Khoo 2015). Furthermore, shock waves inducing cavitation
activity have been demonstrated to increase cell membrane permeability (Ohl et al. 2006;
Le Gac et al. 2007), thereby promoting the transfer of foreign materials into cells in both
in vitro and in vivo environments (Delius & Adams 1999; Zhong et al. 1999; Bekeredjian
et al. 2007). When a shock wave interacts with a single bubble, the surrounding effective
pressure jump acting on the bubble interface causes its rapid compression, which can
eventually lead to its collapse under sufficiently strong shock pressures. This collapse
generates intense localised pressures and strong subsequent shock waves (Plesset &
Chapman 1971; Lauterborn & Bolle 1975; Shima, Tomita & Takahashi 1984; Johnsen &
Colonius 2009) and can give rise to the formation of high-speed jets (Ohl & Ikink 2003;
Freund, Shukla & Evan 2009) travelling in the direction of propagation of the shock
wave. Jets with sufficient momentum can reach the far side of the bubble and re-enter
the surrounding liquid (Speirs et al. 2018; Kroeze, Fernandez Rivas & Quetzeri-Santiago
2024), entraining gas that may detach as a toroidal bubble (Ohl & Ikink 2003; Kersten,
Ohl & Prosperetti 2003). Micrometre-sized jets, in particular, demonstrate promising
potential for applications in transdermal drug delivery, such as needle-free injections
(Prausnitz, Mitragotri & Langer 2004; Quetzeri-Santiago et al. 2021). As the energy of
the shock wave is reduced, the jets’ speed also decreases (Philipp et al. 1993; Ohl &
Ikink 2003; Bokman et al. 2023) which may make them prone to capillary-driven surface
instabilities. The Rayleigh—Plateau instability for semifinite ligaments as been investigated
for its relevance in technologies such as ink-jet printing, and the breakup dynamics of
such ligaments are generally referred to as end-pinching (Culick 1960; Stone & Leal 1989;
Castrejon-Pita et al. 2012; Paré 2015). As the intensity of the shock is further decreased,
no jets are observed and the bubble oscillates linearly, which marks the limit of jetting.
Varying peak pressure thresholds for jetting onset have been reported in the past but show
significant and unexplained differences between studies (Ding & Gracewski 1996; Ohl &
Ikink 2003; Bokman et al. 2023).

Gaining a fundamental understanding of the physics governing shock-bubble dynamics
at the level of an individual bubble is essential for effectively managing and enhancing
these interactions in applications where bubble jets are required on demand. Previous
studies have explored shock—bubble interactions through both experimental (Philipp et al.
1993; Kodama & Takayama 1998; Ohl & Ikink 2003; Wolfrum et al. 2003; Abe et al.
2015) and numerical approaches (Ding & Gracewski 1996; Klaseboer et al. 2007; Calvisi
et al. 2007; Johnsen & Colonius 2008; Freund et al. 2009; Johnsen & Colonius 2009;
Kobayashi, Kodama & Takahira 2011; Betney et al. 2015; Koukas, Papoutsakis & Gavaises
2023). The interaction of gas bubbles with underwater pressure waves is often studied
using cavitation theory, or bubble collapse theory, where a bubble initially at rest is driven
by an external acoustic wave, such as ultrasound (Brenner, Hilgenfeldt & Lohse 2002)
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or shock waves (Wolfrum et al. 2003; Johnsen & Colonius 2008, 2009; Ohl et al. 2015).
In this approach, the bubble dynamics is effectively described by the Rayleigh—Plesset
(Plesset 1949) or Keller—Miksis (Keller & Miksis 1980) equations. The collapse time
of bubbles, 7., measured from the passage of the shock wave to the moment when the
bubble reaches its minimum size, can be accurately estimated using the Keller—Miksis
equation (Philipp et al. 1993; Wolfrum et al. 2003; Abe et al. 2015). For shock waves
of infinite duration and sufficient amplitude, the collapse time scales with the Rayleigh
collapse time (Rayleigh 1917; Johnsen & Colonius 2009), while for impulsive shock waves
it is better described by the impulsive collapse time (Bokman ef al. 2023). However, the
study of bubble jets (Philipp et al. 1993; Kodama & Takayama 1998; Ohl & Ikink 2003)
remains challenging due to experimental limitations for visualising the jet formation and
propagation within the bubble using conventional imaging techniques such as shadowgra-
phy. Numerical studies of jets have largely focused on strong shock waves, exhibiting an
infinitely long sustained pressure amplitude (Johnsen & Colonius 2009; Betney et al. 2015)
or decaying pressure amplitude over a long duration (Johnsen & Colonius 2008; Koukas
et al. 2023), with limited research on lower peak pressures involving impulsive, short-
duration shock waves often encountered in experiments (Tomita & Shima 1986; Philipp
et al. 1993; Ohl & Ikink 2003; Wolfrum et al. 2003; Tagawa et al. 2016; Bokman et al.
2023). This occurs primarily because shock waves reverse their polarity upon reflecting at
the bubble wall due to the lower impedance of air compared with water. This phenomenon
presents a challenge for many numerical codes, particularly when the incident shock wave
is too short to prevent the liquid from experiencing tension. As a result, most insights into
jetting phenomena rely on empirical and averaged models (Philipp et al. 1993; Ohl et al.
2015; Bokman et al. 2023), and the exact origin and conditions necessary for jet formation
in shock-driven bubble collapses remain unclear.

Beyond the framework used to describe the interaction of bubbles with underwater
shock waves through cavitation theory, several studies have suggested that the shock-
driven dynamics of soap bubbles in air may be linked to acceleration-induced instabilities,
such as the Rayleigh—Taylor and Richtmyer—Meshkov instabilities (Richtmyer 1954; Kull
1991; Brouillette 2002; Zhai et al. 2018), which arise from generally constant and
shock-driven impulsive accelerations, respectively. Kelvin impulse-driven jets for vapour
bubbles in water can be driven by constant acceleration, e.g. gravity (Supponen et al.
2016), suggesting a Rayleigh—Taylor-type of instability (Plesset & Mitchell 1956). Other
studies have explored the dynamics of gas-filled soap bubbles interacting with shock
waves in air-filled shock tubes (Rudinger & Somers 1960; Davy & Blackstock 1971;
Haas & Sturtevant 1987; Ranjan et al. 2007; Layes, Jourdan & Houas 2009; Zhai et al.
2011), revealing complex three-dimensional effects that closely resemble the dynamics
observed in underwater shock—bubble interactions. In such cases, the shock wave acts as a
driving force that accelerates the interface between the bubble and the surrounding fluid.
These instabilities deform the bubble interface and, under certain conditions, lead to the
formation of jets, similar to those observed in bubble collapse dynamics in water. This
connection was first highlighted by Dear, Field & Walton (1988), who studied the collapse
of cylindrical cavities in a 12 % gelatine mixture triggered by shock waves generated by
a striker (Bourne & Field 1992). They focused on the motion of the cavity’s proximal
side, approximating the interface motion by giving it a constant velocity equal to twice
the particle velocity of the incident shock wave (Dear & Field 1988). The density contrast
between the bubble gas and the surrounding liquid in which the shock wave is propagating
is commonly characterised by the Atwood number, A = (0, — Pw)/(0a + Pw) = —1.00,
where p, and p, stand for the densities of air and water, respectively. Research
on acceleration-induced instabilities in bubbles, however, focus primarily on low or
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positive Atwood numbers (Ranjan, Oakley & Bonazza 2011), and there remains room for
improvement in the modelling of the corresponding experiments. Investigating Richtmyer—
Meshkov instability for large density mismatches has become particularly relevant due to
recent advances in nuclear fusion research (Betti & Hurricane 2016; Hurricane et al. 2023),
especially in the field of inertial confinement fusion (ICF), where it plays an important role.
An accurate understanding of this instability is critical, as it decreases the efficiency of ICF
and is therefore undesirable (Haan 1991). Traditionally, these instabilities are investigated
in two dimensions using single-mode or multimode perturbations to understand their
growth and behaviour. Modelling the perturbation growth rate of a single mode (Liang
et al. 2019), Richtmyer—Meshkov instability can be achieved with ranging accuracy
through a wide spectrum of methods, such as numerically solving the linearised Euler
equations (Yang, Zhang & Sharp 1994), employing analytical (Wouchuk 2001) or heuristic
impulsive linear (Vandenboomgaerde, Miigler & Gauthier 1998) and nonlinear (Li &
Zhang 1997; Sadot et al. 1998; Mikaelian 2008; Dimonte & Ramaprabhu 2010; Zhang &
Guo 2016) models. The nonlinearities are important (Zhang & Sohn 1996; Sadot et al.
1998) because, above a certain level, they trigger saturation mechanisms of the growth rate
relative to the linear rate and cause the perturbations to grow asymmetrically as bubbles
and spikes for large Atwood numbers (Alon et al. 1995). Unfortunately, these models are
limited to either early or late-time dynamics or are only applicable to a narrow range of
Atwood numbers and do not perform well at large Atwood number and initial amplitude,
which are characteristic of ICF and underwater shock—bubble interactions. In addition,
there are compressibility (Velikovich ef al. 2001), viscous and capillary effects (Mikaelian
1990; Carles & Popinet 2002; Sohn 2009; Tang et al. 2021) that are fundamental to the
Richtmyer—Meshkov instability and are difficult to model. The Richtmyer—Meshkov spikes
found at A = —1, display similarities to jets, arising from the impulsive impact of liquid-
filled containers on solid surfaces (Antkowiak et al. 2007; Eggers & Villermaux 2008;
Gordillo, Onuki & Tagawa 2020), and bubble jets driven by shock waves and other types
of instabilities, such as the Faraday wave instability (Zeff et al. 2000; Dhote et al. 2024).

In this study, underwater shock—bubble interactions are examined using X-ray phase
contrast imaging, providing unprecedented visual access to the high-speed jets within
and beyond the bubble. Here, Richtmyer—Meshkov theory is applied to a bubble collapse
problem with A = —1, offering new insights into the jetting behaviour of bubbles
interacting with laser-induced shock waves. Further understanding of the jet dynamics
at the limit of jetting based on the acceleration of the bubble’s proximal side during
its collapse is gained, enabling better jet control based on initial shock intensities. In
addition, the entry of micrometre-sized jets into the surrounding liquid is examined,
which has potential applications in microinjections. The parameter range explored in this
study builds on recent findings by Kroeze et al. (2024), enhancing the understanding of
microjet control and application.

2. Experimental set-up

The shock-induced bubble dynamics is investigated using the experimental set-up depicted
in figure 1(a). Air bubbles having an initial radius rg =380+ 38 pwm (number of
specimens, N =41) are generated at the bottom of a 100 x 100 x 350 mm? water tank
using a microfluidic device, comprising a PEEK low-pressure Tee connector with a
1 mm through-hole (P-714, IDEX) connected to a glass capillary (0.7 mm inner diameter,
100 mm length), which facilitates the discharge of bubbles into the deionised water-
filled tank. Air is injected from the side, and water is provided from the bottom. The air
flow, controlled by an air compressor (Fatmax DST 101/8/8 Bar, Stanley) and precision
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Figure 1. (a) Side view schematic of the experimental set-up. The inset shows the experimentally recorded
pressure wave form of the shock wave, where p, is the acoustic pressure and t =0 ps corresponds to the
moment of shock inception. (b) Top view of the X-ray beamline and imaging system of the ID19 at the ESRF.

pressure regulator (RP1000-8G-02, CKD), and the water flow, controlled by a syringe
pump (Pump 33 DDS Dual Drive System, Harvard apparatus), result in a consistent
production of bubbles when providing a constant water flow rate of 3.5 mLmin~! and
by slowly letting air through the pressure regulator.

Shock waves are generated in water by optical breakdown. A 6 mm diameter laser pulse
is provided by a Nd-YAG laser (Q-smart, 532 nm, 220 mJ, 5 ns, Lumibird), expanded
by a 10x beam expander and refocused into a single point by a 90° parabolic mirror
(Aluminium Off-Axis Mirror, Edmund Optics) fixed on the tank wall. The shock wave’s
origin is 5-7 mm away from the stream of bubbles. A needle hydrophone (NHO075,
Precision Acoustics) measures the pressure waveform (see inset of figure 1a) 40.5 mm
away from the shock origin and is recorded by an oscilloscope (WaveRunner 9000,
Teledyne LeCroy). The peak pressure and pressure impulse are extrapolated to the
bubble location, with ranges of 15.23-44.27 MPa and 1.05-3.36 Pa s, respectively. The
complete methodology to assess the pressure at the bubble location can be found in
Bokman et al. (2023). Note that, although the peak pressures are relatively low compared
with those generated by explosive or ballistic sources, and a strict classification based
on corresponding Mach number computed through Rankine—Hugoniot jump conditions
might suggest an acoustic regime, as seen in table 1, the waves exhibit steep, nonlinear
fronts with rapid rise times, key features of shock waves. Following convention in previous
studies (Tomita & Shima 1986; Philipp et al. 1993; Ohl & Ikink 2003; Wolfrum ez al. 2003;
Johnsen & Colonius 2008), they are referred to as shock waves.

In situ high-speed synchrotron-based X-ray phase contrast imaging, providing optical
access to all phase discontinuities along the X-ray beam path, allows the observation
of the shock-induced bubble dynamics, including the internal jet structure. Radiographs
are captured at the European Synchrotron Radiation Facility’s (ESRF) 150 m long ID19
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Peak pressure Temporal full width Pressure Dimensionless Mach
at half maximum impulse pressure impulse number
Pmax (MPa) 8 (ns) Jj (Pas) J /(3 /P5.0P) () M
(a) 42.98 40.77 3.36 10.40 1.05
(b) 42.19 41.30 2.70 8.62 1.05
(c) 36.79 39.45 2.17 6.72 1.05
(d) 27.67 40.24 1.62 5.03 1.05
(e) 22.27 38.65 1.14 3.48 1.04

Table 1. List of the driving shock wave parameters corresponding to the bubble dynamics of figure 2(a—e).

beamline. The polychromatic hard X-ray beam, with a mean energy of 30 keV, is produced
using two axially aligned long-period undulators and is conditioned with a series of filters
and in-vacuum slits along the vacuum flight tube to moderate the heat load delivered to
the water tank in the experimental hutch. Figure 1(b) illustrates the X-ray beam passing
through the custom-made water container, designed to minimise X-ray absorption using
telescopic windows (SM1L10, Thorlabs). These windows can slide along the axis of the
X-ray beam, and the inter-window distance is set to 20 mm to prevent excessive water
absorption that would impede the detection of the transmitted signal. The X-ray beam
is converted into visible light using a 500 wm thick LYSO:Ce scintillator. A dichroic
mirror redirects the visible light to an ultra-high-speed Shimadzu Hyper Vision HPV-
X2 camera. The camera, equipped with 4x magnification (8 wm/pixel), operates at a
frequency of 0.5 Mfps and an exposure time of 1460 ns. The detector set-up is positioned
7.5 m downstream of the water container to ensure sufficient X-ray phase contrast through
free-space propagation. This set-up enhances edge contrast due to partial spatial coherent
illumination, while preserving the bubble shape in the images (Cloetens et al. 1996;
Wilkins et al. 1996). The small dimensions of the water container and the inter-window gap
cause bubbles to be influenced by reflections of shock waves and expansion waves from
the boundaries. For a shock wave propagating near Mach one, the first reflections from the
windows and container are expected to affect a bubble located at the centre of the set-up
slightly before 14 s and 68 s, respectively. Due to the dispersion and dissipation of the
shock waves in water, these reflections are considered secondary in influence. However,
sufficient shock intensity is only achieved by locating the bubbles relatively close to its
origin. The laser-induced breakdown at the origin of the shock wave also creates a vapour
bubble that grows in the wake of the shock waves, inducing a radial pressure and velocity
field around it. The laser-induced shock wave drives the early bubble dynamics, but the
rebound is affected by the vapour bubble-induced pressure and velocity fields. The effects
of both fields can be assessed using cavitation theory. A radial velocity field reaching a
maximum value of u, = 1.06 ms~! is expected to flow in the direction of propagation of
the shock wave at the location of the bubble, slightly increasing the jet speed. The pressure
field at the bubble location is expected to reach values down to p, =58.22 kPa, which
will cause the bubble to expand by an additional 49% during the rebound, assuming an
adiabatic expansion of the air within the bubble. More details on the experimental system
are provided in Bokman et al. (2024).

3. Results and discussion

When a shock wave interacts with a bubble, it converts acoustic energy into bubble motion.
The high pressure difference induced by the shock wave at the bubble interface causes a
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rapid compression of the bubble. The time delay required for the shock wave to travel along
the bubble span causes its distal side to experience the pressure later, leading to a delayed
and asymmetrical compression. If the shock wave is sufficiently strong, the initially
spherical bubble can collapse asymmetrically and its proximal side can even evolve into
a high-speed jet. Figures 2(a—e) display experimental image sequences of air bubbles
having initial radii close to 400 wm, interacting with shock waves whose parameters are
summarised in table 1. The bubbles are characterised by their initial radius, rg, and initial
pressure, pp o = po + 2y /ro, made of the ambient pressure, pp = 101 325 Pa, and Laplace
pressure jump, where y =72.8 Nm™! is the surface tension of water. The density of
water is p =998 kg m~3. The flow equation can be non-dimensionalised by characteristic
quantities built from these variables, yielding the bubble characteristic time, ro./0/pp.o,

bubble characteristic speed, /pp.0/p and bubble characteristic momentum, rg /Db.0P
(Bokman et al. 2023). The impulse applied to the bubble surface, J :4711’3 J, where
j = [ padt is the shock wave pressure impulse, can be computed and normalised to the

characteristic momentum of the bubble, yielding J/ (rg /Pb.op) = 3.48-10.40. The shock

wave travels from left to right and makes contact with the bubble at ¢/(ro./p/pp.0) =0,
the time normalised to the characteristic time of the bubble. The first image sequence in
figure 2(a) shows an example of the strongest bubble dynamics observed in the present
work. Following its interaction with the shock wave, the bubble collapses asymmetrically,
compressing the air and reaching its minimum size at t/(ro/0/pb.0) = 0.45. The highly
compressed gas causes the bubble to go through a rebounding phase, where the gas can
expand and the pressure relax. However, the proximal side, which has a higher momentum,
evolves into a high-speed jet that continues travelling in the direction of propagation
of the shock wave, as observed in the third frame of figure 2(a). During the collapse
of the bubble, the bubble surface typically flattens, temporarily losing its spherical or
hemispherical shape. Jet formation occurs right after the bubble has reached its minimal
size, when a sharp, narrow liquid protrusion penetrates into the bubble from one side,
marked by a distinct, pointed structure emerging within the bubble. The jet adopts a
conical shape, with its base keeping a constant radius and its tip becoming narrower as
the jet elongates. The jet travels within the bubble and eventually pierces the distal side at
t/(ro/p/pp.o) = 0.80, entraining some of the gas with it as it penetrates the surrounding
liquid. The base of the gaseous protuberance starts necking as the jet continues propagating
and pulling on the surrounding gas. Finally, a toroidal daughter bubble detaches from the
main air bubble at t/(ro\/p/pp.0) =2.15 as the neck yields to surface tension forces.
While the cylindrical torus, which has an inner radius approximately equal to a third
of its outer radius, continues to travel within the liquid, the interface deforms. These
deformations are likely due to surface waves emitted at the rupture of the interface as
well as external shear stresses as the gas decelerates within the liquid. The main body of
the bubble stays as a large torus with the jet connecting the proximal to distal side of the
bubble. The response of the rupturing of the interface on the distal side of the bubble can be
seen as a surface wave penetrating the inner cylinder of the torus at ¢ /(ro./ 0/ pp.0) = 3.65.

Figure 2(b,c) displays similar behaviour to that already described, although a reduced
driving pressure hinders the intensity of the bubble dynamics. With weaker shock waves,
the collapse is slower, the bubble compression milder and the proximal side deforms
less. The bubble rebound is also smaller and the jet speed lower. Consequently, the jet
entrains less gas as it pierces the distal bubble side and the volume and speed of the
ejected toroidal bubble decrease while travelling within the surrounding liquid. Figure 2(d)
shows a bubble interacting with a shock wave having a dimensionless pressure impulse

of J/(rg,/pb,op) =5.47, right below the empirical jetting limit of J/(rg,/pb,op) =6
1018 A9-7
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Figure 2. Image sequence of the dynamics of an air bubble interacting with a shock wave travelling from
left to right, of dimensionless pressure impulse of J/ (rg /Pb.op): (a) 10.40, (b) 8.62, (c) 6.72, (d) 5.03 and

(e) 3.48. The dimensionless time, #/(ro/0/Pb,0), is indicated on each frame and zero is the time at which the
shock contacts the bubble. The scale bar is the same for all image sequences.

previously reported in Bokman ez al. (2023). Here, the use of X-ray phase contrast imaging
reveals a jet within the bubble at the jetting limit, which has never been observed using
conventional imaging. However, due to its weaker momentum, the jet softly impacts the
distal side of the bubble and no daughter bubble is ejected from the main bubble. Finally,
in figure 2(e), the pressure impulse is too weak to induce jetting and, although the proximal
side of the bubble does flatten and becomes slightly concave during the rebound, the
bubble only oscillates linearly within the liquid.

The spatiotemporal evolution of the jets can be drawn by tracking their tip over time.
Before the jet has formed and after it pierces the bubble’s distal side, the proximal
side of the bubble and the tip of the entrained gas are herein also defined as the jet
tip. In figure 3(a), the location of the jet tip, zj, normalised to the bubble’s initial
radius, rg, is displayed with respect to dimensionless time for shock waves of varying
intensity, characterised by their dimensionless pressure impulse applied to the bubble,
J/ (rg /Pbop)- The jet speed, u, is obtained by temporal differentiation of the location
of its tip and is disglayed in figure 3(b), normalised to the bubble’s characteristic speed,
v/ Pb,0/p-For J/(ry/Pb.0p) > 5, the time evolution of the jet is clearly nonlinear with an
initial acceleration phase during the collapse of the bubble ¢ /(ro./p/pp.0) < 1 followed by
a more or less linear evolution of the jet once it has breached the distal side of the bubble
and travels within the surrounding liquid. The speed increases linearly during the collapse,
reaching its maximum value at the moment the interface adopts a concave shape and a jet
starts being visible. The maximum speed experimentally recorded for J/ (rg /Pb.0pP) > 35

is found to be in the range u;/\/pp,0/p =2.1-4.9. Once the jet has formed, its speed
decreases and settles to an approximately constant value corresponding to its cruising

speed within the surrounding liquid, u;/\/pp,0/p =0.5-1.2. For J /(rg /Db.0p) = 6,
1018 A9-8
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Figure 3. Time evolution of (a) the jet tip location, z;, and (b) speed, u ;. The location, z;, speed, u ;, and time,
t, are normalised to the initial radius of the bubble, rg, and the bubble characteristic speed and time, \/pp.0/p
and ro./p/ pp.0, respectively.

corresponding to the limit for piercing jets, the spatiotemporal evolution of the jet is linear
and the corresponding speed stays roughly constant after an initial brief acceleration phase.
Lower pressure impulses display a simple linear evolution of the jet location during the
collapse up to ¢/(ro/p/pp.0) = 1 where no jet forms and the jet tip stagnates. The speed
of the bubble interface under such cases displays a short constant acceleration during
the linear collapse of the bubble before converging to zero as expected by the stagnating
jet tip. Here, the unprecedented visual access to the jets through their entire lifetime yields
valuable information to help understand the mechanism behind jet formation.

3.1. Bubble collapse-based approach

The formation of a liquid jet following the passage of a shock wave has been observed
only in cases of strong nonlinear bubble collapse (Bokman et al. 2023), typical of
inertial cavitation, rather than during the linear oscillations that occur in so-called ‘stable
cavitation’ (Petit et al. 2015) and driven by weaker shocks. This suggests that the onset of
jetting depends on the nature of the bubble collapse. It is therefore insightful to examine
the spatiotemporal evolution of the jet tip during the bubble collapse (i.e. before the
appearance of the jet), in figure 4(a). The jet tip location is plotted with respect to time for
five different shock wave impulses. The temporal evolution of the jet tip adopts a convex
distribution for J/ (rg /Pb.0p) > 35, and a concave distribution for J/ (rg /Pbop) <5.In
between, the temporal evolution of the jet tip is linear. These results suggest that the jet’s
motion follows a quadratic evolution over time:

zj()=a;t* +ujot + 70, @3.1)

where, a;, is the effective mean and constant acceleration of the jet, u j o, the initial velocity
jump induced by the shock wave and z ¢ the initial location of the jet. The acceleration of
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Figure 4. (a) Time evolution of the jet tip location during the bubble collapse. The dimensionless
impulse and acceleration of the jet are indicated in brackets for each curve [J/ (rg JPo.0P), aj/(pyo/pro)l.
(b) Dimensionless acceleration of the jet tip during the collapse phase of the bubble against the dimensionless
pressure impulse of the shock wave applied to the bubble surface. The dashed dark line indicates the jetting
limit for @ /(pp,0/pro) ~ 0 and the grey curve shows the scaling law in (3.4).

the jet as well as its initial velocity, induced by the impulsive effect of the shock wave
impact, can be extracted from the radiographs. However, to minimise the uncertainty
propagation from the first and second derivative of the jet tip’s displacement, both values
are fitted to the trajectory of the jet and verified to be well within the experimental
uncertainty. The best fit of (3.1) is performed for the acceleration and jump velocity for
each case, assuming z; o= 0 at the moment the shock impacts the proximal side of the
bubble, and displayed as solid curves in figure 4(a). All convex curves correspond to
bubbles exhibiting a stable jet that pierces their distal side and are characterised by a
positive acceleration of the jet tip a; > 0. The pressure driving corresponding to a linear
curve is close to the (previously mentioned) empirical jetting limit, and unsurprisingly,
the acceleration is close to zero and the jet exhibits an unstable behaviour, which will be
discussed later. For a negative acceleration, no jet is observed. For each curve, the pressure
impulse and jet tip acceleration are displayed in dimensionless form using the bubble’s
characteristic momentum and acceleration, pp, o0/ pro, respectively.

The results are presented in figure 4(b), where the jet tip acceleration, a;, is plotted
against the pressure impulse. For cases where stable bubble jetting occurs, the acceleration
is positive, with values in the range a; /(pp,0/ pro) = 0-3.1. At the jetting threshold, where
jets are unstable, the dimensionless acceleration approaches zero, while for non-jetting
bubbles, it is negative, ranging from a;/(pp,0/pro) = —0.3-0. As expected, a positive
acceleration is necessary to generate sufficient momentum for the proximal side of the
bubble to evolve into a stable jet, overcoming the ‘pulling’ force from the rebound of the
gas phase and the surface tension effects. The acceleration is expected to show a quadratic
dependence on the pressure impulse, consistent with the inverse relationship between the

impulsive mean jet speed and the impulsive collapse time (Bokman et al. 2023), u; <t~ L

1018 A9-10


https://doi.org/10.1017/jfm.2025.10504

https://doi.org/10.1017/jfm.2025.10504 Published online by Cambridge University Press

Journal of Fluid Mechanics

given that the collapse time inversely scales with the impulse, 7, o< J —1and acceleration
is the first derivative of velocity. This relationship can be obtained by assuming that the
jet acceleration scales with the mean jet speed, u; = Cro/t. !, where C = 1.43 is a fitted
constant, leading upon dimensional considerations to

Crg

c

where the impulsive collapse time is defined as (Bokman et al. 2023)

1
8 J

(g ) o

rov/p/pbo S \rg/Pb.oP

Substituting this into (3.2) yields

2
G __c 2 ! . (3.4)
Pb,0/Pro 6472 \ 13 \/Pb.0P
The equation describes the amplitude of the mean acceleration of the jet as a function of
the pressure impulse and is found to scale well with that found for jetting bubbles (i.e.
J/ (rg A/Pb.0p) = 5) as indicated by the grey curve displayed in figure 4(b). This scaling is,
however, only valid for bubbles that produce a jet.

3.2. Acceleration-induced interfacial instability-based approach

The acceleration of the proximal side of the bubble during collapse is a key factor
in determining whether a jet will form. Acceleration-driven interfacial instabilities,
such as the Rayleigh-Taylor and Richtmyer—Meshkov instabilities, which are classically
associated with sustained and impulsive acceleration, respectively, may play a central role
in this process. However, due to the complex interplay between the shock wave, bubble
collapse and jet formation, it remains unclear to the authors whether the jet originates
from one of these instabilities alone or from a more intricate coupling between multiple
mechanisms.

The shock wave in itself could potentially induce the Richtmyer—Meshkov instability.
However, the pulse generated in the present configuration is of very short duration with
respect to the jetting dynamics and is immediately followed by an exponential decay as
observed in figure 1(a), yielding an effective pressure profile characteristic of a blast
wave. This inversion of the pressure gradient after the peak of the shock wave may
rapidly reverse the vorticity deposited by the initial shock front, potentially cancelling the
Richtmyer—-Meshkov growth in its earliest stages. Moreover, blast-wave-driven interfacial
instability studies have postulated that the deceleration caused by the rarefaction could
induce Rayleigh—Taylor growth coupled to Richtmyer—-Meshkov effects (Kuranz et al.
2009; Drake 2011). Assessing which of these competing effects dominates is difficult,
as they occur within the first few frames of the experiment.

Additionally, the passage of the shock wave causes the bubble to collapse and rebound,
effectively accelerating its interface. The stability of bubbles to non-spherical disturbances
has been analysed using a model analogous to the spherical Rayleigh—Taylor instability
(Birkhoff 1954; Plesset & Mitchell 1956). One common approach to modelling the
dynamics of non-spherical bubbles involves expanding the interface perturbation in terms
of spherical harmonics. While this method offers certain advantages, Plesset & Prosperetti
(1977) noted that it is neither the only approach nor the most practical in all situations.
Although mathematically elegant, this method becomes challenging to apply in the context
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of bubbles interacting with laser-induced shock waves, due to the inherently non-uniform
and asymmetric nature of the shock-induced collapse. These complexities make it difficult
to define an appropriate initial interface shape and velocity distribution, as well as to
track the interface acceleration throughout the collapse. In this model, the mean radius, its
velocity and acceleration are typically modelled using Rayleigh—Plesset or Keller—Miksis-
type equations. Such equations indicate that during the shock passage and the early stage
of collapse, the interface acceleration is directed inward, toward the bubble centre. Before
the bubble reaches its minimum volume, the acceleration is directed outward, toward the
surrounding liquid. This configuration renders the interface most susceptible to Rayleigh—
Taylor instability (Brennen 2014). After its collapse, the bubble re-expands, and toward its
maximum size, the direction of acceleration reverses once more, in the direction of the
bubble centre, thereby stabilising the interface. A comprehensive analysis of this dynamic
Rayleigh—Taylor instability behaviour lies beyond the scope of the present work.

This study presents a brief attempt to model the jet tip dynamics as the growth of an
initial simple perturbation, through a Richtmyer—Meshkov instability initiated by the shock
wave. Due to the complexity of the underlying dynamics, simplified linearised models are
employed. More accurate approaches, such as Layzer-type models (Layzer 1955), based
on potential flow theory could, in principle, offer a more precise approximation of the
evolving jet tip (Zhang 1998; Mikaelian 2014; Zhou 2017). However, such models also
fall outside the scope of the present analysis and are reserved for future investigation.
The linearised models adopted here serve as foundational tools for providing a simplified
interpretation of jet formation in bubbles subjected to laser-induced shock waves.

A single-mode perturbation in the context of acceleration-driven interfacial instabilities
refers to the study of instability growth that originates from a disturbance or perturbation
with a single, well-defined wavelength or frequency at the interface between two fluids
of different densities. For a single-mode perturbation, this growth manifests as a regular,
predictable pattern, such as a single sinusoidal wave that becomes progressively amplified
over time. The study of acceleration-driven interfacial instabilities with single-mode
perturbations provides a simpler framework to understand the fundamental mechanisms
of instability growth, including the development of characteristic ‘spikes’ (penetrations
of the heavier fluid into the lighter fluid) and ‘bubbles’ (penetrations of the lighter fluid
into the heavier fluid). Here, considering the jet (or spike) to arise from a perturbation,
n, the perturbation growth rate can be computed based on a simple approach presented
in figure 5(a) and first proposed by Haas & Sturtevant (1987). For simplicity, the bubble
interface is assumed to be a quasi-single-mode perturbation (Liang et al. 2019). The real
part of the perturbation is initially described as

n(x, 0, 0) =Re [no exp (ikyx)] = no cos(k.x),
1(0, y, 0) =Re [no exp (ikyy)] = no cos(kyy), 3.5)

in x and y, respectively. Haas & Sturtevant (1987) approximated the bubble interface
by expressing the initial amplitude, ng, and the wavenumber, k, of the perturbation as
functions of the bubble radius,

770 :r07
1

ke=—, (3.6)
ro

as illustrated by the dashed sine wave in figure 5(a). These values are believed to
offer a good approximation of the overall bubble dynamics in cases involving strong,
sustained shock waves, as in the original study by Haas & Sturtevant (1987). However,
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Figure 5. (@) Schematic drawing of the quasi-single-mode approximation of the bubble, defining the initial
amplitude and wavelength of the initial perturbation. The dashed and full curves display the approximation
proposed by Haas & Sturtevant (1987) and in the present work, respectively. (b) Time evolution of the jet
speed for ten jetting bubbles driven by different shock waves. The jet speed and time are made dimensionless
by the wavenumber, k, and impulsive perturbation growth rate in the sense of Richtmyer and Meshkov, 7,
and (3.9) is displayed in grey. (c) Comparison between a single test case and (3.11). The inset images show the
bubble at its minimum size and when the jet reaches its distal side for the dimensionless times corresponding
to the vertical dashed and dotted line, respectively. (d) Comparison between the theoretical prediction of the jet
shape from (3.11) and the experiment for different non-dimensional times k|7 |t. The initial bubble shape is
indicated as a dotted circle.
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this approximation tends to overestimate the resulting jet speed (Haas & Sturtevant 1987)
and appears to be inadequate for capturing jets generated by laser-induced impulsive shock
waves. Although the reason for this discrepancy remains unclear, the authors believe it
may stem from the coupling between bubble collapse and jet formation. The angle 6
used to define the jetting region, taken here as 6 € [—m /6, /6], is selected empirically
based on visual observations of the angular extent over which the jet structure develops
consistently in experiments. Accordingly, the initial amplitude, 7, and wavenumber, k, of
the perturbation are defined as

243
no =ro[l —cos(/6)] = %

e — 2 2 o
YT A drgsin(r/6)  ry’
where A is the single-mode wavelength. The problem is three-dimensional, as shown in

figure 5(a), and the initial amplitude of the perturbation is taken to be identical in both the
x and y directions; the wavenumbers satisfy k, = k. Thus, the total wavenumber is given

by k= /k% + k; = \/5/ ro for Haas & Sturtevant (1987) and k = V2 /ro in the present

work. These values of 1y and k therefore represent the magnitudes of the initial wave
perturbation in three dimensions (Zhang & Sohn 1999; Zhou et al. 2021).

Many models have been proposed to describe the perturbation growth rate in the sense
of Richtmyer and Meshkov, 7, over time, starting from Richtmyer (1954) who suggested
the impulsive growth rate of the perturbation to be constant over time:

3.7

10 = Nimp = Aknou j 0, (3.8)
where u o is the velocity jump after the incident shock passage and A, k and ng are
the post-shock quantities considered to be equal to the pre-shock conditions because of
the impulsive and short nature of the laser-induced shock wave. An expansion of the
flow equations to second order yields a linear relationship between the growth rate of the
perturbation and time (Haan 1991; Alon et al. 1995; Zhang & Sohn 1996), in accordance
with experimental observations displayed in figure 5(b), where the grey line is given by

wj =0(t) = fimp| (1 + K7implt). (3.9

Here, the speed and time are normalised to the wavenumber of the perturbation, k, and
the magnitude of the impulsive growth rate of the perturbation in the sense of Richtmyer
and Meshkov, [9inp| (Zhang & Sohn 1996; Dimonte & Ramaprabhu 2010). An excellent
agreement is found between the measured early jet speed and the predicted growth rate of
the perturbation through the entire collapse of the bubble for ten different bubble—shock
wave experiments as displayed in figure 5(b). In these cases, the bubble dynamics and
jet are inertially driven with Weber numbers higher than 100 for both the bubble and the
jet, so surface tension effects are negligible. Once the bubble has collapsed and starts re-
expanding at k|[7iu|t > 2.10, the jet fully forms and travels within the bubble, its speed
decaying over time.

Only the early-stage dynamics of the perturbation are described by (3.9). To account for
the later, nonlinear evolution of the perturbation, Li & Zhang (1997) introduced a three-
dimensional nonlinear model that captures the perturbation growth rate of the Richtmyer—
Meshkov instability

. |ﬁimp|
uj=n(t) = _ _ : (3.10)
! 1+ Donok? |fjimp| D1t + max(0, k23 D} — D2)k2|fimp| 212
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where Dy =1 for a system with no phase inversion and Dy = —1 for a system with phase
inversion, i.e. negative amplitude is interpreted as a phase inversion (Yang et al. 1994).
This nonlinear equation is obtained by developing the initial perturbation using a Taylor’s
series up to order three, followed by Padé approximants, which lead to the coefficients
D1 =0.54 and D, = 0.16 for the Atwood number of the present work (Li & Zhang 1997).
Here, the quasi-single-mode perturbation assumption leads to kng = 0.60, which means
that the second-order term in (3.10) is equal to zero and yields inconsistent results with
regards to the jet speed evolution displayed in figure 5(b). However, a heuristic approach
(Li & Zhang 1997; Sadot et al. 1998) suggests that the jet speed is adequately modelled as
the growth rate of a Richtmyer—Meshkov perturbation by

. Mimpl
u; =n(t)= , 3.11

/ 77( ) 1- Elnokzmimp“ + E2n3k4|ﬁimp|2[2 ( )
where £1 =0.87£0.04 and E; =0.27 £0.03 are fitted scaling constants found to be
fairly consistent over the range of shock driving studied herein. The heuristic model
matches the experimental data well during the bubble collapse, indicated by the vertical
dashed line at k|7 |t = 2.10, where the jet speed grows linearly and during the expansion
of the bubble all the way up to the moment the jet contacts the distal bubble side, indicated
by the vertical dotted line at k|1, |t > 4.20, although it tends to underestimate the peak
jet speed. For the range of experiments investigated herein, a single scaling constant can be
used by setting Ep = n%sz 12 ~ (.27, building on the relationship between the exponents
used in (3.10).

Based on the heuristic approach proposed here (3.10), an approximation of the jet
shape can be attempted by considering the full single-mode form 1 = ng cos(kx), rather
than only its centre value n = ng. The resulting theoretical jet shapes are compared with
experimental observations in figure 5(d). Before the jet adopts a concave profile and
penetrates into the bubble, only the jet tip aligns with experimental data, as seen for
dimensionless times up to k|n;,|t =2.33. However, once the jet begins to penetrate
the bubble, the approximation yields a reasonable match within the limits of the linear
framework employed. The remainder of the bubble interface, which is influenced by
collapse and rebound dynamics, cannot be captured by this model. To improve accuracy,
this approach should be combined with the Rayleigh—Plesset or Keller—Miksis equations
to capture the radial dynamics, along with a model for predicting the translational motion
of the bubble (Ohl 2002). Even so, spurious cusps are expected to appear at the junction
between the bubble collapse solution and the jet shape described by (3.10), as previously
noted by Dear et al. (1988), who also attempted to approximate cavity collapse under shock
using a different linear framework.

3.3. Jet breakup and end-pinching

The shock-induced bubble jets evolve into a narrow bell-shaped structure during their
propagation within the air bubble. Their shape can quickly be approximated by a quasi-
cylindrical semifinite liquid ligament, whose dynamics is governed by inertial, surface
tension and viscous forces. The velocity of the shock-induced bubble jets decreases with
a decreasing shock wave impulse. Close to the jetting limit, capillary forces begin to
overcome inertial ones, causing the jets to become unstable, which may cause the jet tip
to break up into a small droplet as observed in figure 6(a). This capillary-driven instability
for semifinite ligaments and their breakup dynamics, also known as end-pinching, are
displayed in figure 6(b). At the tip of the jet, the inertial pressure of the liquid cannot
balance the increase in pressure caused by the curvature of the interface, causing the
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Figure 6. (a) Image sequence of the dynamics of an air bubble interacting with a shock wave travelling from
left to right and having a pressure impulse of J/ (rg /Pb.0p) = 7.87. The subsequent end-pinching breakup of
the liquid jet under capillary forces is observed. The normalised rescaled time, 7u ;(f = 0)/r;, is indicated on
each frame where f =1 — ¢ 7 = 01is the time at which the bubble becomes concave and a jet forms (t; = 18 Ls)
and r; and u;(f =0) the jet radius and initial jet speed. The jet’s Weber number is We; =46. (b) Image
sequence focusing on the end-pinching phenomenon of a larger shocked air bubble for a pressure impulse of
J/(rgm = 5.11. The jet’s Weber number is We; = 33. The jet forms ¢; = 36 s after the passage of the
shock wave. The scale bar is the same for both image sequences.

ligament to retract at a constant speed, called Taylor—Culick speed:

ure = |- (3.12)
prj

where r; is the radius of the cylindrical jet. This speed corresponds to ligaments at rest
and is therefore relative to the jet motion here. The retraction of the jet due to capillary
forces results in liquid accumulation in the form of a bulge at the tip, as observed in
the third frame of figure 6(b). Eventually, the back flow creates a neck at the base of the
bulge which collapses under the pressure jump associated with its curvature, leading to the
separation of a drop at the jet’s tip, as shown in the fourth and fifth frames of figure 6(b).
Finally, the newly created drop travels towards the distal bubble side at a constant speed,
while the end of the jet becomes unstable once more and a new protuberance associated
with the end-pinching starts developing.

The spatiotemporal evolution of the jet is displayed in figure 7(a) from the time at
which the bubble becomes concave and a jet forms, 7;. The time and position of the jet
tip are rescaled as f =1 — ¢ i=0and x; =z;() —z,(t;) =0, respectively, and the initial
jet speed u j(f =0) can be evaluated. The Weber numbers, We; = 2pr 1”5(5 =0)/y, are
found to be in the 16—84 range. Upon spatial and temporal normalisation to the jet radius,
rj, and jet inertial characteristic time, r; /u j(f = 0), self-similarity is observed and the jet
position is found to scale with time as

~ P 2/3
ﬁ=F<ﬂ£:9> , 3.13)

rj I"j

as indicated by the grey curve in figure 7(a), where F = 1.82 is an empirically determined
scaling constant. A good agreement is found between all tests and (3.13), which describes
the time evolution of inertia- and capillary-driven jets, with the exception of the test
at We; = 16, which diverges from the self-similar solution at 7u j(f =0)/r; = 10. This
is further illustrated by the superimposed bubble jet shapes shown in figure 7(b),
corresponding to the tests in figure 7(a). While some variation in the bubble contours near
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Figure 7. (a) Spatiotemporal evolution of the jet tip’s location, normalised to the jet radius, from the moment
the jet forms, 7 = — ¢, normalised to the inertial time scale, r; /u j (f = 0). The drop and jet are displayed as
open and closed markers, respectively. The solid, dashed and dotted curves correspond to (3.13) for We; > 1,
(3.14) for We; < 1 and the evolution of the ejected drop position derived from the Taylor-Culick speed (3.12)
relative to the jet speed at the drop pinch-off, u ; (f,) — urc, respectively. The inset figure displays the ejected
drop volume with respect to (3.15), representing the liquid volume that accumulates at the jet tip because
of capillary forces. (b) Superimposition of the bubble jet contours corresponding to figure 7(a), illustrating
selfsimilarity of their shape while in the inertia-capillary regime, for different dimensionless times.

the jet base arises from differences in the stages of collapse or expansion, the jet contours
remain self-similar at each dimensionless time, except for minor discrepancies caused by
liquid accumulation at the jet tip shortly before end-pinching, as well as the case with
We; = 16, which begins to deviate from fu j t=0)/r j = 10. Indeed, as the jet evolves,
its speed decreases because of viscous and capillary effects, which results in the jet’s
Weber number decreasing, eventually dropping below one, and capillary effects eventually
becoming dominant. At that moment, non-dimensionalisation of the time must be switched

from the inertial time scale to the capillary time scale , /prj3. /Y,

3 2/3
_ ;
N_pl ) (3.14)
rj ,orj3.

which captures well the deviation of the jet position as observed by the good agreement
between the dashed curve and corresponding test case at We; = 16 shown in figure 7(a).
Note that the scaling constant is the same as in (3.13). The time at which the tip of the
jet pinches off as a drop, 7, is marked by the transition of the full markers into hollow
markers, indicating the position of the jet tip and distal side of the drop, respectively. The
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gap between both markers, at the moment the drop detaches, corresponds roughly to the
drop diameter. From that moment, the newly formed jet tip is tracked simultaneously to
the drop location and can be observed as a full marker below each hollow marker. The
drop is ejected at a constant speed equal to the jet speed at the moment the drop detaches
and travels within the air bubble before impacting the distal bubble side, as observed in
the last frame of figure 6(b). Once the drop detaches, the retraction at the newly formed jet
tip starts forming another bulge of liquid, whose evolution is estimated by subtracting the
Taylor—Culick speed from the speed of the jet at the moment the drop detaches u (7,) —
urc. This relative speed yields the slope of the drop position corresponding to the dotted
lines in figure 7(a). Since the retraction of the jet tip is at the origin of the end-pinching
breakup of the jet, the volume of the drop ejected from the jet depends on the jet size and
retraction speed, but is independent of the jet speed. The drop volume, Vj, is in fact equal
to the portion of the jet which has retracted up to the pinch-off time, 7,, which can be
expressed as

Va =Tipurcrim, (3.15)

where the jet is approximated as a cylinder of cross-sectional area rjz.n. A good correlation
between the experiment and (3.15) is observed in the inset of figure 7(a).

3.4. Water-entry of the liquid jet

The impact of objects such as solid spheres (May & Woodhull 1948; Aristoff & Bush
2009), liquid drops (Engel 1966) or liquid jets (Soh, Khoo & Yuen 2005; Qu et al. 2013),
normal to an initially quiescent free surface, typically forms a cavity that is driven deeper
into the pool by the momentum of the object. Past a certain water-entry velocity, the long
narrow cavity surrounding the object collapses from the sides, entrapping a bubble, which
pinches off from the end of the cavity and starts journeying in the surrounding water
(Oguz, Prosperetti & Kolaini 1995). The entrapment of the bubble can be classified as a
shallow seal or a deep seal, depending on the collapse location of the cavity. A shallow
seal occurs when the cavity collapses near the free surface, while a deep seal happens
when the collapse occurs midway between the tip of the cavity and the free surface. In
their pioneering work on shock-induced microbubble dynamics, Ohl & Ikink (2003) have
observed the appearance of small daughter bubbles next to the distal side of the gas bubbles
right after the passage of a lithotripter shock wave. They have suggested that the water-
entry of the shock-induced bubble jets at the distal bubble side, driven by the asymmetrical
collapse of the bubble, entrains some gas, which separates from the main bubble. Kersten
et al. (2003) have proposed that the water-entry of shock-induced micrometre-sized bubble
jets is similar to the canonical water-entry of millimetre-sized jets into a flat liquid pool.
However, more recently, works on the liquid pool impact of micrometre-sized jets (Speirs
et al. 2018), still larger than those investigated in the present study, have highlighted
some fundamental differences with respect to their millimetre-sized counterparts. Indeed,
microjets are characterised by very small Bond numbers, Bo = ,ogrjz. /y ~ 0(1073), where

g is the gravitational acceleration, compared with millimetre-sized ones, Bo > 0 (10°),
indicating that the dynamics of the cavity is not driven by hydrostatic pressure any more
but by capillary forces.

Figure 8(a,b) shows two image sequences of the water-entry of a micrometre-sized jet
at the distal side of the bubble, the formation of a cavity and the subsequent pinch-off of
an ejected toroidal bubble for figure 8(b). Depending on the speed of the bubble jet, the
water-entry at the distal side can happen right at the beginning of the expansion phase, or
later, when the bubble comes close to reaching its maximum size. Therefore, the relative

1018 A9-18


https://doi.org/10.1017/jfm.2025.10504

https://doi.org/10.1017/jfm.2025.10504 Published online by Cambridge University Press

Journal of Fluid Mechanics
(b)

Figure 8. Image sequences of the water entry of shock-induced bubble jets, where (a) the shock wave is
characterised by a pressure impulse of J/ (rg /Pb0p) =5.44, driving a cavity that stays attached to the main
bubble and where (b) the shock wave is characterised by a pressure impulse of J/ (rg /Pb0p) = 8.62, driving
a cavity that detaches in the shape of an ejected toroidal bubble. The normalised rescaled time, 7 Au;/rj, is
indicated on each frame where 7 =7 — #; = 0 is the time at which the jet impacts the distal bubble side and is
(@) t; =102 ws and (b) t; =34 ps; r; and Au; are the jet radius and velocity of the jet relative to the distal
bubble side, respectively. The scale bar is the same for both image sequences.

impact velocity of the jet Au; is influenced by the bubble’s expansion velocity, up, where
up >0 when the bubble is not close to its minimum or maximum size. The velocity
of the jet relative to the distal bubble side at the moment of impact, ¢;, is defined as
Au; =u; — up, where u; is the jet’s impact speed and u; the distal bubble wall velocity
at that time. For figure 8(a), the relative jet speed at impact is Au; =7.41 m s~ and

1018 A9-19


https://doi.org/10.1017/jfm.2025.10504

https://doi.org/10.1017/jfm.2025.10504 Published online by Cambridge University Press

G.T. Bokman and others

2.00 12
100
1.75 1
£ 10
1.50 1 3 J
3 < >0 K
b W —_
1sq, 3 |2
3 . : - : : &
< 1.001 e 0 50 100 150 200 250
= o We; ©
"“‘@ L ] J L6 N
0.75 1 "_u"a‘a’nm = = §
LI . ]
050 [ .9_,%%- L WL 5" - - ]
: u *0 + *
AT g AT e % te ] [}
0.25 1 AT T
*
. . . . . . : —L2
0 10 20 30 40 50 60 70 80
iAuy/r;

Figure 9. Temporal evolution of the speed of the jet-driven cavity’s tip, u ;, from the moment the jet impacts the
distal bubble side, f =t — ;. The jet speed and time are normalised to the relative impact speed, Au; =u; — up
and jet radius, r;. The grey horizontal line indicates u;/Au; =0.5 and the dashed vertical lines show the
time at which the toroidal bubble pinches off from the tip of the cavity, 7,. The impulses are J/ro./py.0p =
7.52 (@), 9.56 (¢) and 10.31 (o). The inset figure displays the dimensionless pinch-off time against the jet’s
Weber number, We;, comparing with the model given by (3.16). Only the minimal and maximal uncertainty
are displayed for visual clarity.

the associated Weber number, We; = pAul.zr /v =15. For figure 8(b), the jet speed is
Au; =16.85 m s~! and the Weber number is We j = 88. The bubble wall velocity is
greater for a stronger collapse because the jet reaches the distal side during the bubble’s
early expansion phase. In contrast, with milder driving, the bubble is close to reaching its
maximum size, resulting in a bubble wall velocity close to zero. Immediately after impact,
the bubble adopts a torus-like shape and a subsequent toroidal cavity forms, as highlighted
in the second frame of figure 8(b). In figure 8(b), the pinch-off of a toroidal daughter
bubble is observable due to the sufficiently high relative jet velocity at the moment of
impact. The absence of a pinch-off for figure 8(a) is, however, not surprising, given the
Weber number associated with this case, which is close to the value of We; = 6.8, where
Kersten e al. (2003) did not observe pinch-off in their plunging jet experiments. The
resulting daughter bubble is indeed toroidal as suggested by Kersten et al. (2003).

Figure 9 shows the velocity of the jet tip, which initially coincides with the tip of the
cavity as it penetrates the surrounding liquid, and later evolves into the tip of the resulting
toroidal bubble. The velocity is normalised to the relative impact velocity, Au; = u; — up,
and the time by the characteristic time of the jet, r; /Au;. The reference frame for time is
also modified, where ¢t = 0 corresponds to the moment the shock wave impacts the bubble
and 7 =t — t; = 0 to the moment the jet impacts the distal side of the bubble. The temporal
evolution of the jet speed is shown for three different shock wave—bubble experiments,
with the instant at which a toroidal bubble pinches off from the jet-driven cavity (as
visually highlighted in the fourth frame of figure 8b) being indicated. The dimensionless
speed at which the cavity elongates has been reported to be uj/Au; = 0.5 for infinitely
long millimetre-sized liquid jets (Oguz et al. 1995; Speirs et al. 2018), although Kersten
et al. (2003) reported values are in the u ; / Au; = 0.6-0.9 range. Here, after a first phase of
deceleration lasting up to 7 Au; /rj = 25 for all three test cases, the dimensionless growth
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speed of the cavity settles to a constant speed of u;/Au; =0.5, as highlighted by the
horizontal grey line in figure 9. In fact, the mean and standard deviation for N = 24 tests
yield a dimensionless speed of the cavity right before pinch-off of the daughter bubble
of uj/Au; =0.51£0.06 for the jets of finite length investigated herein. As the tip of
the cavity pinches off, the toroidal bubble travels at a speed which slightly decreases,
while staying close to u;/Au; =0.5 for the duration of the experiment. Fluctuations in
the speed of the ejected toroidal bubble are observed because of the deformation of the
toroidal bubble. The dimensionless time at which the bubble pinches off from the tip of
the cavity, 7, pAu;/rj, grows as the shock wave intensity increases (see vertical lines). The
dimensionless pinch-off time is plotted in the inset of figure 9 against the Weber number
of the jet at the moment it impacts the distal bubble side. The pinch-off time includes the
growth and collapse times of the cavity, which have previously been suggested to scale
with We% (Quetzeri-Santiago ef al. 2021) and We; (Kroeze et al. 2024), respectively. Here,
however, the experimental results indicate a linear dependency on We; for both the growth
and collapse time through the relation

pAu;

=GWe;, (3.16)
rj

where G = (.37 is a scaling constant fitted to the observations within the parameter range
investigated herein.

The pinch-off dynamics following the impact of finite micrometre-sized jets on liquid
surfaces is governed by surface tension effects. Therefore, owing to the linear relationship
between the jet speed and pressure impulse (Bokman et al. 2023), the pinch-off time scales
with the pressure impulse of the shock wave as

ty~Wej~ Aur~J%. (3.17)

Kroeze et al. (2024) have shown that for jets having a We; < 150 at impact and a uniform
constant velocity from tip to tail, the cavity behaves in the deep seal regime, where the
collapse of the cavity around the jet occurs approximately in the middle of the cavity,
while Speirs et al. (2018) suggest a shallow seal for the same range of Weber number but
Bond numbers in the O (10~2)-0 (10~ 1) range. Solely deep seal behaviour is observed in
the present work.

As the pinch-off occurs, the X-ray phase contrast images provide a clear quantifiable
visual access to the structure of the ejected toroidal bubble. Experiments suggest the outer
radius of the toroid to be three times larger than its inner radius. The toroidal bubble’s
volume can easily be computed, assuming symmetry along the jet axis, by measuring
the area of the lobe, Ajype, and its average radius, rjype, Which yields V = 2mrjope Ajppe-
Figure 10(a) displays the volume of the ejected toroidal bubble at the moment of pinch-
off. The volume is in the nanolitre range for different shock wave drivings and suggests
a linear relationship with the relative impact speed of the jet on the distal bubble side. A
simple model can easily be derived by assuming that the cavity promptly converges to its
constant growth speed of u ; = Au; /2, that the toroidal bubble pinches off at the centre of
the deep cavity formed by the jet, and therefore, its length equals half of the cavity’s length
le=1./2, and that the outer radius of the cavity is 3r;. These assumptions, combined
with (3.16) and the scaling proposed in (3.17), yield the following relation relating the
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Figure 10. (a) Ejected toroidal bubble volume, V, against the relative impact speed of the jet upon water
entry, Au; =u; —up. (b) Dimensionless volume of the ejected gas bubble against the jet’s Weber number
upon impact. The grey line displays (3.18). Only the minimal and maximal uncertainty are shown for visual
clarity.

ejected volume with the shock wave impulse:

=G2nWe; ~ G2 J>. (3.18)

v 7 |G-l xsiaw

3= 3 = 3

r; 2r i 4r i
The model is compared with experiments in figure 10() yielding a fairly good estimate of
the dimensionless volume at the moment of pinch-off. However, the data are plagued by
significant uncertainty caused by the very small jet radii, which are in the 16-32 wm range
and therefore approaching resolution limits. Nevertheless, these findings suggest that the
volume of the ejected gas can be controlled through the shock wave impulse, which could
have implications in technologies such as needle-free injections of nanoaerosols (Hindle &
Longest 2010).

4. Conclusion

In this work, the interaction of micrometre-sized air bubbles with impulsive laser-induced
shock waves has been examined in detail using X-ray phase contrast imaging, which
allows access to all phase discontinuities along the X-ray beam path. The bubble collapse,
jet formation, propagation within the bubble and air entrainment as the jet enters the
surrounding liquid are visualised, displaying a rich variety of dynamical processes. The
undistorted access to the jet within the bubble allows the jet tip evolution, and consequently
its speed, to be assessed over time.

The jetting dynamics is investigated from a bubble collapse and interfacial instability
perspective. Air bubbles interacting with underwater shock waves have been investigated
from a bubble collapse perspective, with equations such as the Rayleigh—Plesset or Keller—
Miksis equations. However, while the Rayleigh—Plesset and Keller-Miksis equations
effectively capture the volumetric oscillations of a bubble, they assume spherical
symmetry and thus fall short in describing jet formation and other asymmetric dynamics.
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They can be leveraged to estimate the mean velocity and acceleration of the jet during
the collapse of the bubble, based on the bubble collapse time and only to a certain degree
of accuracy. Nonetheless, they can provide valuable insights on whether a jet will form
or not following the impact of a bubble with a shock wave. The appearance of a jet is
found to be a function of the mean acceleration of the bubble during its collapse, where
a positive or negative value results in the presence or absence of jets, respectively. The
dimensionless mean acceleration is found to scale with the square of the dimensionless
pressure impulse applied by the shock wave on the bubble surface. A minimum mean
acceleration of the bubble necessary for an instability to grow after its collapse is found
for the bubbles investigated in this work, beyond which jets are stable and reach the
distal bubble side. The relationship between jetting and acceleration further suggests that
shock-induced bubble jets are an acceleration-driven interfacial instability, such as the
Rayleigh—Taylor or Richtmyer—Meshkov instability. The jets, when present, can also be
described by the Richtmyer—Meshkov instability, the shock-driven impulsive Rayleigh—
Taylor instability, by considering the bubbles as quasi-single-mode perturbations. The
growth rate of the perturbation, or jet speed, can be described through time thanks to
established theory. During the collapse phase of the bubble, the flow equation can be
expanded to second order, which yields a linear relationship of the early-time jet speed. A
nonlinear decay of the jet speed is observed during the bubble expansion, in conformity
with previous findings, and a heuristic formulation based on previous work is derived. A
good agreement between the heuristic model and experiments is found from the moment
the shock interacts with the bubble, up to the moment the jet merges with the surrounding
liquid at the distal bubble side. Application of the heuristic model to the full single-mode
perturbation appears to provide a reasonable approximation of the jet shape following its
penetration into the bubble.

At the limit of jetting, the jets are found to become unstable due to capillary forces,
which may lead to the end-pinching phenomenon, the Rayleigh—Plateau instability for
semifinite ligaments. The relative distance of the jet is found to scale with the inertial time
scale once the jet’s Weber number drops bellow one. Once the capillary forces become
dominant, the jet position scales with the capillary time scale. At the jet tip, the inertial
pressure of the liquid fails to balance the pressure from interface curvature, leading to
ligament retraction at the constant Taylor—Culick speed, which in turn results in liquid
accumulating as a bulge that eventually forms a neck and collapses, separating a drop from
the jet tip. The ejected drop travels towards the distal bubble side at a constant velocity,
and its volume is a function of the Taylor—Culick speed.

The penetration of the jets at the distal bubble side is also observed and found to entrain
some gas which eventually detaches from the main bubble in the shape of a toroidal bubble,
confirming previous findings (Ohl & Ikink 2003; Kersten et al. 2003). The terminal speed
of the entrained gas converges to half the relative jet impact speed, and the dimensionless
pinch-off time scales linearly with the jet’s Weber number for an experimental range
which complements previous research on the water-entry of micrometre-sized jets (Kroeze
et al. 2024). A simple linear relationship between the dimensionless volume of the ejected
toroidal bubble and the jet’s Weber number at the moment of impact is observed.

The present work provides a wide outlook on shock-induced bubble dynamics in water.
It provides fundamental insights into shock wave—bubble interactions at the micrometre
scale by linking classic interfacial phenomena, such as cavitation bubble collapse,
acceleration- and capillary-driven instabilities and jet penetration, with established
theories. By examining these processes at small temporal and spatial scales, the study
offers a fresh perspective that unites various traditional models. The proposed use of
acceleration-driven instability theory adds a novel dimension to liquid jet modelling,
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where understanding stability can allow for precise control of jet initiation (and mitigation)
based on initial shock intensities, with potential applications in ICF. Additionally, by
investigating the entry of micrometre-sized jets into the surrounding liquid, this research
expands on recent findings, with practical implications for applications such as needle-free
injections and sonoporation.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10504.

Funding. The authors acknowledge the financial support from ETH Zurich, the ETH Zurich Postdoctoral
Fellowship programme and access to beamtime at beamline ID19 of the ESRF in the frame of the Shock BAG
MI1397. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Declaration of interests. The authors report no conflict of interest.

Data availability statement. The data that support the findings of this study are available under reasonable
request.

REFERENCES

ABE, A., WANG, J., SHIODA, M. & MAENO, S. 2015 Observation and analysis of interactive phenomena
between microbubbles and underwater shock wave. J. Vis. 18 (3), 437-447.

ALON, U., HECHT, J., OFER, D. & SHVARTS, D. 1995 Power laws and similarity of Rayleigh-Taylor and
Richtmyer—Meshkov mixing fronts at all density ratios. Phys. Rev. Lett. 74 (4), 534.

ANTKOWIAK, A., BREMOND, N., LE DIZES, S. & VILLERMAUX, E. 2007 Short-term dynamics of a density
interface following an impact. J. Fluid Mech. 577, 241-250.

APFEL, R.E. 1982 Acoustic cavitation: a possible consequence of biomedical uses of ultrasound. Br. J. Cancer
5, 140.

ARISTOFF, J.M. & BUSH, J.W.M. 2009 Water entry of small hydrophobic spheres. J. Fluid Mech. 619, 45-78.

BEKEREDIJIAN, R., BOHRIS, C., HANSEN, A., KATUS, H.A., KUECHERER, H.F. & HARDT, S.E. 2007
Impact of microbubbles on shock wave-mediated DNA uptake in cells in vitro. Ultrasound Med. Biol.
33 (5), 743-750.

BETNEY, M.R., TULLY, B., HAWKER, N.A. & VENTIKOS, Y. 2015 Computational modelling of the
interaction of shock waves with multiple gas-filled bubbles in a liquid. Phys. Fluids 27 (3), 036101.

BETTI, R. & HURRICANE, O.A. 2016 Inertial-confinement fusion with lasers. Nat. Phys. 12 (5), 435-448.

BIRKHOFF, G. 1954 Note on Taylor instability. Q. Appl. Maths 12 (3), 306-309.

BOKMAN, G.T., BIASIORI-POULANGES, L., LUKIC, B., SCHMIDMAYER, K., BOURQUARD, C.,
BAUMANN, E., RACK, A., OLSON, B.J. & SUPPONEN, O. 2024 Impulse-driven release of gas-
encapsulated drops. J. Fluid Mech. 1001, A51.

BOKMAN, G.T., BIASIORI-POULANGES, L., MEYER, D.W. & SUPPONEN, O. 2023 Scaling laws for bubble
collapse driven by an impulsive shock wave. J. Fluid Mech. 967, A33.

BOURNE, N.K. & FIELD, J.E. 1992 Shock-induced collapse of single cavities in liquids. J. Fluid Mech.
244, 225-240.

BRENNEN, C.E. 2014 Cavitation and Bubble Dynamics. Cambridge University Press.

BRENNER, M.P., HILGENFELDT, S. & LOHSE, D. 2002 Single-bubble sonoluminescence. Rev. Mod. Phys.
74, 425-484.

BROUILLETTE, M. 2002 The Richtmyer—-Meshkov instability. Annu. Rev. Fluid Mech. 34 (2002), 445—-468.

CALviSI, M.L., LINDAU, O., BLAKE, J.R. & SZERI, A.J. 2007 Shape stability and violent collapse of
microbubbles in acoustic traveling waves. Phys. Fluids 19 (4), 047101.

CARLES, P. & POPINET, S. 2002 The effect of viscosity, surface tension and non-linearity on Richtmyer—
Meshkov instability. Eur. J. Mech. B Fluids 21 (5), 511-526.

CASTREJON-PITA, A.A., CASTREJON-PITA, J.R. & HUTCHINGS, [.M. 2012 Breakup of liquid filaments.
Phys. Rev. Lett. 108 (7), 074506.

CLOETENS, P., BARRETT, R., BARUCHEL, J., GUIGAY, J.-P. & SCHLENKER, M. 1996 Phase objects in
synchrotron radiation hard x-ray imaging. J. Phys. D: Appl. Phys. 29 (1), 133.

CULICK, F.E.C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31 (6), 1128-1129.

DAvY, B.A. & BLACKSTOCK, D.T. 1971 Measurements of the refraction and diffraction of a short n wave by
a gas-filled soap bubble. J. Acoust. Soc. Am. 49 (3B), 732-737.

DEAR, J.P. & FIELD, J.E. 1988 A study of the collapse of arrays of cavities. J. Fluid Mech. 190, 409-425.

1018 A9-24


https://doi.org/10.1017/jfm.2025.10504
https://doi.org/10.1017/jfm.2025.10504

https://doi.org/10.1017/jfm.2025.10504 Published online by Cambridge University Press

Journal of Fluid Mechanics

DEAR, J.P., FIELD, J.E. & WALTON, A.J. 1988 Gas compression and jet formation in cavities collapsed by a
shock wave. Nature 332 (6164), 505-508.

DELIUS, M. & ADAMS, G. 1999 Shock wave permeabilization with ribosome inactivating proteins: a new
approach to tumor Therapy1l. Cancer Res. 59 (20), 5227-5232.

DHOTE, Y., KUMAR, A., KAYAL, L., GOSWAMI, P.S. & DASGUPTA, R. 2024 Standing waves and jets on a
sessile, incompressible bubble. Phys. Fluids 36 (1), 012105.

DIMONTE, G. & RAMAPRABHU, P. 2010 Simulations and model of the nonlinear Richtmyer—Meshkov
instability. Phys. Fluids 22 (1), 014104.

DING, Z. & GRACEWSKI, S.M. 1996 The behaviour of a gas cavity impacted by a weak or strong shock wave.
J. Fluid Mech. 309, 183-209.

DRAKE, R.P. 2011 Spkie penetration in blast-wave-driven instabilities. Astrophys. J. 744 (2), 184.

EGGERS, J. & VILLERMAUX, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.

ENGEL, O.G. 1966 Crater depth in fluid impacts. J. Appl. Phys. 37 (4), 1798—1808.

FREUND, J.B., SHUKLA, R.K. & EVAN, A.P. 2009 Shock-induced bubble jetting into a viscous fluid with
application to tissue injury in shock-wave lithotripsy. J. Acoust. Soc. Am. 126 (5), 2746-2756.

GORDILLO, J.M., ONUKI, H. & TAGAWA, Y. 2020 Impulsive generation of jets by flow focusing. J. Fluid
Mech. 894, A3.

HAAN, S.W. 1991 Weakly nonlinear hydrodynamic instabilities in inertial fusion. Phys. Fluids B 3 (8),
2349-2355.

HAAS, J.-F. & STURTEVANT, B. 1987 Interaction of weak shock waves with cylindrical and spherical gas
inhomogeneities. J. Fluid Mech. 181, 41-76.

HINDLE, M. & LONGEST, P.W. 2010 Evaluation of enhanced condensational growth (ECG) for controlled
respiratory drug delivery in a mouth-throat and upper tracheobronchial model. Pharmaceut. Res. 27,
1800-1811.

HURRICANE, O.A., PATEL, P.K., BETTI, R., FROULA, D.H., REGAN, S.P., SLUTZ, S.A., GOMEZ, M.R.
& SWEENEY, M. A. 2023 Physics principles of inertial confinement fusion and us program overview. Rev.
Mod. Phys. 95 (2), 025005.

JOHNSEN, E. & CoLoNIUS, T. 2008 Shock-induced collapse of a gas bubble in shockwave lithotripsy.
J. Acoust. Soc. Am. 124 (4), 2011-2020.

JOHNSEN, E. & CoLON1US, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech.
629, 231-262.

KELLER, J.B. & MIKSIS, M. 1980 Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68 (2), 628—633.

KERSTEN, B., OHL, C.-D. & PROSPERETTI, A. 2003 Transient impact of a liquid column on a miscible liquid
surface. Phys. Fluids 15 (3), 821-824.

KLASEBOER, E., FONG, S.-W., TURANGAN, C.K., KHOO, B.C., SZERI, A.J., CALVISI, M.L., SANKIN,
G.N. & ZHONG, P. 2007 Interaction of lithotripter shockwaves with single inertial cavitation bubbles.
J. Fluid Mech. 593, 33-56.

KoBAYASHI, K., KoDAMA, T. & TAKAHIRA, H. 2011 Shock wave-bubble interaction near soft and rigid
boundaries during lithotripsy: numerical analysis by the improved ghost fluid method. Phys. Med. Biol.
56 (19), 6421-6440.

Kobpama, T. & TAKAYAMA, K. 1998 Dynamic behavior of bubbles during extracorporeal shock-wave
lithotripsy. Ultrasound Med. Biol. 24 (5), 723-738.

Koukas, E., PAPOUTSAKIS, A. & GAVAISES, M. 2023 Numerical investigation of shock-induced bubble
collapse dynamics and fluid—solid interactions during shock-wave lithotripsy. Ultrason. Sonochem.
95, 106393.

KROEZE, T.B., FERNANDEZ RIVAS, D. & QUETZERI-SANTIAGO, M.A. 2024 Microfluidic jet impacts on
deep pools: transition from capillary-dominated cavity closure to gas-pressure-dominated closure at higher
weber numbers. J. Fluid Mech. 986, A24.

KULL, H.-J. 1991 Theory of the Rayleigh-Taylor instability. Phys. Rep. 206 (5), 197-325.

KURANZ, C.C., et al. 2009 Three-dimensional blast-wave-driven Rayleigh—Taylor instability and the effects
of long-wavelength modes. Phys. Plasmas 16 (5), 056310.

LAUTERBORN, W. & BOLLE, H. 1975 Experimental investigations of cavitation-bubble collapse in the
neighbourhood of a solid boundary. J. Fluid Mech. 72 (2), 391-399.

LAUTERBORN, W. & VOGEL, A. 2013 Shock wave emission by laser generated bubbles. In Bubble Dynamics
and Shock Waves, pp. 67-103. Springer.

LAYES, G., JOURDAN, G. & HOUAS, L. 2009 Experimental study on a plane shock wave accelerating a gas
bubble. Phys. Fluids 21 (7), 074102.

LAYZER, D. 1955 On the instability of superposed fluids in a gravitational field. Astrophys. J. 122, 1.

1018 A9-25


https://doi.org/10.1017/jfm.2025.10504

https://doi.org/10.1017/jfm.2025.10504 Published online by Cambridge University Press

G.T. Bokman and others

LE GAG, S., ZWAAN, E., VAN DEN BERG, A. & OHL, C.-D. 2007 Sonoporation of suspension cells with a
single cavitation bubble in a microfluidic confinement. Lab on a Chip 7 (12), 1666—-1672.

L1, X.L. & ZHANG, Q. 1997 A comparative numerical study of the Richtmyer—Meshkov instability with
nonlinear analysis in two and three dimensions. Phys. Fluids 9 (10), 3069-3077.

LIANG, Y., ZHAI Z., DING, J. & LU0, X. 2019 Richtmyer—-Meshkov instability on a quasi-single-mode
interface. J. Fluid Mech. 872, 729-751.

LIGRANI, PM., McNABB, E.S., COoLLOPY, H., ANDERSON, M. & MARKO, S.M. 2020 Recent
investigations of shock wave effects and interactions. Adv. Aerodyn. 2 (1), 4.

LOSKE, A.M. 2017 Medical and Biomedical Applications of Shock Waves. Springer.

Lul, H.F.S., RiCCIARDI, T.R., WOLF, W.R., BRAUN, J., RAHBARI, I. & PANIAGUA, G. 2022 Unsteadiness
of shock-boundary layer interactions in a Mach 2.0 supersonic turbine cascade. Phys. Rev. Fluids 7, (094602.

MASON, T.J. 2016 Ultrasonic cleaning: an historical perspective. Ultrason. Sonochem. 29, 519-523.

MAY, A. & WOODHULL, J.C. 1948 Drag coefficients of steel spheres entering water vertically. J. Appl. Phys.
19 (12), 1109-1121.

MIKAELIAN, K.O. 1990 Rayleigh-Taylor and Richtmyer—Meshkov instabilities in multilayer fluids with
surface tension. Phys. Rev. A 42, 7211-7225.

MIKAELIAN, K.O. 2008 Limitations and failures of the Layzer model for hydrodynamic instabilities.
Phys. Rev. E 78, 015303.

MIKAELIAN, K.O. 2014 Solution to Rayleigh-Taylor instabilities: bubbles, spikes, and their scalings.
Phys. Rev. E 89 (5), 053009.

OGUz, H.N., PROSPERETTI, A. & KOLAINI, A.R. 1995 Air entrapment by a falling water mass. J. Fluid
Mech. 294, 181-207.

OHL, C.D. 2002 Cavitation inception following shock wave passage. Phys. Fluids 14 (10), 3512-3521.

OHL, C.-D., ARORA, M., IKINK, R., DE JONG, N., VERSLUIS, M., DELIUS, M. & LOHSE, D. 2006
Sonoporation from jetting cavitation bubbles. Biophys. J. 91 (11), 4285-4295.

OHL, C.-D. & IKINK, R. 2003 Shock-wave-induced jetting of micron-size bubbles. Phys. Rev. Lett. 90, 214502.

OHL, S.-W., KLASEBOER, E. & KH0O, B.C. 2015 Bubbles with shock waves and ultrasound: a review.
Interface Focus 5 (5), 20150019.

PARE, G.N. 2015 Création et éjection des gouttes de 1’atomisation PhD thesis. Université Pierre et Marie Curie,
France.

PETIT, B., BOHREN, Y., GAUD, E., BUSSAT, P., ARDITI, M., YAN, F., TRANQUART, F. & ALLEMANN,
E. 2015 Sonothrombolysis: the contribution of stable and inertial cavitation to clot lysis. Ultrasound Med.
Biol. 41 (5), 1402-1410.

PHILIPP, A., DELIUS, M., SCHEFFCZYK, C., VOGEL, A. & LAUTERBORN, W. 1993 Interaction of lithotripter
generated shock waves with air bubbles. J. Acoust. Soc. Am. 93 (5), 2496-2509.

PLESSET, M.S. 1949 The dynamics of cavitation bubbles. J. Appl. Mech. 16 (3), 277-282.

PLESSET, M.S. & CHAPMAN, R.B. 1971 Collapse of an initially spherical vapour cavity in the neighbourhood
of a solid boundary. J. Fluid Mech. 47 (2), 283-290.

PLESSET, M.S. & MITCHELL, T.P. 1956 On the stability of the spherical shape of a vapor cavity in a liquid.
Q. Appl. Maths 13 (4), 419-430.

PLESSET, M.S. & PROSPERETTI, A. 1977 Bubble dynamics and cavitation. Annu. Rev. Fluid Mech. 9 (1977),
145-185.

PRAUSNITZ, M.R., MITRAGOTRI, S. & LANGER, R. 2004 Current status and future potential of transdermal
drug delivery. Nat. Rev. Drug Discov. 3 (2), 115-124.

Qu, X., GOHARZADEH, A., KHEZZAR, L. & MOLKI, A. 2013 Experimental characterization of air-
entrainment in a plunging jet. Expl Therm. Fluid Sci. 44, 51-61.

QUETZERI-SANTIAGO, M.A., HUNTER, I.W., VAN DER MEER, D. & FERNANDEZ R1VAS, D. 2021 Impact
of a microfluidic jet on a pendant droplet. Soft Matt. 17, 7466-7475.

RANJAN, D., NIEDERHAUS, J., MOTL, B., ANDERSON, M., OAKLEY, J. & BONAZZA, R. 2007 Experimental
investigation of primary and secondary features in high-mach-number shock-bubble interaction. Phys. Rev.
Lett. 98 (2), 024502.

RANJAN, D., OAKLEY, J. & BONAZZA, R. 2011 Shock-bubble interactions. Annu. Rev. Fluid Mech. 43 (2011),
117-140.

RAYLEIGH, LORD 1917 Viii. on the pressure developed in a liquid during the collapse of a spherical cavity.
Lond. Edinb. Dublin Phil. Mag. J. Sci. 34 (200), 94-98.

RICHTMYER, R.D. 1954 Taylor instability in shock acceleration of compressible fluids. Tech. Rep, Los Alamos
Scientific Lab.

RUDINGER, G. & SOMERS, L.M. 1960 Behaviour of small regions of different gases carried in accelerated
gas flows. J. Fluid Mech. 7 (2), 161-176.

1018 A9-26


https://doi.org/10.1017/jfm.2025.10504

https://doi.org/10.1017/jfm.2025.10504 Published online by Cambridge University Press

Journal of Fluid Mechanics

SACKMANN, M., et al. 1988 Shock-wave lithotripsy of gallbladder stones. New Engl. J. Med. 318 (7),393-397.

SADOT, O., EREZ, L., ALON, U., ORON, D., LEVIN, L.A., EREZ, G., BEN-DOR, G. & SHVARTS, D.
1998 Study of nonlinear evolution of single-mode and two-bubble interaction under Richtmyer—Meshkov
instability. Phys. Rev. Lett. 80, 1654—1657.

SHIMA, A., TOMITA, Y. & TAKAHASHI, K. 1984 The collapse of a gas bubble near a solid wall by a shock
wave and the induced impulsive pressure. Proc. Inst. Mech. Engrs C: J. Mech. Engng Sci. 198 (2), 81-86.

SoH, W.K., KHOO, B.C. & YUEN, D.W.Y. 2005 The entrainment of air by water jet impinging on a free
surface. Exp. Fluids 39 (3), 498-506.

SOHN, S.-I. 2009 Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and
Richtmyer—Meshkov instabilities. Phys. Rev. E: Stat. Nonlin. Soft Matt. Phys. 80 (5), 055302.

SPEIRS, N.B., PAN, Z., BELDEN, J. & TRUSCOTT, T.T. 2018 The water entry of multi-droplet streams and
jets. J. Fluid Mech. 844, 1084-1111.

STONE, H.A. & LEAL, G.L. 1989 Relaxation and breakup of an initially extended drop in an otherwise
quiescent fluid. J. Fluid Mech. 198, 399-427.

SUPPONEN, O., OBRESCHKOW, D., TINGUELY, M., KOBEL, P., DORSAZ, N. & FARHAT, M. 2016 Scaling
laws for jets of single cavitation bubbles. J. Fluid Mech. 802, 263-293.

TAGAWA, Y., YAMAMOTO, S., HAYASAKA, K. & KAMEDA, M. 2016 On pressure impulse of a laser-induced
underwater shock wave. J. Fluid Mech. 808, 5-18.

TANG, K., MOSTERT, W., FUSTER, D. & DEIKE, L. 2021 Effects of surface tension on the Richtmyer—
Meshkov instability in fully compressible and inviscid fluids. Phys. Rev. Fluids 6, 113901.

TOMITA, Y. & SHIMA, A. 1986 Mechanisms of impulsive pressure generation and damage pit formation by
bubble collapse. J. Fluid Mech. 169, 535-564.

VANDENBOOMGAERDE, M., MUGLER, C. & GAUTHIER, S. 1998 Impulsive model for the Richtmyer—
Meshkov instability. Phys. Rev. E 58, 1874—1882.

VELIKOVICH, A.L., SCHMITT, A.J., GARDNER, J.H. & METZLER, N. 2001 Feedout and Richtmyer—
Meshkov instability at large density difference. Phys. Plasmas 8 (2), 592—605.

WILKINS, S.W., GUREYEV, T.E., GAO, D., POGANY, A. & STEVENSON, A.W. 1996 Phase-contrast imaging
using polychromatic hard X-rays. Nature 384 (6607), 335-338.

WOLFRUM, B., KURZ, T., METTIN, R. & LAUTERBORN, W. 2003 Shock wave induced interaction of
microbubbles and boundaries. Phys. Fluids 15 (10), 2916-2922.

WOUCHUK, J.G. 2001 Growth rate of the linear Richtmyer—Meshkov instability when a shock is reflected.
Phys. Rev. E 63, 056303.

YANG, Y., ZHANG, Q. & SHARP, D.H. 1994 Small amplitude theory of Richtmyer—Meshkov instability.
Phys. Fluids 6 (5), 1856-1873.

ZEFF, B.W., KLEBER, B., FINEBERG, J. & LATHROP, D.P. 2000 Singularity dynamics in curvature collapse
and jet eruption on a fluid surface. Nature 403 (6768), 401-404.

ZHAL Z.,S1,T., LUo, X. & YANG, J. 2011 On the evolution of spherical gas interfaces accelerated by a planar
shock wave. Phys. Fluids 23 (8), 084104.

ZHAL, Z.,Z0U, L., WU, Q. & Luo, X. 2018 Review of experimental richtmyer—Meshkov instability in shock
tube: from simple to complex. Proc. Inst. Mech. Engrs C: J. Mech. Engng Sci. 232 (16), 2830-2849.

ZHANG, Q. 1998 Analytical solutions of layzer-type approach to unstable interfacial fluid mixing. Phys. Rev.
Lett. 81 (16), 3391.

ZHANG, Q. & Guo, W. 2016 Universality of finger growth in two-dimensional Rayleigh-Taylor and
Richtmyer—Meshkov instabilities with all density ratios. J. Fluid Mech. 786, 47-61.

ZHANG, Q. & SOHN, S.-1. 1996 An analytical nonlinear theory of Richtmyer—Meshkov instability. Phys. Lett.
A 212 (3), 149-155.

ZHANG, Q. & SOHN, S.I. 1999 Quantitative theory of Richtmyer—Meshkov instability in three dimensions.
Z. Angew. Math. Phys. 50 (1), 1-46.

ZHONG, P., LIN, H., X1, X., ZHU, S. & BHOGTE, E.S. 1999 Shock wave—inertial microbubble interaction:
methodology, physical characterization, and bioeffect study. J. Acoust. Soc. Am. 105 (3), 1997-2009.

ZHOU, Y. 2017 Rayleigh-Taylor and Richtmyer—Meshkov instability induced flow, turbulence, and mixing.
1. Phys. Rep. 720-722, 1-136.

ZHOU, Y., 2021 Rayleigh—Taylor and Richtmyer—Meshkov instabilities: a journey through scales. Physica D:
Nonlinear Phenom. 423, 132838.

1018 A9-27


https://doi.org/10.1017/jfm.2025.10504

	1. Introduction
	2. Experimental set-up
	3. Results and discussion
	3.1. Bubble-collapse-based approach
	3.2. Acceleration-induced interfacial instability-based approach
	3.3. Jet breakup and end-pinching
	3.4. Water-entry of the liquid jet

	4. Conclusion
	References

