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Abstract
The Grothendieck–Serre conjecture predicts that every generically trivial torsor under a reductive group scheme G
over a regular local ring R is trivial. We settle it in the case when G is quasi-split and R is unramified. Some of
the techniques that allow us to overcome obstacles that have so far kept the mixed characteristic case out of reach
include a version of Noether normalization over discrete valuation rings, as well as a suitable presentation lemma
for smooth relative curves in mixed characteristic that facilitates passage to the relative affine line via excision and
patching.
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1. The Grothendieck–Serre conjecture

The subject of this article is the following conjecture, due to Serre [Ser58, page 31, Remarque] and
Grothendieck [Gro58, pages 26–27, Remarques 3], [Gro68, Remarques 1.11 a)], on triviality of torsors
under reductive groups.

Conjecture 1.1 (Grothendieck–Serre). For a regular local ring R and a reductive R-group scheme G,
no nontrivial G-torsor trivializes over the fraction field of R, in other words,

Ker
(
𝐻1(𝑅, 𝐺) → 𝐻1 (Frac(𝑅), 𝐺)

)
= {∗}.
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The conjecture is settled when R contains a field but its remaining mixed characteristic case has so
far been widely open: see the recent survey [Pan18] for a detailed review of the state of the art, as well
as §1.4 below for a summary. The goal of this article is to resolve the mixed characteristic case under
the assumption that R is unramified and G is quasi-split. We recall that a regular local ring (𝑅,𝔪) with
𝑝 := char(𝑅/𝔪) is unramified if the ring 𝑅/𝑝𝑅 is also regular, in other words, if either R contains a
field or 𝑝 ∉ 𝔪2.

Theorem 1.2. For an unramified regular local ring R and a quasi-split reductive R-group scheme G,

Ker
(
𝐻1(𝑅, 𝐺) → 𝐻1 (Frac(𝑅), 𝐺)

)
= {∗};

moreover, a reductive R-group scheme H is split if and only if its generic fiber 𝐻Frac(𝑅) is split.

In fact, our result is stronger: we allow the regular ring R to be semilocal, flat and geometrically regular
over some Dedekind ring O so that the case O = Z with R local recovers the above; see Theorems 9.1
and 9.3 and Example 9.2. The semilocal version is worth the extra effort because in many ways it is a
more natural starting point. In equal characteristic, we strengthen the last aspect of Theorem 1.2: for an
equicharacteristic regular semilocal R, we show that a reductive R-group scheme H is quasi-split if and
only if its generic fiber 𝐻Frac(𝑅) is quasi-split; see Theorem 9.5.

The Grothendieck–Serre conjecture is known for its numerous concrete consequences. We illustrate
them with the following product formula that seems to resist any direct attack. For a further consequence
that concerns quadratic forms over regular semilocal rings, see Corollary 9.6.

Corollary 1.3. For an unramified regular local ring R, an 𝑟 ∈ 𝑅 \ {0} and the r-adic completion 𝑅,

𝐺 (𝑅[ 1
𝑟 ]) = 𝐺 (𝑅)𝐺 (𝑅[ 1

𝑟 ]) for every quasi-split reductive 𝑅-group 𝐺.

Indeed, if the double coset on the right side did not exhaust the left side, then one could use patching
(for instance, Lemma 7.1) to build a nontrivial G-torsor that trivialized over 𝑅[ 1

𝑟 ] (and also over 𝑅).

1.4. Known cases

Previous results on Conjecture 1.1 fall into the following categories.

(1) The case when G is a torus was settled by Colliot-Thélène and Sansuc in [CTS87].
(2) The case when R is 1-dimensional, that is, a discrete valuation ring, was settled by Nisnevich in

[Nis82], [Nis84], with corrections and a generalization to semilocal Dedekind rings by Guo in
[Guo20]. Subcases of the 1-dimensional case (resp., of its semilocal generalization) appeared
in [Har67], [BB70], [BT87] (resp., [PS16], [BVG14], [BFF17], [BFFH19]).

(3) The case when R is Henselian was settled in [BB70] and [CTS79, Assertion 6.6.1]. For such R,
one may test the triviality of a G-torsor after base change to the residue field, so one may choose a
height 1 prime 𝔭 ⊂ 𝑅 for which 𝑅/𝔭 is regular, apply the Nisnevich result and induct on dim 𝑅.

(4) The case when R contains a field, that is, when R is of equicharacteristic, was settled by Fedorov–
Panin in [FP15] when the field is infinite (with significant inputs from [PSV15], [Pan20b]) and by
Panin [Pan20a] when the field is finite, with substantial simplifications due to Fedorov [Fed21a].
Various subcases of the equicharacteristic case appeared in [Oja80], [CTO92], [Rag94], [PS97],
[Zai00], [OP01], [OPZ04], [Pan05], [Zai05], [Che10], [PSV15].

(5) Sporadic cases, in which either R or G is of specific form but with R possibly of mixed characteristic,
appeared in [Gro68, Remarques 1.11 a)], [Oja82], [Nis89], [Fed21b], [Fir22], [BFFP20], [Pan19b].

In the cases (1)–(4), the results also include the variant when the regular ring R is only semilocal.
For arguing Theorems 1.2 and 9.1, we use the toral case [CTS87] and the semilocal Dedekind case

[Guo20] but no other known case of Conjecture 1.1. In fact, our argument simultaneously streamlines
the case when R contains a field, although we do not pursue this here beyond the case of quasi-split
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G contained in Theorem 1.2 because we see no point in repeating the same additional reductions that
Fedorov–Panin, Panin and Fedorov used for handling general G over such R.

1.5. The point of departure

A key feature of the Grothendieck–Serre conjecture and, in fact, of problems of its flavor, for example,
of the Bass–Quillen conjecture, is that one cannot easily ‘enlarge’ the ring R, essentially, because this
may trivialize torsors, one can only ‘shrink’ it. The key to progress therefore lies in better understanding
the geometry of R, and our point of departure is precisely in this for unramified R of mixed characteristic
(0, 𝑝): we apply Popescu approximation to assume that R is essentially smooth over Z(𝑝) and then use
a presentation theorem in the style of Gabber–Gros–Suwa [CTHK97, Theorem 3.1.1] to spread R out
to a fibration 𝑈 → 𝑆 into smooth affine curves over an open

𝑆 ⊂ Adim(𝑅)−1
Z(𝑝)

in such a way that a given small closed subscheme 𝑌 ⊂ Spec(𝑅) spreads out to be finite over S; see
Proposition 4.1 for a precise statement. This structural result may be viewed as a version of the Noether
normalization in mixed characteristic and is reminiscent of presentation lemmas of Quillen and Gabber
from [Qui73, Lemma 5.12] and [Gab94, Lemma 3.1].

For us, Y is such that a generically trivial G-torsor E that we wish to trivialize reduces to a B-torsor
over Spec(𝑅) \ 𝑌 for a Borel 𝐵 ⊂ 𝐺. The valuative criterion of properness applied to 𝐸/𝐵 allows us to
make this Y be of codimension ≥ 2 in Spec(𝑅), and this codimension requirement appears difficult to
relax while arguing our mixed characteristic ‘Noether normalization’. In equal characteristic, Y being of
codimension ≥ 1 suffices and is immediate to arrange from the generic triviality of E without using any
Borel, and this distinction is one of the main sources of complications in comparison to works of Panin
and Fedorov. Although in mixed characteristic virtually every step seems to require either new ideas or
new techniques, the works of Panin and Fedorov in equicharacteristic have provided us with invaluable
guidance for what the structure of the overall argument might be.

1.6. The stages of the proof of Theorem 1.2

In Theorem 1.2, the key assertion is the triviality of every generically trivial G-torsor E. For this, our
argument proceeds as follows.

(1) In §2, we follow a suggestion by one of the referees and present a quick reduction of the quasi-split
case of the Grothendieck–Serre conjecture to the setting when our quasi-split G is also semisimple
and simply connected. This additional assumption simplifies the steps (4) and (6) below, but it could
also be avoided at the cost of more refined techniques in these steps. Upon insistence of a referee,
however, we take full advantage of this simplification.

(2) In §3, we use the Bertini theorem and some version of the Gabber–Gros–Suwa presentation theorem
in the context of semilocal Dedekind bases O to build the aforementioned fibration 𝑈 → 𝑆 starting
from a projective, flat compactification of R over O; see Variant 3.7. We do not separate into cases
according to whether the residue fields of O are all infinite or not, but finite residue fields lead to
complications that concern Bertini theorems (as do imperfect residue fields: in the case of perfect
residue fields, we could replace our version of the Gabber–Gros–Suwa presentation theorem with
ideas from Artin’s technique of ‘good neighborhoods’ from [SGA 4III, Exposé XI]1). We resolve
these complications with Gabber’s approach [Gab01] to Bertini theorems in positive characteristic.
Op. cit. is more convenient for us than the generally finer approach of Poonen [Poo04] because
it can guarantee that a suitable hypersurface exists for every large enough degree divisible by the

1See the previous arXiv versions of this article for detailed arguments along such lines.
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characteristic, which helps in making sure that this degree is uniform across all the residue fields of
O at maximal ideals.

In this step, a major simplification in comparison to the strategy in equicharacteristic is that
we do not seek a fibration into projective curves (nor even the complement of a relatively finite
subscheme in a projective relative curve) but are nevertheless able to ensure that Y spreads out to a
finite S-scheme in the notation of §1.5. Even in equicharacteristic, this allows us to dispose of much
effort usually spent in analyzing the ‘boundary’ in subsequent steps.

(3) In §4, we deduce the mixed characteristic ‘Noether normalization’ mentioned in §1.5 and then use
it to lift our generically trivial G-torsor E to a torsor ℰ over a smooth affine R-curve C equipped
with a section 𝑠 ∈ 𝐶 (𝑅) such thatℰ pulls back to E via s and reduces to a torsor under the unipotent
radical of a Borel over 𝐶 \ 𝑍 for some R-finite 𝑍 ⊂ 𝐶. The R-finiteness (as opposed to mere
R-quasi-finiteness) of Z is critical for later steps and comes from the finiteness of the spreading out
of Y. The appearance of the unipotent radical is a new phenomenon: in equicharacteristic, 𝐶 \ 𝑍 is
affine and ℰ |𝐶\𝑍 is a trivial torsor.

Our (𝐶, 𝑠, 𝑍) is a simplification of what Panin and Fedorov keep track of with the notion of a
‘nice triple’. The latter is a variant of a ‘standard triple’ of Voevodsky [MVW06, Definition 11.5]
used in his construction of the triangulated category of motives. In general, it is convenient to work
in terms of the relative R-curve C instead of directly with the fibration 𝑈 → 𝑆 because this gives
the flexibility of changing C. In this, we reap the benefits of our C being affine: we need to work
less in subsequent reductions than ‘nice triples’ would require.

(4) Our ℰ is not a 𝐺𝐶 -torsor but a 𝒢-torsor for some reductive C-group scheme 𝒢 equipped with a
Borel ℬ ⊂ 𝒢 whose s-pullback is 𝐵 ⊂ 𝐺, so, in order to proceed, in §5 we modify C to reduce to
ℬ ⊂ 𝒢 being 𝐵𝐶 ⊂ 𝐺𝐶 . For this, we use the locally constant nature of the scheme parametrizing
isomorphisms between two quasi-pinned reductive group schemes to show, at the cost of shrinking
C, that 𝒢 and 𝐺𝐶 become isomorphic (compatibly with the Borels) over some finite étale 𝐶 → 𝐶
to which s lifts.

(5) After simplifying 𝒢 in §5, we turn to simplifying C in §§6–7, namely, to replacing C by A1
𝑅. In

§6, we construct an affine open 𝑈 ⊂ 𝐶 containing Z and s as well as a quasi-finite R-morphism
𝜋 : 𝐶 → A1

𝑅 that maps Z isomorphically to a closed subscheme 𝑍 ′ ⊂ A1
𝑅 whose preimage in U is

precisely Z. The R-finiteness of Z is critical for this, and the argument is simpler than its versions in
the literature because C is affine (as opposed to projective). It uses Panin’s tricks with finite fields
to first prepare C and Z for building 𝜋: when some residue fields of R are finite, the initial Z could
have too many rational points to fit inside A1

𝑅.
Since C is Cohen–Macaulay, our quasi-finite 𝜋 is necessarily flat, so the idea is to descendℰ to a

𝐺A1
𝑅

-torsor via patching. We carry this out in §7: the main complication is the a priori nontriviality
ofℰ𝐶\𝑍 , which we overcome by bootstrapping enough excision for 𝐻1(−,ℛ𝑢 (𝐵)) from excision for
quasi-coherent cohomology; see Lemma 7.2. Relatedly, since Z need not be principal, the patching
is slightly more delicate than usual and uses [MB96].

(6) The final step is the analysis of a𝐺A1
𝑅

-torsorℰ that is trivial away from an R-finite closed subscheme
𝑍 ′ ⊂ A1

𝑅. This is a problem of Bass–Quillen type that is significantly simpler when G is semisimple,
simply connected and quasi-split (the general case could be approached using the geometry of the
affine Grassmannian, similarly to the techniques of Fedorov from [Fed21a]). The key inputs to this
analysis are the study of the case when R is a field carried out in [Gil02] (or in the earlier [RR84])
and the unramified nature of the Whitehead group [Gil09, Fait 4.3, Lemme 4.5] that builds on earlier
work of Tits and uses the assumptions on G.

Globally, our method may be viewed as a geometric reduction of the Grothendieck–Serre conjecture
for G over R to its case for the torus 𝑇 := 𝐵/ℛ𝑢 (𝐵) over R. It is tempting to expect that if G is no
longer quasi-split but has a parabolic subgroup 𝑃 ⊂ 𝐺 with a Levi M, then one could find a way to
reduce from G to M. As it stands, the sticking point in achieving this generalization is in the proof of
Proposition 4.2: there we extend a T-torsor across a closed subscheme of codimension ≥ 2 (across Y
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in the notation of §1.5) and such extendibility fails beyond tori (although knowing how to resolve the
Colliot-Thélène–Sansuc purity question [CTS79, Question 6.4] would help).

1.7. Conventions and notation

As in [SP], our algebraic spaces need not be quasi-separated. For a scheme S (resp., a ring R), we let 𝑘𝑠
(resp., 𝑘𝔭) denote the residue field of a point 𝑠 ∈ 𝑆 (resp., a prime ideal 𝔭 ⊂ 𝑅). Intersections 𝑌 ∩ 𝑌 ′ of
closed subschemes 𝑌,𝑌 ′ ⊂ 𝑆 are always scheme-theoretic, and we recall from [EGA IV1, Chapitre 0,
Définition 14.1.2] that dim(∅) = −∞. We denote the (always open) S-smooth locus of an S-scheme X by
𝑋sm. A scheme is Cohen–Macaulay if it is locally Noetherian and its local rings are Cohen–Macaulay.
We use the definition [EGA IV1, Chapitre 0, Définition 15.1.7, Section 15.2.2] of a regular sequence
(so there is no condition on quotients being nonzero). A ring O is Dedekind if it is Noetherian, normal
and of dimension ≤ 1; by [SP, Lemma 034X], any such O is a finite product of Dedekind domains.

We always consider right torsors, for instance, we want sections of 𝐺/𝐻 to give rise to H-torsors. As
already seen in §1.6 (4)–(6), we use scheme-theoretic notation when talking about torsors, that is, we
base change the group in order to be unambiguous about what the base is; in the rare exceptions when
this would make notation too cumbersome, we make sure that no confusion is possible. For a reductive
group scheme G, we let 𝑍 (𝐺), rad(𝐺), 𝐺der and 𝐺ad denote its center, maximal central torus, derived
subgroup and adjoint quotient (see [SGA 3III new, Exposé XXII, Corollaire 4.1.7, Définition 4.3.6,
Théorème 6.2.1 (iv)]); for a semisimple group scheme G, we let 𝐺sc denote its simply connected cover
(see [Con14, Exercise 6.5.2 (i)] or [Čes22, Proposition A.3.4]). For a parabolic group scheme P, we
let ℛ𝑢 (𝑃) denote its unipotent radical constructed in [SGA 3III new, Exposé XXVI, Proposition 1.6 (i)]
(already in [SGA 3III new, Exposé XXII, Proposition 5.6.9 (ii)] for a Borel).

2. The quasi-split case reduces to simply connected groups

Following suggestions of one of the referees, we show that for quasi-split reductive groups the
Grothendieck–Serre Conjecture 1.1 reduces to the case when the group is also semisimple and simply
connected; see Proposition 2.2. This reduction is very short and simple, and its key input is the following
result from [SGA 3III new].
Lemma 2.1. For a scheme S, a semisimple S-group scheme G that is either simply connected or adjoint,
and a maximal S-torus with a Borel S-subgroup 𝑇 ⊂ 𝐵,

𝑇 � Res𝑆′/𝑆 (G𝑚, 𝑆′ ) for some finite étale 𝑆-scheme 𝑆′;

in particular, if S is affine and semilocal, then 𝐻1(𝑆, 𝑇) � 𝐻1 (𝑆′,G𝑚) � 0.
Proof. The claim is a special case of [SGA 3III new, Exposé XXIV, Proposition 3.13, Corollaire 3.14,
Proposition 8.4]. The relevant 𝑆′ is the scheme of Dynkin diagrams of G defined in [SGA 3III new,
Exposé XXIV, Section 3.2 and below]. �

Proposition 2.2. For a Noetherian semilocal ring R whose strict Henselization at any prime ideal is
a unique factorization domain (for example, R could be a regular semilocal ring), the total ring of
fractions 𝐾 := Frac(𝑅) and a quasi-split reductive R-group scheme G, if

Ker
(
𝐻1 (𝑅, (𝐺der)sc) → 𝐻1 (𝐾, (𝐺der)sc)

)
= {∗}, then also Ker

(
𝐻1(𝑅, 𝐺) → 𝐻1(𝐾,𝐺)

)
= {∗}.

Proof. Let 𝑇 ⊂ 𝐵 ⊂ 𝐺 be a maximal R-torus and an R-Borel subgroup of G (see [SGA 3III new,
Exposé XXIV, Section 3.9]), and let 𝑇 ′ ⊂ 𝐵′ ⊂ (𝐺der)sc be the corresponding maximal R-torus and
Borel R-subgroup of (𝐺der)sc (see [SGA 3III new, Exposé XXVI, Proposition 1.19]). We have compatible
isogenies

rad(𝐺) × (𝐺der)sc → 𝐺 and rad(𝐺) × 𝑇 ′ → 𝑇
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that have a common finite kernel Z of multiplicative type, and Lemma 2.1 ensures that 𝐻1 (𝑅,𝑇 ′) = 0.
We will use the resulting commutative diagram of long exact cohomology sequences

𝐻1(𝑅, 𝑍) �� 𝐻1(𝑅, rad(𝐺))

id×{∗}
��

�� 𝐻1 (𝑅,𝑇)

��

�� 𝐻2(𝑅, 𝑍)

𝐻1(𝑅, 𝑍) �� 𝐻1(𝑅, rad(𝐺)) × 𝐻1 (𝑅, (𝐺der)sc) �� 𝐻1(𝑅, 𝐺) �� 𝐻2 (𝑅, 𝑍),

as well as its analogue over K. Thus, to proceed, we fix an 𝛼 ∈ Ker(𝐻1 (𝑅, 𝐺) → 𝐻1(𝐾,𝐺)).
By [CTS87, Theorem 4.3] (which is where we use the assumption on the strict Henselizations of R),

the map 𝐻2(𝑅, 𝑍) → 𝐻2 (𝐾, 𝑍) is injective. Chasing the diagram above and its analogue over K, we
therefore find that 𝛼 comes from some pair

(𝛽, 𝛾) ∈ 𝐻1(𝑅, rad(𝐺)) × 𝐻1 (𝑅, (𝐺der)sc)

and that, by the nature of the second vertical arrow there, 𝛾 |𝐾 is trivial. The assumption on (𝐺der)sc then
implies that 𝛾 is trivial so that 𝛼 lifts to a 𝛽 ∈ 𝐻1(𝑅, rad(𝐺)) for which 𝛽 |𝐾 lifts to 𝐻1(𝐾, 𝑍). The image
of this 𝛽 in 𝐻1(𝑅,𝑇) lifts 𝛼 and is trivial over K. By [CTS87, Theorem 4.1] (the Grothendieck–Serre
Conjecture 1.1 for T), this image of 𝛽 is trivial, so 𝛼 is also trivial. �

3. Fibrations into smooth relative curves

We begin with the geometric part of our approach to the Grothendieck–Serre conjecture for quasi-split
G: for a discrete valuation ringO and a smooth, affineO-scheme U of relative dimension 𝑑 > 0 equipped
with an O-fiberwise nowhere dense closed subscheme𝑌 ⊂ 𝑈, we wish to construct a smooth morphism

𝜋 : 𝑈 → 𝑆 ⊂ A𝑑−1
O

whose fibers over the affine open S are of dimension 1 such that 𝑌 ∩ 𝑈 is finite over S. Roughly, the
idea is to cut U by 𝑑 − 1 suitably transversal hypersurfaces supplied by Bertini theorem and then let
their defining equations be the images of the standard coordinates of A𝑑−1

O . The actual argument given
in Proposition 3.6 (vii) and Variant 3.7 (vii) is more subtle because ensuring the S-finiteness of 𝑌 ∩𝑈 is
slightly more delicate. To achieve this finiteness, we start from a projective compactification of U and
use a geometric presentation theorem of Gabber–Gros–Suwa [CTHK97, Theorem 3.1.1] (if the residue
fields of the maximal ideals of O are perfect, ideas from Artin’s construction of ‘good neighborhoods’
in [SGA 4III, Exposé XI, Proposition 3.3] suffice, too).

Before turning to Bertini, we review the following avoidance lemma that we will use repeatedly.

Lemma 3.1. For a ring R, a quasi-projective, finitely presented R-scheme X, a very R-ample line
bundle ℒ on X, a finitely presented closed subscheme 𝑍 ⊂ 𝑋 not containing any positive-dimensional
irreducible component of any R-fiber of X and points 𝑦1, . . . , 𝑦𝑛 ∈ 𝑋 \ 𝑍 , there is an 𝑁0 > 0 such
that for every 𝑁 ≥ 𝑁0 there is an ℎ ∈ Γ(𝑋,ℒ⊗𝑁 ) whose vanishing scheme is a hypersurface 𝐻 ⊂ 𝑋
containing Z but not any 𝑦𝑖 or any positive-dimensional irreducible component of any R-fiber of X.

Proof. The claim is a special case of [GLL15, Theorem 5.1] (with definitions reviewed in [GLL15,
page 1207]). �

In the case when R is a field, the following Bertini lemma allows us to impose a smoothness
requirement on 𝑋sm ∩ 𝐻. Its most delicate case is when the base field is finite, in which it amounts to a
mild extension of [Gab01, Corollaries 1.6 and 1.7], whose argument is actually our key technique.

https://doi.org/10.1017/fmp.2022.5 Published online by Cambridge University Press

https://doi.org/10.1017/fmp.2022.5


Forum of Mathematics, Pi 7

Lemma 3.2. Let k be a field, let X be a projective k-scheme of pure dimension, let 𝑌1, . . . , 𝑌𝑚, 𝑍 ⊂ 𝑋 be
closed subschemes with 𝑍 = 𝑍1  𝑍0 for some reduced 0-dimensional 𝑍0 ⊂ 𝑋sm all of whose residue
fields are separable extensions of k, and fix a

𝑡 ≤ min(dim(𝑋), dim(𝑋) − dim(𝑍)) (recall from §1.7 that dim(∅) = −∞).

For an ample line bundle 𝒪𝑋 (1) on X, there are hypersurfaces 𝐻1, . . . , 𝐻𝑡 ⊂ 𝑋 such that

(i) 𝐻1 ∩ . . . ∩ 𝐻𝑡 is of pure dimension dim(𝑋) − 𝑡 and contains Z;
(ii) (𝑋sm \ 𝑍1) ∩ 𝐻1 ∩ . . . ∩ 𝐻𝑡 is k-smooth;

(iii) dim((𝑌 𝑗 \ 𝑍) ∩
⋂
ℓ∈𝐿 𝐻ℓ) ≤ dim(𝑌 𝑗 \ 𝑍) − #𝐿 for 1 ≤ 𝑗 ≤ 𝑚 and 𝐿 ⊂ {1, . . . , 𝑡};

moreover, we may iteratively choose 𝐻1, . . . , 𝐻𝑡 so that, for each i, with 𝐻1, . . . , 𝐻𝑖−1 already fixed, 𝐻𝑖
may be chosen to have any sufficiently large degree divisible by the characteristic exponent of k.

We do not know how to ensure that the hypersurfaces 𝐻𝑖 in Lemma 3.2 all have the same degree.

Proof. The pure dimension hypothesis means that all the irreducible components of X have the same
dimension, so [EGA IV2, Proposition 5.2.1] ensures that X is biequidimensional in the sense that the
saturated chains of specializations of its points all have the same length. Similarly to [Čes21, Section
4.1], part (i) then ensures that each 𝑋 ∩ 𝐻1 ∩ . . . ∩ 𝐻𝑖 inherits biequidimensionality, so is also of pure
dimension. This reduces us to 𝑡 = 1: by applying this case iteratively and at each step adjoining to the
𝑌 𝑗 ’s all their possible intersections with some of the already chosen 𝐻𝑖’s (to ensure (iii)), we will obtain
the general case. In the case 𝑡 = 1, we fix closed points 𝑦1, . . . , 𝑦𝑛 ∈ 𝑋 \ 𝑍 that jointly meet every
irreducible component of X and of every 𝑌 𝑗 \ 𝑍 . Both (iii) and the dimension aspect of (i) will hold as
soon as 𝐻1 contains no 𝑦 𝑗 , so at the cost of requiring this we may forget about the 𝑌 𝑗 .

For the rest of the argument, we begin with the case when char 𝑘 = 0, in which we will use the
‘classical’ Bertini theorem (one could also choose to skip this case because we will only use Lemma 3.2
for finite k). For this, we first claim that for every large 𝑁 > 0 there are global sections ℎ𝑖 of 𝒪𝑋 (𝑁)
whose common zero locus contains Z and set-theoretically equals to it. Indeed, by repeatedly applying
[EGA III1, Corollaire 2.2.4] to shrink the base locus, we first build such ℎ′𝑖′ (resp., ℎ′′𝑖′′) for some 𝑁 ′

(resp., 𝑁 ′′) that is a power of 2 (resp., of 3), then express every large N as 𝑎𝑁 ′ + 𝑏𝑁 ′′ with 𝑎, 𝑏 > 0,
and, finally, let ℎ𝑖 be the collection of all the ℎ′𝑎𝑖′ ℎ

′′𝑏
𝑖′′ . By [EGA III1, Corollaire 2.2.4] and [EGA IV4,

Corollaire 17.15.9] (which uses the separable residue field assumption), granted that N is sufficiently
large, we may build another global section ℎ0 of𝒪𝑋 (𝑁) whose associated hypersurface contains Z and is
smooth at every point of 𝑍0. We adjoin this ℎ0 to the ℎ𝑖 and then discard linear dependencies to assume
that the ℎ𝑖 are k-linearly independent. By [EGA II, Proposition 4.2.3], the ℎ𝑖 determine a morphism

𝑋 \ 𝑍 → P𝑁
′

𝑘

such that the pullback of𝒪
P𝑁

′

𝑘
(1) is our𝒪𝑋\𝑍 (𝑁). The hyperplanes in P𝑁 ′

𝑘 and, compatibly, the nonzero
k-linear combinations of the ℎ𝑖 up to scaling are parametrized by the dual projective space. Due to the
existence of a k-linear combination of the ℎ𝑖 whose associated hypersurface does not contain a fixed
𝑦 𝑗 , a generic such hypersurface contains no 𝑦 𝑗 . Likewise, due to the openness of the smooth locus, the
existence of a k-linear combination of the ℎ𝑖 whose associated hypersurface is smooth at all the points
in 𝑍0, and [EGA IV3, Théorème 11.3.8 b) c)], a generic such hypersurface is smooth at all the points
in 𝑍0. Finally, by the Bertini theorem [Jou83, Corollaire 6.11 2)], the hypersurface H associated to a
generic k-linear combination of the ℎ𝑖 is such that (𝑋sm \ 𝑍) ∩ 𝐻 is k-smooth. In conclusion, since k is
infinite, we may choose our desired 𝐻1 to be a generic such H.

The remaining case when char 𝑘 = 𝑝 > 0 is a very minor sharpening of [Gab01, Corollary 1.6] that
is proved as there. Namely, we use the pure dimension hypothesis to apply [Gab01, Theorem 1.1]2 with

2Loc. cit. is stated in the case when the base field k is finite but its proof continues to work whenever k is any field of positive
characteristic p.
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◦ U there being our 𝑋sm \ (𝑍 ∪ {𝑦1, . . . , 𝑦𝑛}) and E there being Ω1
𝑈 ;

◦ Z there being our 𝑍1 ∪ {𝑦1, . . . , 𝑦𝑛} ∪
⋃
𝑧∈𝑍0 Spec

𝒪𝑋
(𝒪𝑋/ℐ

2
𝑧 );

◦ Σ there being our 𝑍0 ∪ {𝑦1, . . . , 𝑦𝑛};
◦ 𝑚0 there being 0; and
◦ 𝜎0 there being 0 on our 𝑍1, a unit on each of our 𝑦1, . . . , 𝑦𝑛 and a nonzero cotangent vector at 𝑧 ∈ 𝑍0

on each of our Spec
𝒪𝑋

(𝒪𝑋/ℐ
2
𝑧 );

to find a finite set of closed points

𝐹 ⊂ 𝑋sm \ (𝑍 ∪ {𝑦1, . . . , 𝑦𝑛})

and, for every large N divisible by p, a global section h of𝒪𝑋 (𝑁) whose associated hypersurface contains
Z, has a k-smooth intersection with 𝑋sm \ (𝐹 ∪ 𝑍 ∪ {𝑦1, . . . , 𝑦𝑛}), passes through every 𝑧 ∈ 𝑍0 and is k-
smooth there (for this we use [EGA IV4, Corollaire 17.15.9] and the separable residue field assumption
as in the characteristic 0 case), and does not pass through any 𝑦 𝑗 . By [EGA III1, Corollaire 2.2.4], if this
N is sufficiently large, then there is a global section ℎ′ of 𝒪𝑋 (𝑁/𝑝) that vanishes on 𝑍 ∪ {𝑦1, . . . , 𝑦𝑛}
and is such that ℎ + ℎ′𝑝 does not vanish at any point of F. We may then let 𝐻1 be the hypersurface
associated to ℎ + ℎ′𝑝 . �

Remark 3.3. In (iii), if (𝑌 𝑗 \ 𝑍) ∩
⋂
ℓ∈𝐿 𝐻ℓ ≠ ∅, then the inequality is actually an equality because,

unless the intersection is empty, cutting by #𝐿 hypersurfaces decreases dimension by at most #𝐿.

For our purposes, the main drawback of Lemma 3.2 is its requirement that the residue fields of the
points in 𝑍0 be separable over k: this is automatic if k is perfect but cannot be removed if k is imperfect
because then (i) and (ii) cannot hold simultaneously (consider the case 𝑡 = dim(𝑋)). To accommodate
for imperfect k, we will relax (i) by no longer requiring that 𝑍 ⊂ 𝐻𝑖; see Proposition 3.6 for the precise
statement, which uses the following review of weighted blowups.

3.4. Weighted projective spaces

For 𝑤0, . . . , 𝑤𝑑 ∈ Z>0, we consider the polynomial algebraZ[𝑡0, . . . , 𝑡𝑑] that isZ≥0-graded by declaring
each 𝑡𝑖 to be of weight 𝑤𝑖 (and the constants Z to be of weight 0), and we let the resulting weighted
projective space be

PZ (𝑤0, . . . , 𝑤𝑑) := Proj(Z[𝑡0, . . . , 𝑡𝑑]).

We repeat the same construction over any scheme S to build P𝑆 (𝑤0, . . . , 𝑤𝑑), although the latter is
simply PZ(𝑤0, . . . , 𝑤𝑑) ×Z 𝑆 because the formation of Proj commutes with base change [EGA II,
Proposition 3.5.3]. We will only use weighted projective spaces when 𝑤0 = 1, in which case the open
subscheme of P𝑆 (1, 𝑤1, . . . , 𝑤𝑑) given by {𝑡0 ≠ 0} is the affine space A𝑑𝑆 with coordinates

𝑡1/𝑡
𝑤1
0 , . . . , 𝑡𝑑/𝑡

𝑤𝑑
0 .

3.5. Weighted blowups

For a scheme X, a line bundle ℒ on X and sections

ℎ0 ∈ Γ(𝑋,ℒ⊗𝑤0), . . . , ℎ𝑑 ∈ Γ(𝑋,ℒ⊗𝑤𝑑 ) with 𝑤0, . . . , 𝑤𝑑 > 0,

we define the weighted blowup of X with respect to ℎ0, . . . , ℎ𝑑 as

Bl𝑋 (ℎ0, . . . , ℎ𝑑) := Proj
𝒪𝑋

(𝒪𝑋 [ℎ0, . . . , ℎ𝑑]), where 𝒪𝑋 [ℎ0, . . . , ℎ𝑑] ⊂
⊕

𝑛≥0 ℒ
⊗𝑛
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is the quasi-coherent, graded 𝒪𝑋 -subalgebra generated by the ℎ𝑖 . The center of this weighted blowup is
the closed subscheme of X cut out by the ℎ𝑖 . By [EGA II, Proposition 3.1.8 (i)], the map

Bl𝑋 (ℎ0, . . . , ℎ𝑑) → 𝑋 is an isomorphism away from the center.

By §3.4 and the functoriality of Proj, the weighted blowup Bl𝑋 (ℎ0, . . . , ℎ𝑑) admits a morphism

Bl𝑋 (ℎ0, . . . , ℎ𝑑) → PZ (𝑤0, . . . , 𝑤𝑑) determined by 𝑡𝑖 ↦→ ℎ𝑖 . (3.5.1)

In the case when 𝑤0 = . . . = 𝑤𝑑 , our Bl𝑋 (ℎ0, . . . , ℎ𝑑) is identified with the usual blowup of X along
the closed subscheme cut out by the ℎ𝑖: this is evident when also ℒ = 𝒪𝑋 , and the general case reduces
to this one because Proj is insensitive to twisting by line bundles [EGA II, Proposition 3.1.8 (iii)].

Proposition 3.6. Let k be a field, let X be a projective k-scheme of pure dimension d, let 𝒪𝑋 (1) be
an ample line bundle on X, let 𝑊 ⊂ 𝑋sm be an open, let 𝑥1, . . . , 𝑥𝑛 ∈ 𝑊 and let 𝑌 ⊂ 𝑋 be a closed
subscheme of codimension > 0. Upon replacing 𝒪𝑋 (1) by any large power, there exist nonzero

ℎ0 ∈ Γ(𝑋,𝒪𝑋 (1)), ℎ1 ∈ Γ(𝑋,𝒪𝑋 (𝑤1)), . . . , ℎ𝑑−1 ∈ Γ(𝑋,𝒪𝑋 (𝑤𝑑−1)) with 𝑤1, . . . , 𝑤𝑑−1 > 0,

such that

(i) the hypersurface 𝐻0 := 𝑉 (ℎ0) ⊂ 𝑋 does not contain any 𝑥𝑖;
(ii) the hypersurfaces 𝐻𝑖 := 𝑉 (ℎ𝑖) ⊂ 𝑋 satisfy 𝑌 ∩ 𝐻0 ∩ . . . ∩ 𝐻𝑑−1 = ∅;

(iii) in the following commutative diagram with vertical maps determined by the ℎ0, . . . , ℎ𝑑−1:

𝑋 \ 𝐻0

𝜋

��

� � �� 𝑋 \ (𝐻0 ∩ . . . ∩ 𝐻𝑑−1)

𝜋

��

� � �� 𝑋 := Bl𝑋 (ℎ0, . . . , ℎ𝑑−1)

𝜋 (3.5.1)
��

A𝑑−1
𝑘

� � §3.4
�� P𝑘 (1, 𝑤1, . . . , 𝑤𝑑−1) P𝑘 (1, 𝑤1, . . . , 𝑤𝑑−1),

for every i, the map 𝜋 is smooth (of relative dimension 1) at 𝑥𝑖;
(iv) for every i, we have 𝑌 ∩ 𝐻0 ∩ 𝜋−1(𝜋(𝑥𝑖)) = ∅;
(v) if 𝑌 \ 𝑋sm is of codimension > 1 in X, then 𝜋 is smooth at each 𝑌 ∩ 𝜋−1(𝜋(𝑥𝑖));

(vi) if even 𝑌 \𝑊 is of codimension > 1 in X, then, for every i, we have (𝑌 \𝑊) ∩ 𝜋−1 (𝜋(𝑥𝑖)) = ∅;
(vii) if even 𝑌 \𝑊 is of codimension > 1 in X, then there are affine opens

𝑆 ⊂ A𝑑−1
𝑘 and 𝑥1, . . . , 𝑥𝑛 ∈ 𝑈 ⊂ 𝑊 ∩ 𝜋−1(𝑆) ⊂ 𝑋 \ 𝐻0

such that 𝜋 : 𝑈 → 𝑆 is smooth of relative dimension 1 and 𝑌 ∩𝑈 = 𝑌 ∩ 𝜋−1 (𝑆) is S-finite;

moreover, we may iteratively choose ℎ0, . . . , ℎ𝑑−1 so that, for each i, with ℎ0, . . . , ℎ𝑖−1 already fixed, the
degree 𝑤𝑖 may be any sufficiently large integer divisible by the characteristic exponent of k.

Proof. Closed points are dense in a finite type scheme over a field [SP, Lemma 02J6], so each 𝑥𝑖
specializes to a closed point of 𝑋sm. By replacing the 𝑥𝑖 by such specializations, we assume for the rest
of the proof that the points 𝑥1, . . . , 𝑥𝑛 are closed in X.

In (iii), the parenthetical relative dimension aspect follows from a dimension count. The intersections
in (iv) make sense because (ii) ensures that

𝑌 ⊂ 𝑋 \ (𝐻0 ∩ . . . ∩ 𝐻𝑑−1),

that is, that Y does not meet the center of the weighted blowup 𝑋 → 𝑋 (see §3.5). Moreover, (iv)
implies that over the open neighborhood of

⋃𝑛
𝑖=1 𝜋(𝑥𝑖) given by the complement of 𝜋(𝑌 ∩ 𝐻0), our

closed Y even lies in 𝑋 \ 𝐻0. Since 𝐻0 is a hyperplane section, intersecting with it cuts the dimension
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of any positive-dimensional closed subvariety of X by at most 1, so (iv) implies that 𝑌 ∩ 𝜋−1 (𝜋(𝑥𝑖))
is finite. The openness of the quasi-finite locus [SP, Lemma 01TI] and the finiteness of proper, quasi-
finite morphisms [SP, Lemma 02OG] then imply that 𝑌 ∩ 𝜋−1(𝑆) is S-finite for every sufficiently
small affine open 𝑆 ⊂ A𝑑−1

𝑘 containing 𝜋(𝑥1), . . . , 𝜋(𝑥𝑛). Consequently, by spreading out from the
semilocalization at 𝜋(𝑥1), . . . , 𝜋(𝑥𝑛), for any affine open 𝑈 ⊂ 𝜋−1 (𝑆) containing all the 𝑥𝑖 and all the
points of 𝑌 ∩ 𝜋(𝜋−1 (𝑥𝑖)), at the cost shrinking S further we may also arrange that

𝑌 ∩𝑈 = 𝑌 ∩ 𝜋−1(𝑆).

In conclusion, (vii) follows from (i)–(v) (we stated (vii) explicitly because we will use it below).
For the rest, we may assume that 𝑑 > 0 and begin with the case when k is perfect, in which we will

deduce the claim from Lemma 3.2, even with the additional requirement that each 𝐻𝑖 passes through
𝑥1, . . . , 𝑥𝑛: this will ensure that 𝜋(𝑥𝑖) is the origin of A𝑑−1

𝑘 for every i so that

𝜋−1(𝜋(𝑥𝑖)) = (𝐻1 ∩ . . . ∩ 𝐻𝑑−1) \ (𝐻0 ∩ . . . ∩ 𝐻𝑑−1) in 𝑋 \ (𝐻0 ∩ . . . ∩ 𝐻𝑑−1), (3.6.2)

to the effect that (iv) will follow from (ii). We begin by using Lemma 3.1 to choose a hypersurface
𝐻0 ⊂ 𝑋 of any sufficiently large degree 𝑤0 such that 𝐻0 does not contain any 𝑥𝑖 nor any irreducible
component of Y. We then replace 𝒪𝑋 (1) by its 𝑤0-th power and, since the extensions 𝑘 (𝑥𝑖)/𝑘 are
separable, use Lemma 3.2 to choose hypersurfaces 𝐻1, . . . , 𝐻𝑑−1 containing every 𝑥𝑖 such that

◦ 𝑋sm ∩ 𝐻1 ∩ . . . ∩ 𝐻𝑑−1 is k-smooth of pure dimension 1;
◦ 𝑌 ∩ 𝐻0 ∩ . . . ∩ 𝐻𝑑−1 = ∅;
◦ if 𝑌 \ 𝑋sm is of codimension > 1 in X, then (𝑌 \ 𝑋sm) ∩ 𝐻1 ∩ . . . ∩ 𝐻𝑑−1 = ∅; and
◦ if 𝑌 \𝑊 is of codimension > 1 in X, then (𝑌 \𝑊) ∩ 𝐻1 ∩ . . . ∩ 𝐻𝑑−1 = ∅.

These properties ensure the desired (i)–(vi): indeed, by (3.6.2), the 𝑥𝑖 and, if 𝑌 \ 𝑋sm is of codimension
> 1 in X, then also the 𝑌 ∩ 𝜋−1(𝜋(𝑥𝑖)) all lie in the smooth locus of the zero fiber of 𝜋 and, by the
dimensional flatness criterion [EGA IV2, Proposition 6.1.5], also in the smooth locus of 𝜋. The aspect
about arranging the degrees 𝑤𝑖 to be large follows from its counterpart in Lemma 3.2.

In the remaining case when 𝑑 > 0 and k is infinite (or even imperfect), we will deduce the claim
from a geometric presentation theorem of Gabber–Gros–Suwa [CTHK97, Theorem 3.1.1], according
to which:

for a smooth, affine, irreducible 𝑘−scheme𝑉 of finite type and dimension 𝑑, points
𝑣1, . . . , 𝑣𝑚 ∈ 𝑉 and a closed subscheme 𝑍 ⊂ 𝑉 of codimension > 0, there is a
𝑘−map 𝑉 → A𝑑−1

𝑘 that is smooth at every 𝑣𝑖 and such that 𝑍 is finite over A𝑑−1
𝑘 ;

without the smoothness assumption on 𝑉 , the same holds granted that 𝑚 = 0.

(�)

Loc. cit. is much more general but (�) will suffice for us. For convenience, we added the aspect about
nonsmooth V, which follows from Noether normalization [SP, Lemma 00OY]. To apply (�), we first
use Lemma 3.1 to choose a hypersurface 𝐻0 = 𝑉 (ℎ0) ⊂ 𝑋 of any sufficiently large degree 𝑤0 such
that 𝐻0 does not contain any 𝑥𝑖 , does not contain any irreducible component of Y of codimension 1 in
X, contains the intersections of any two distinct irreducible components of X, contains the nonsmooth
locus of any generically smooth irreducible component of X and contains 𝑌 \ 𝑋sm if the latter is of
codimension > 1 in X. Then 𝑋 \ 𝐻0 is affine and a nonempty disjoint union of irreducible components
V of dimension d, each of which is either smooth or contains no 𝑥𝑖 . By applying (�) to each such V
with the 𝑣 𝑗 being those 𝑥𝑖 that lie on V and Z being 𝑌 ∩𝑉 , we obtain a k-morphism

𝜋′ : 𝑋 \ 𝐻0 → A𝑑−1
𝑘

that is smooth at every 𝑥𝑖 and such that 𝑌 \ 𝐻0 is finite over A𝑑−1
𝑘 .
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We replace 𝒪𝑋 (1) by its 𝑤0-th power and consequently view ℎ0 as a global section of 𝒪𝑋 (1), in
other words, as a morphism 𝒪𝑋 → 𝒪𝑋 (1) determined by 1 ↦→ ℎ0, which for any 𝑤 > 0 gives rise to a
morphism𝒪𝑋 → 𝒪𝑋 (𝑤) determined by 1 ↦→ ℎ0 ⊗ · · · ⊗ ℎ0. Via the latter, any section of𝒪𝑋 over 𝑋 \𝐻0
extends to a section of 𝒪𝑋 (𝑤) over X granted that w is large enough, and two fixed such extensions
become equal granted that we enlarge w further (the uniqueness allows one to work on a finite cover of
X by affines that trivialize 𝒪𝑋 (1), and the claim then reduces to the observation that for any ring R, any
𝑟 ∈ 𝑅 and any ℎ ∈ 𝑅[ 1

𝑟 ], the element 𝑟𝑤 ℎ ∈ 𝑅[ 1
𝑟 ] lifts to R granted that 𝑤 > 0 is large, and any two

such lifts agree granted that we multiply them by 𝑟𝑤
′ for a large 𝑤′ > 0). In particular, the images under

𝜋′ of the standard coordinates of A𝑑−1
𝑘 extend to nonzero sections

ℎ′1 ∈ Γ(𝑋,𝒪𝑋 (𝑤1)), . . . , ℎ′𝑑−1 ∈ Γ(𝑋,𝒪𝑋 (𝑤𝑑−1)) (3.6.3)

for all large enough 𝑤1, . . . , 𝑤𝑑−1 > 0. By construction, with 𝐻 ′
𝑖 := 𝑉 (ℎ′𝑖), the map

𝜋′ : 𝑋 \ (𝐻0 ∩ 𝐻 ′
1 ∩ · · · ∩ 𝐻 ′

𝑑−1) → P𝑘 (1, 𝑤1, . . . , 𝑤𝑑−1)

that results from ℎ0 and these ℎ′𝑖 as in (iii) restricts to 𝜋′, satisfies (i) and is smooth at every 𝑥𝑖 .
To proceed further, for ℎ0 and 𝑤1, . . . , 𝑤𝑑−1 fixed above, we consider the k-scheme M that

parametrizes all (𝑑 −1)-tuples of global sections like in (3.6.3) so that M is noncanonically isomorphic
to some affine space A𝑁𝑘 . The base change 𝑋M comes equipped with the universal hypersurfaces

H1, . . . ,H𝑑−1 ⊂ 𝑋M

and, of course, also with the base changes of 𝑥1, . . . , 𝑥𝑛, Y and 𝐻0. The defining equations of 𝐻0 and of
the H1, . . . ,H𝑑−1 give the universal diagram of maps

𝑋M \ (𝐻0)M

��

� � �� 𝑋M \ ((𝐻0)M ∩H1 ∩ . . . ∩H𝑑−1)

��

A𝑑−1
M

� � §3.4
�� PM (1, 𝑤1, . . . , 𝑤𝑑−1)

whose base changes to k-points of M are left squares of diagrams as in (iii). To finish the proof, we will
argue that, for all sufficiently large 𝑤1, . . . , 𝑤𝑑−1 that are divisible by the characteristic exponent of k
and that may be chosen iteratively as in the statement, the conditions (i)–(vi) define a nonempty open of
M: since M � A𝑁𝑘 and k is infinite, this open will have a k-point that, by construction, will correspond
to the desired ℎ1, . . . , ℎ𝑑−1 satisfying (i)–(vi).

First of all, since ℎ0 is fixed, (i) holds by construction. Since the image of a proper morphism is
closed, the nonvanishing requirement on the ℎ𝑖 and the condition (ii) define an open of M that, granted
that the 𝑤1, . . . , 𝑤𝑑−1 are large enough, is nonempty by Lemma 3.1. Due to the existence of the ℎ′𝑖 as
in (3.6.3) and the openness of the smooth locus, the smoothness requirement (iii) likewise defines a
nonempty open. Granted (ii), since the image of a proper morphism is closed, the requirements

𝑌 ∩ 𝐻0 ∩ 𝜋−1(𝜋(𝑥𝑖)) = ∅

of (vii) define an open. Granted that the 𝑤1, . . . , 𝑤𝑑−1 are iteratively chosen to be large enough and
divisible by the characteristic exponent of k, this open is nonempty thanks to Lemma 3.2 (applied after
base change to 𝑘 and similarly to the case of a perfect k treated above), and even remains a nonempty
open after imposing the further requirements (v) and (vi). In summary, the conditions (i)–(vi) indeed
define a nonempty open of M, as desired. �

For our mixed characteristic purposes, we need to extend Proposition 3.6 by allowing k be a semilocal
Dedekind ring O. We deduce such an extension in the following variant: this is straightforward by
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specialization if the 𝑥𝑖 all lie above the maximal ideals of O, and we reduce to this case via a trick that
adds an auxiliary maximal ideal to O.

Variant 3.7. Let O be a semilocal Dedekind ring, let X be a projective, flat O-scheme with fibers of pure
dimension d, let 𝒪𝑋 (1) be an O-ample line bundle on X, let 𝑊 ⊂ 𝑋sm be an open, let 𝑥1, . . . , 𝑥𝑛 ∈ 𝑊
and let 𝑌 ⊂ 𝑋 be a closed subscheme that is O-fiberwise of codimension > 0. Upon replacing 𝒪𝑋 (1)
by any large power, there exist nonzero

ℎ0 ∈ Γ(𝑋,𝒪𝑋 (1)), ℎ1 ∈ Γ(𝑋,𝒪𝑋 (𝑤1)), . . . , ℎ𝑑−1 ∈ Γ(𝑋,𝒪𝑋 (𝑤𝑑−1)) with 𝑤1, . . . , 𝑤𝑑−1 > 0,

such that

(i) the hypersurface 𝐻0 := 𝑉 (ℎ0) ⊂ 𝑋 does not contain any 𝑥𝑖;
(ii) the hypersurfaces 𝐻𝑖 := 𝑉 (ℎ𝑖) ⊂ 𝑋 satisfy 𝑌 ∩ 𝐻0 ∩ . . . ∩ 𝐻𝑑−1 = ∅;

(iii) in the following commutative diagram with vertical maps determined by the ℎ0, . . . , ℎ𝑑−1:

𝑋 \ 𝐻0

𝜋

��

� � �� 𝑋 \ (𝐻0 ∩ . . . ∩ 𝐻𝑑−1)

𝜋

��

� � �� 𝑋 := Bl𝑋 (ℎ0, . . . , ℎ𝑑−1)

𝜋 (3.5.1)
��

A𝑑−1
O

� � §3.4
�� PO (1, 𝑤1, . . . , 𝑤𝑑−1) PO (1, 𝑤1, . . . , 𝑤𝑑−1),

for every i, the map 𝜋 is smooth (of relative dimension 1) at 𝑥𝑖;
(iv) for every i, we have 𝑌 ∩ 𝐻0 ∩ 𝜋−1(𝜋(𝑥𝑖)) = ∅;
(v) if 𝑌 \ 𝑋sm is O-fiberwise of codimension > 1 in X, then 𝜋 is smooth at each 𝑌 ∩ 𝜋−1 (𝜋(𝑥𝑖));

(vi) if even 𝑌 \𝑊 is O-fiberwise of codimension > 1 in X, then (𝑌 \𝑊) ∩ 𝜋−1(𝜋(𝑥𝑖)) = ∅ for all i;
(vii) if even 𝑌 \𝑊 is O-fiberwise of codimension > 1 in X, then there are affine opens

𝑆 ⊂ A𝑑−1
O and 𝑥1, . . . , 𝑥𝑛 ∈ 𝑈 ⊂ 𝑊 ∩ 𝜋−1(𝑆) ⊂ 𝑋 \ 𝐻0

such that 𝜋 : 𝑈 → 𝑆 is smooth of relative dimension 1 and 𝑌 ∩𝑈 = 𝑌 ∩ 𝜋−1 (𝑆) is S-finite.

Proof. If O is a field, then the claim follows from Proposition 3.6, so we may assume that O is a domain
that is not a field and set 𝐾 := Frac(O). As in the proof Proposition 3.6, we may replace each 𝑥𝑖 by its
suitable specialization to assume without losing generality that the points 𝑥1, . . . , 𝑥𝑛 are closed in their
O-fibers of X. Moreover, (vii) again follows from the rest by an argument as there.

For the rest, we let 𝐶 ⊂ Spec(O) be the union of the closed points of Spec(O), and we begin with the
case when each 𝑥𝑖 lies over C. By Proposition 3.6, the desired ℎ𝑖 exist after base change to C. Moreover,
the last aspect of Proposition 3.6 ensures that these ℎ𝑖 may be chosen to have constant degrees 𝑤𝑖 on C
and, by [EGA III1, Corollaire 2.2.4], to be such that they lift to sections of 𝒪𝑋 (𝑤𝑖). Since the image of
a proper morphism is closed, these lifts still satisfy the desired (i)–(vi) (the formation of the weighted
blowup Bl𝑋 (ℎ0, . . . , ℎ𝑑−1) in (iii) need not commute with base change to C, but the formation of the map

𝜋 : 𝑋 \ (𝐻0 ∩ . . . ∩ 𝐻𝑑−1) → PO (1, 𝑤1, . . . , 𝑤𝑑−1)

does and this suffices).
More generally, consider the case when each 𝑥𝑖 that lies in the generic O-fiber of X specializes to

some point in 𝑊 ∩ 𝑋𝐶 . By replacing each such 𝑥𝑖 by this specialization, we reduce to 𝑥1, . . . , 𝑥𝑛 all
lying over C, that is, to the previous paragraph. In general, such specializations need not exist, but we
will reduce to the case when they do by enlarging Spec(O) and suitably extending X and Y. For this, we
begin by letting 𝔪 ⊂ O range over the maximal ideals and noting that, since

⋃
𝔪 Spec(O𝔪) is an open

cover of Spec(O), the map

O ∼
−→

⋂
𝔪 O𝔪
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is an isomorphism. For every subfield 𝐾 ′ ⊂ 𝐾 , we consider the discrete valuation rings O′
𝔪 := O𝔪 ∩𝐾 ′

and we note that, by [Mat89, Theorem 12.2], the intersection

O′ :=
⋂

𝔪 O′
𝔪

is a semilocal Dedekind subdomain of O whose localizations at maximal ideals are precisely the O′
𝔪.

As 𝐾 ′ ranges over the finitely generated subfields of K, the subrings O′ exhaust O. Thus, we may use
a limit argument to replace O by some such O′ and, hence, to reduce to the case when K is finitely
generated (and automatically separable) over its prime subfield. By [EGA IV4, Corollaire 17.15.9] and
spreading out, such a K is the fraction field of a regular domain A that is smooth either over this prime
subfield or even over Z. Moreover, this A cannot be 0-dimensional: else, K would be a finite field, which
would contradict our assumption that O is not a field.

By localizing A if needed, we may assume that

◦ 𝑋𝐾 spreads out to a projective, flat A-scheme X with A-fibers of pure dimension d (see [EGA IV3,
Théorème 12.2.1 (ii) and (v)]);

◦ 𝒪𝑋𝐾 (1) spreads out to an A-ample line bundle ℒ on X (see [EGA IV3, Corollaire 9.6.4]);
◦ 𝑊𝐾 and 𝑌𝐾 spread out to A-flat open (resp., closed) subschemes

W ⊂ Xsm and Y ⊂ X

such that Y is A-fiberwise of codimension > 0 and, if 𝑌𝐾 \𝑊𝐾 (resp., 𝑌𝐾 \ 𝑋sm
𝐾 ) is of codimension

> 1 in X, then Y \W (resp., Y \ Xsm) is A-fiberwise of codimension > 1 in X (see [EGA IV3,
Théorème 11.3.1, Corollaire 12.2.2 (i)]); and

◦ each 𝑥𝑖 that lies over K spreads out to an A-finite closed subscheme of W.

Since A is positive-dimensional, it has infinitely many primes 𝔭 of height 1. In particular, for some such
𝔭, the discrete valuation subring 𝑅 := 𝐴𝔭 of K is distinct from each O𝔪. Since these discrete valuation
subrings share a common fraction field, there can be no inclusion relations between them. Thus, [Mat89,
Theorems 12.2 and 12.6] ensure that

Õ := 𝑅 ∩
⋂

𝔪 O𝔪

is a semilocal Dedekind domain whose spectrum is obtained by glueing Spec(O) and Spec(𝑅) along
their common open Spec(𝐾). Consequently, we may glue X with X𝑅 along 𝑋𝐾 to extend X to a
projective, flat Õ-scheme 𝑋 with fibers of pure dimension d that comes equipped with an ample line
bundle 𝒪𝑋 (1) obtained by glueing 𝒪𝑋 (1) with ℒ𝑅 along 𝒪𝑋𝐾 (1), with an open subscheme 𝑊 ⊂ 𝑋sm

obtained by glueing W with W𝑅 along 𝑊𝐾 , as well as with a closed subscheme 𝑌 ⊂ 𝑋 obtained by
glueing Y with Y𝑅 along 𝑌𝐾 . We may now replace X and O by 𝑋 and Õ without losing generality. This
has the advantage that, by construction, we are left with the already treated case in which each 𝑥𝑖 that
lies in 𝑋𝐾 specializes to some point in 𝑊 ∩ 𝑋𝐶 . �

4. Lifting the torsor to a smooth relative curve

In practice, we start from a smooth affine scheme W, not from its projective compactification X as in
Variant 3.7. The following proposition recasts the results of the previous section from this vantage point.
We thank Panin for extracting its formulation from the initial version of this article.

Proposition 4.1. For

◦ a semilocal Dedekind ring O;
◦ a smooth O-algebra A that is everywhere of positive relative dimension over O;
◦ 𝑥1, . . . , 𝑥𝑛 ∈ Spec(𝐴);
◦ a closed subscheme 𝑌 ⊂ Spec(𝐴) that is of codimension ≥ 2;
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there are

(i) an affine open 𝑈 ⊂ Spec(𝐴) containing all the 𝑥𝑖;
(ii) an affine open 𝑆 ⊂

⊔
𝑑≥0 A

𝑑
O; and

(iii) a smooth O-morphism 𝜋 : 𝑈 → 𝑆 of pure relative dimension 1 such that 𝑌 ∩𝑈 is S-finite.

Proof. We decompose Spec(O) and 𝑊 := Spec(𝐴) into connected components to assume that O and
A are domains so that A is of pure relative dimension 𝑑 > 0 over O. We embed W into some affine
space over O and then take the schematic image in the corresponding projective space to build an open
immersion𝑊 ↩→ 𝑋 into a projective, flatO-scheme X. On the K-fiber with 𝐾 := Frac(O) this immersion
has dense image, so 𝑋𝐾 is of pure dimension d. It then follows from [SP, Lemmas 0D4J and 02FZ] that
X is of pure relative dimension d over O. We will obtain our U and 𝜋 from X via Variant 3.7 (vii). To
apply the latter, all we need to do is to check that the schematic image𝑌 of Y in X is such that𝑌 ′ := 𝑌 \𝑌
is O-fiberwise of codimension > 1 in X.

By [SP, Lemma 01R8], set-theoretically we have 𝑌 =
⋃
𝑦 {𝑦} where y ranges over the generic points

of Y and the closures are in X. Each y is of height ≥ 2 in X, so each {𝑦} intersects the O-fiber of X
containing y in a closed subscheme of dimension ≤ 𝑑 − 1 (even ≤ 𝑑 − 2 if the fiber is generic). Thus,
since {𝑦} has a nonempty open {𝑦} ∩ 𝑊 , the contribution of y to its O-fiber of 𝑌 ′ is of dimension
≤ 𝑑 − 2. The only situation in which {𝑦} may contribute to other O-fibers of 𝑌 ′ is when y lies in the
generic O-fiber of X and O is not a field. However, since the local rings of X are of dimension ≤ 𝑑 + 1,
then the intersection of {𝑦} with any closed O-fiber of X is of dimension ≤ 𝑑 − 2. In conclusion, 𝑌 ′ is
O-fiberwise of dimension ≤ 𝑑 − 2, that is, O-fiberwise of codimension > 1 in X. �

The following consequence of Proposition 4.1 starts a string of reductions that will eventually lead to
Theorem 1.2. In comparison to versions in the literature, for instance, to [Fed21b, Proposition 4.4], the
main new phenomena are that the group 𝒢 is only defined over a small affine C and that 𝐶 \ 𝑍 need not
be affine, which will cause additional subtleties in §7. It is not necessary to assume that our quasi-split
group is simply connected but, upon insistence of a referee, we assume this anyway.

Proposition 4.2. For a semilocal Dedekind ring O, the semilocalization R of a smooth O-algebra A at
finitely many primes 𝔭, a quasi-split reductive R-group G, a Borel R-subgroup 𝐵 ⊂ 𝐺, and a generically
trivial G-torsor E, there are

(i) a smooth, affine R-scheme C of pure relative dimension 1;
(ii) a section 𝑠 ∈ 𝐶 (𝑅);

(iii) an R-finite closed subscheme 𝑍 ⊂ 𝐶;
(iv) a quasi-split reductive C-group scheme 𝒢 with a Borel ℬ ⊂ 𝒢 whose s-pullback is 𝐵 ⊂ 𝐺;
(v) a 𝒢-torsor ℰ whose s-pullback is E such that ℰ reduces to an ℛ𝑢 (ℬ)-torsor over 𝐶 \ 𝑍;

in fact, for any extension of 𝐵 ⊂ 𝐺 to a quasi-pinning3 of G, one may find the objects as above such that
ℬ ⊂ 𝒢 extends to a quasi-pinning of 𝒢 that is compatible via s with the quasi-pinning of G.

Proof. We decompose Spec(O) and Spec(𝑅) into connected components to assume that O and R are
domains and then likewise assume that A is a domain. If A is of relative dimension 0, then R is a
Dedekind domain, so, by [Guo20, Theorem 1], our torsor E is trivial and we may choose 𝐶 = A1

𝑅 and
ℰ := 𝐸A1

𝑅
, the closed subscheme Z being empty and s being the zero section. Thus, we may assume that

A is O-fiberwise of pure dimension 𝑑 > 0. Moreover, we localize A and spread out to assume (abusively,
from a notational standpoint) that G, B and E begin life over A and, for the last aspect of the claim, that
a fixed extension of 𝐵 ⊂ 𝐺 to a quasi-pinning of G likewise exists over A.

3We recall from [SGA 3III new, Exposé XXIV, Sections 3.8–3.9] that a quasi-pinning of a reductive group scheme G is the
datum of a Borel subgroup 𝐵 ⊂ 𝐺, a maximal torus 𝑇 ⊂ 𝐵 and, on the scheme Dyn(𝐺) of those T-roots that are simple with
respect to B, a trivialization of the line bundle given by the universal root space that is simple with respect to B. A reductive group
scheme is quasi-split if it admits a quasi-pinning—over a semilocal base this amounts to having a Borel subgroup, but in general
it is a more stringent condition.
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By [SGA 3III new, Exposé XXVI, Corollaire 3.6, Lemme 3.20], the quotient 𝐸/𝐵 is representable by
a projective A-scheme. Thus, due to the generic triviality of E and the valuative criterion of properness,
there is a closed subscheme 𝑌 ⊂ Spec(𝐴) of codimension ≥ 2 such that (𝐸/𝐵)Spec(𝐴)\𝑌 has a section
that generically lifts to E, in other words, such that 𝐸Spec(𝐴)\𝑌 reduces to a generically trivial 𝐵Spec(𝐴)\𝑌 -
torsor 𝐸𝐵. Consider the torus

𝑇 := 𝐵/ℛ𝑢 (𝐵) and the induced 𝑇Spec(𝐴)\𝑌 -torsor 𝐸𝑇 := 𝐸𝐵/ℛ𝑢 (𝐵).

Since Y is of codimension ≥ 2 in the regular scheme Spec(𝐴), by [CTS79, Corollaire 6.9], there is
a unique T-torsor �̃�𝑇 that extends 𝐸𝑇 to all of Spec(𝐴). Since the Grothendieck–Serre conjecture is
known for tori [CTS87, Theorem 4.1 (i)] and �̃�𝑇 is generically trivial, the base change of �̃�𝑇 to Spec(𝑅)
is trivial. Thus, we may localize A further around the maximal ideals of R to assume that �̃�𝑇 is trivial
so that 𝐸𝑇 is also trivial and 𝐸Spec(𝐴)\𝑌 reduces to an ℛ𝑢 (𝐵)-torsor.

We now apply Proposition 4.1 to obtain

◦ an affine open 𝑈 ⊂ Spec(𝐴) containing Spec(𝑅);
◦ an affine open 𝑆 ⊂ A𝑑−1

O ; and
◦ a smooth O-morphism 𝑈 → 𝑆 of pure relative dimension 1 such that 𝑌 ∩𝑈 is S-finite.

Since R is a localization of the coordinate ring of U, we then set

𝐶 := 𝑈 ×𝑆 Spec(𝑅) and 𝑍 := (𝑌 ∩𝑈) ×𝑆 Spec(𝑅).

The R-scheme C comes equipped with an R-point 𝑠 ∈ 𝐶 (𝑅) induced by the diagonal of Spec(𝑅) over
S, and, by base change, (i)–(iii) hold. Finally, we let 𝒢, ℬ and ℰ be the base changes to C of the
restrictions of G, B and E to U so that, by construction, their s-pullbacks are G, B and E, respectively.
Since𝑈 ⊂ Spec(𝐴) and, by construction, 𝐸Spec(𝐴)\𝑌 reduces to an ℛ𝑢 (𝐵)-torsor, the restriction ofℰ to
𝐶 \ 𝑍 reduces to an ℛ𝑢 (ℬ)-torsor. In particular, (iv) and (v) hold. To likewise arrange the final claim
about quasi-pinnings, simply take the fixed extension of 𝐵 ⊂ 𝐺 to a quasi-pinning of G and base change
it to C. �

Remark 4.3. Proposition 4.2 is significantly simpler in the case when O is a field, in which the
assumption that G be quasi-split could be removed with ℰ in (v) being trivial over 𝐶 \ 𝑍 . The point is
that, in this case, even if Y is only of codimension > 0, as is immediate to arrange from the generic
triviality of E, one nevertheless gets that 𝑌 ′ in the proof of Proposition 4.1 is of codimension > 1, and
the argument goes through without worrying about B and with ℰ |𝐶\𝑍 even being trivial.

5. Changing the relative curve to equate 𝓖 and 𝑮𝑪

To reach our main result on the Grothendieck–Serre conjecture we will gradually simplify the structure
exhibited in Proposition 4.2 and eventually reduce to studying G-torsors over A1

𝑅. As the first step
towards this, in Proposition 5.2 we reduce to the case when the C-group scheme 𝒢 appearing there is
constant, that is, when 𝒢 is simply 𝐺𝐶 . Although this step could be pursued more generally, here we
simplify it by taking advantage of the quasi-splitness assumption. The following lemma is close in spirit
to [OP01, Proposition 7.1], [PSV15, Proposition 5.1], or [Pan20b, Theorem 3.4].

Lemma 5.1. For a Noetherian semilocal ring A whose localizations at prime ideals are geometrically
unibranch, an ideal 𝐼 ⊂ 𝐴, reductive A-groups G and 𝐺 ′ that on geometric A-fibers have the same type,
fixed quasi-pinnings of G and 𝐺 ′ extending Borel A-subgroups 𝐵 ⊂ 𝐺 and 𝐵′ ⊂ 𝐺 ′ and an 𝐴/𝐼-group
isomorphism

𝜄 : 𝐺𝐴/𝐼
∼

−→ 𝐺 ′
𝐴/𝐼 respecting the quasi-pinnings so that, in particular, 𝜄(𝐵𝐴/𝐼 ) = 𝐵′

𝐴/𝐼 ,
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there are

(i) a faithfully flat, finite, étale A-algebra 𝐴 equipped with an 𝐴/𝐼-point 𝑎 : 𝐴 � 𝐴/𝐼; and
(ii) an 𝐴-group isomorphism �̃� : 𝐺𝐴

∼
−→ 𝐺 ′

𝐴
respecting the quasi-pinnings such that 𝑎∗ (̃𝜄) = 𝜄.

Proof. We consider the functor X that parametrizes those isomorphisms between the base changes of
G and 𝐺 ′ that preserve the (corresponding base changes of the) fixed quasi-pinnings. By [SGA 3III new,
Exposé XXIV, Corollaire 1.10, Section 3.10], this X is representable by a scheme that becomes constant
étale locally on A. Thus, by [SGA 3II, Exposé X, Corollaire 5.14] (with [EGA I, Corollaire 6.1.9]), the
geometrically unibranch assumption ensures that the connected components of X are open subschemes
that are finite étale over A. The 𝐴/𝐼-point 𝜄 of X meets finitely many such components, whose union
is then the spectrum of a finite étale A-algebra 𝐴. By adjoining further components if needed, we may
ensure that the closed A-fibers of 𝐴 are nonzero so that 𝐴 is faithfully flat over A, as desired. �

Proposition 5.2. For a semilocal Dedekind ring O, the semilocalization R of a smooth O-algebra at
finitely many primes 𝔭, a quasi-split reductive R-group G, a Borel R-subgroup 𝐵 ⊂ 𝐺, and a generically
trivial G-torsor E, there are

(i) a smooth, affine R-scheme C of pure relative dimension 1;
(ii) a section 𝑠 ∈ 𝐶 (𝑅);

(iii) an R-finite closed subscheme 𝑍 ⊂ 𝐶;
(iv) a 𝐺𝐶 -torsor ℰ whose s-pullback is E such that ℰ reduces to an ℛ𝑢 (𝐵)-torsor over 𝐶 \ 𝑍 .

Proof. We decompose Spec(𝑅) into connected components to assume that R is a domain. By Propo-
sition 4.2, there are such C, s, Z and ℰ, except that ℰ there is a torsor under a quasi-split reductive
C-group scheme𝒢 that may not be 𝐺𝐶 but that comes equipped with a Borel C-subgroup ℬ ⊂ 𝒢 whose
s-pullback is 𝐵 ⊂ 𝐺 and that extends to a quasi-pinning of 𝒢 whose s-pullback is a fixed quasi-pinning
of G extending B. We replace C by its connected component containing the image of s to arrange that C
be connected. Thus, the geometric C-fibers of 𝒢 and 𝐺𝐶 are of constant types so that, by the condition
on the s-pullback, these types are the same.

To replace ℬ ⊂ 𝒢 by 𝐵𝐶 ⊂ 𝐺𝐶 , we first use prime avoidance [SP, Lemma 00DS] to construct
the semilocalization Spec(𝐴) of C at the union of the closed points of Z and of those of the image
of s. Since C is R-smooth, the ring A is regular. The image of s gives rise to a closed subscheme
Spec(𝑅) ⊂ Spec(𝐴) cut out by an ideal 𝐼 ⊂ 𝐴 and, by assumption, ℬ𝐴/𝐼 ⊂ 𝒢𝐴/𝐼 agrees with 𝐵 ⊂ 𝐺,
and even the quasi-pinnings of 𝒢 and G are likewise compatible. Thus, by Lemma 5.1, there is a finite
étale Spec(𝐴)-scheme Spec(𝐴) equipped with an R-point �̃� lifting s such that ℬ𝐴 ⊂ 𝒢𝐴 is isomorphic
to 𝐵𝐴 ⊂ 𝐺𝐴 compatibly with the fixed identification of �̃�-pullbacks. We may spread out

Spec(𝐴) → Spec(𝐴) to a finite étale morphism 𝐶 → 𝐶 ′

for some affine open 𝐶 ′ ⊂ 𝐶 that contains Z and the image of s, while preserving an �̃� ∈ 𝐶 (𝑅) and an
isomorphism between ℬ𝐶 ⊂ 𝒢𝐶 and 𝐵𝐶 ⊂ 𝐺𝐶 . To arrive at the desired conclusion, it then remains to
replace C, s, Z and ℰ by 𝐶, �̃�, 𝑍 ×𝐶 𝐶 and ℰ ×𝐶 𝐶, respectively. �

6. A Lindel trick in the setting of Cohen–Macaulay relative curves

Having corrected 𝒢, our next goal is to reduce to the case when the affine relative curve C is A1
𝑅. For

this, we need a suitable flat morphism 𝐶 → A1
𝑅, whose construction is the goal of this section. We

summarize the resulting relevant for us refinement of Proposition 5.2 in Proposition 6.5.
To be able to later use patching to pass from C to A1

𝑅, it is key to arrange that on some open
subscheme 𝐶 ′ ⊂ 𝐶 containing Z our desired flat map 𝐶 → A1

𝑅 does not change Z in the sense that the
latter is precisely the scheme-theoretic preimage in 𝐶 ′ of some closed subscheme 𝑍 ′ ⊂ A1

𝑅 to which Z
maps isomorphically. This is reminiscent of Lindel’s insight [Lin81, page 321, Lemma] that led to the
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resolution of the Bass–Quillen conjecture in the ‘geometric’ case and says that an étale map 𝐵 → 𝐴 of
local rings with the same residue field is an isomorphism modulo powers of a well-chosen element in
the maximal ideal of B (compare also with [CTO92, Lemme 1.2] or [CT95, Section 3.7 and proof of
Theorem 5.1.1]). In our situation, however, there is a basic obstruction to the existence of 𝑍 ′: if some
residue fields of R are finite, then Z could have too many rational points to fit into A1

𝑅. The purpose of
the following crucial statement essentially taken from the literature is to circumvent this obstacle.

Lemma 6.1. For a semilocal ring R, a quasi-projective, finitely presented R-scheme C, its R-finite
closed subscheme Z and an 𝑠 ∈ 𝑍 (𝑅), there is a finite morphism 𝐶 → 𝐶 that is étale at the points in
𝑍 := 𝑍 ×𝐶 𝐶 such that s lifts to �̃� ∈ 𝐶 (𝑅), and, for every maximal ideal 𝔪 ⊂ 𝑅, we have

#{𝑧 ∈ 𝑍𝑘𝔪 | [𝑘𝑧 : 𝑘𝔪] = 𝑑} < #{𝑧 ∈ A1
𝑘𝔪

| [𝑘𝑧 : 𝑘𝔪] = 𝑑} for every 𝑑 ≥ 1

(a vacuous condition if the residue field 𝑘𝔪 is infinite).

Lemmas like 6.1 and 6.3 below go back to Panin’s [Pan15, Lemma 14.1 and Theorem 11.7].

Proof. The lemma is a variant of, for instance, [Pan19a, Lemma 6.1] or [Fed21b, Lemma 4.5], and we
will prove it by using similar arguments as there due to Panin. Since R is semilocal, the finite R-scheme
Z has finitely many closed points, which all lie over maximal ideals of R. Thus, we begin by using
Lemma 3.1 to construct the semilocalization S of C at the closed points of Z so that Z is also a closed
subscheme of S and 𝑠 ∈ 𝑆(𝑅). It then suffices to construct a finite étale S-scheme 𝑆 such that s lifts to
an R-point �̃� ∈ 𝑆(𝑅) and the preimage 𝑍 ⊂ 𝑆 of Z satisfies the displayed inequalities: indeed, once this
is done, we may first spread 𝑆 out to a finite étale scheme over an open neighborhood of S in C and then
form its schematic image [SP, Lemma 01R8] in the factorization supplied by the Zariski main theorem
[EGA IV4, Corollaire 18.12.13] to further extend to a desired finite morphism 𝐶 → 𝐶.

We view s as a closed subscheme Spec(𝑅) ⊂ 𝑍 and we list the closed points of Z (that is, of S):

◦ the closed points 𝑦1, . . . , 𝑦𝑚 of Z not in s with an infinite residue field;
◦ the closed points 𝑧1, . . . , 𝑧𝑛 of Z not in s with a finite residue field;
◦ the closed points 𝑦′1, . . . , 𝑦

′
𝑚′ of s with an infinite residue field;

◦ the closed points 𝑧′1, . . . , 𝑧
′
𝑛′ of s with a finite residue field.

For any 𝑁 > 1, we may choose monic polynomials

◦ 𝑓𝑦𝑖 ∈ 𝑘𝑦𝑖 [𝑡] that are products of N distinct linear factors; and
◦ 𝑓𝑧 𝑗 ∈ 𝑘𝑧 𝑗 [𝑡] that are irreducible of degree N.

Likewise, we may choose a monic polynomial 𝑓𝑠 ∈ 𝑡𝑅[𝑡] of degree N such that

◦ the image of 𝑓𝑠 in each 𝑘𝑦′𝑖 [𝑡] is a product of N distinct linear factors; and
◦ the image of 𝑓𝑠 in each 𝑘𝑧′𝑗 [𝑡] is a product of t and an irreducible polynomial not equal to t.

Finally, since 𝑠 
⊔𝑚
𝑖=1 𝑦𝑖 

⊔𝑛
𝑗=1 𝑧 𝑗 is a closed subscheme of S, by lifting coefficients we may choose

a monic polynomial 𝑓 ∈ Γ(𝑆,𝒪𝑆) [𝑡] of degree N that restricts to 𝑓𝑦𝑖 on each 𝑦𝑖 , to 𝑓𝑧 𝑗 on each 𝑧 𝑗 and
to 𝑓𝑠 on s. This f defines a finite étale S-scheme 𝑆, which, by construction, is equipped with an R-point
�̃� ∈ 𝑆(𝑅) lifting s (cut out by the factor t of 𝑓𝑠) and is such that the number of closed points with finite
residue fields in the preimage 𝑍 ⊂ 𝑆 of Z stays bounded as N grows, but, except for the points in �̃�, the
cardinalities of these residue fields grow uniformly. Thus, since, for a finite field F, the number of closed
points of A1

F
with a given residue field grows unboundedly together with the degree of that residue field

over F, for large N our 𝑆 meets the requirements. �

We turn to the Lindel trick in our setting, namely, to building the desired flat map𝐶 → A1
𝑅 in Lemma

6.3. Its numerous variants appeared in works of Panin, for instance, in [OP99, Section 5], [PSV15,
Theorem 3.4] or [Pan19a,, Theorem 3.8], but with the more stringent smoothness assumption on C, and
preparation lemmas of similar flavor can be traced back at least to [Gab94, Lemma 3.1] (compare also
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with [CTHK97, Theorem 3.1.1]). As we show, Cohen–Macaulayness of C suffices. The argument uses
the following simple lemma that characterizes residue fields of closed points on smooth curves.

Lemma 6.2. For a field k, a smooth connected k-curve C and a closed point 𝑐 ∈ 𝐶, the extension 𝑘𝑐/𝑘
is generated by a single element, that is, 𝑘𝑐 is the residue field of a closed point of A1

𝑘 .

Proof. By [EGA IV4, Corollaire 17.11.4], an open neighborhood 𝑈 ⊂ 𝐶 of c has an étale k-morphism

𝑈 → A1
𝑘 .

Thus, there is a subextension ℓ/𝑘 of 𝑘𝑐/𝑘 generated by a single element with 𝑘𝑐/ℓ separable. By
the primitive element theorem, we need to check that this forces 𝑘𝑐/𝑘 to only have finitely many
subextensions 𝑘 ′/𝑘 . Since there are finitely many possibilities for 𝑘 ′ ∩ℓ, we replace k by 𝑘 ′ ∩ℓ to reduce
to considering those 𝑘 ′ for which 𝑘 ′ ∩ℓ = 𝑘 . Like any finite separable extension, the separable closure of
k in 𝑘𝑐 has only finitely many subextensions. Thus, there are finitely many possibilities for the maximal
separable subextension 𝑘 ′′/𝑘 of 𝑘 ′/𝑘 . By replacing k by 𝑘 ′′ and ℓ by 𝑘 ′′ℓ, we therefore reduce to the
case when 𝑘 ′/𝑘 is purely inseparable. Then the subextension 𝑘 ′ℓ/ℓ of the separable extension 𝑘𝑐/ℓ is
also purely inseparable, to the effect that 𝑘 ′ ⊂ ℓ. However, ℓ/𝑘 is generated by a single element, so, by
the primitive element theorem, it has only finitely many subextensions. �

Lemma 6.3. For

◦ a semilocal ring R;
◦ a flat, affine R-scheme C with Cohen–Macaulay fibers of pure dimension 1;
◦ R-finite closed subschemes 𝑌 ⊂ 𝐶 and 𝑍 ⊂ 𝐶sm such that, for every maximal ideal 𝔪 ⊂ 𝑅,

#{𝑧 ∈ 𝑍𝑘𝔪 | [𝑘𝑧 : 𝑘𝔪] = 𝑑} < #{𝑧 ∈ A1
𝑘𝔪

| [𝑘𝑧 : 𝑘𝔪] = 𝑑} for every 𝑑 ≥ 1

(a vacuous condition if the residue field 𝑘𝔪 is infinite)4 ;

there are

(i) an affine open 𝐶 ′ ⊂ 𝐶 containing Y and Z;
(ii) a quasi-finite, flat R-map 𝐶 ′ → A1

𝑅 that maps Z isomorphically onto a closed subscheme

𝑍 ′ ⊂ A1
𝑅 such that 𝑍 � 𝑍 ′ ×A1

𝑅
𝐶 ′

so that, in particular, 𝐶 ′ → A1
𝑅 is étale along Z and, for every 𝑛 ≥ 0, maps the n-th infinitesimal

neighborhood of Z in 𝐶 ′ isomorphically to the n-th infinitesimal neighborhood of 𝑍 ′ in A1
𝑅.

Proof.5 The étaleness follows from the flatness and the isomorphy over 𝑍 ′ of the map 𝐶 ′ → A1
𝑅, and

it implies the infinitesimal neighborhood aspect. For the rest, every closed point 𝑧 ∈ 𝑍 lies over some
maximal ideal 𝔪 ⊂ 𝑅, and, since 𝑧 ∈ 𝐶sm

𝑘𝔪
, the ideal sheaf ℐ𝑧 ⊂ 𝒪𝐶𝑘𝔪 is generated at z by a uniformizer

𝑢𝑧 ∈ 𝒪𝐶𝑘𝔪 , 𝑧 . Consequently, by [BouAC, Chapitre IX, Section 3, numéro 3, Théorème 1], the thickening

𝜀𝑧 := Spec
𝒪𝐶𝑘𝔪

(𝒪𝐶𝑘𝔪 /ℐ
2
𝑧 ) is isomorphic to Spec(𝑘𝑧 [𝑢𝑧]/(𝑢2

𝑧)).

Letting y range over the closed points of Y not in Z and z range over the closed points of Z, we set

𝜀𝑌 :=
⊔
𝑦 𝑦 ⊂ 𝐶, 𝜀𝑍 :=

⊔
𝑧 𝜀𝑧 ⊂ 𝐶 and 𝜀 := 𝜀𝑌  𝜀𝑍 =

⊔
𝑦 𝑦 

⊔
𝑧 𝜀𝑧 ⊂ 𝐶.

4If every closed point of Y lies on Z, then it suffices to require the same with nonstrict inequalities ≤ instead.
5We loosely follow [Pan19a,, proof of Theorem 3.8], with several improvements and simplifications whose purpose is to avoid

assuming that C be R-smooth or that R be the semilocal ring at finitely many closed points of a smooth variety over a field.
Notably, in Remark 6.4 we give a more direct and more general argument for the final portion of loc. cit.
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By Lemma 6.2 and the assumption on the numbers of points of 𝑍𝑘𝔪 , we may find an R-morphism

𝑗 : 𝜀 →
⊔

𝔪 A
1
𝑘𝔪

⊂ A1
𝑅 that restricts to a closed immersion 𝜀𝑍 ↩→ A1

𝑅

and, for each 𝔪, maps the points of 𝜀𝑌 above 𝔪 to an 𝑘𝔪-point of A1
𝑘𝔪

\ 𝜀𝑍 . We fix two disjoint sets of
closed points

𝑑1, . . . , 𝑑𝑛 ∈ 𝐶 \ (𝑌 ∪ 𝑍) and 𝑑 ′1, . . . , 𝑑
′
𝑛′ ∈ 𝐶 \ (𝑌 ∪ 𝑍)

lying over maximal ideals of R such that each set jointly meets every irreducible component of every
closed R-fiber of C. Since 𝜀∪

⊔𝑛
𝑖=1 𝑑𝑖∪

⊔𝑛′

𝑖=1 𝑑
′
𝑖 is a closed subscheme of C, we may find an 𝑠 ∈ Γ(𝐶,𝒪𝐶 )

that

◦ vanishes on every 𝑑𝑖 but does not vanish on any 𝑑 ′𝑖 ;
◦ on 𝜀 equals the j-pullback of the coordinate of A1

𝑅.

By mapping the coordinate of A1
𝑅 to s, we obtain an R-morphism

𝜋 : 𝐶 → A1
𝑅 .

The behavior of s at 𝑑𝑖 and 𝑑 ′𝑖 ensures that the locus where 𝜋 is quasi-finite, which, by [SP, Lemma 01TI],
is an open of C, contains every closed R-fiber of C. In particular, we may use prime avoidance [SP,
Lemma 00DS] to replace C by some affine open subset containing Y and Z (equivalently, containing
the closed points of Y and Z) to arrange that 𝜋 is quasi-finite.

Since C is R-flat with Cohen–Macaulay fibers of pure dimension 1, the flatness criteria [EGA IV2,
Proposition 6.1.5], [EGA IV3, Corollaire 11.3.11] ensure that 𝜋 is flat. By construction 𝜋 |𝜀 = 𝑗 , so, by
checking on the closed R-fibers, [EGA IV4, Théorème 17.11.1] shows that 𝜋 is étale around Z. Since
𝑍𝑘𝔪 and 𝜀𝑍 have the same underlying reduced subscheme

⊔
𝑧 𝑧, the agreement with j also shows that

𝜋 |𝑍𝑘𝔪 is a closed immersion. Since Z is R-finite, Nakayama lemma [SP, Lemma 00DV] then ensures
that 𝜋 |𝑍 is also a closed immersion so that 𝜋 maps Z isomorphically onto a closed subscheme 𝑍 ′ ⊂ A1

𝑅.
A section of a separated, étale morphism is an isomorphism onto a clopen subscheme, so the étaleness

of 𝜋 around Z gives a decomposition

𝜋−1 (𝑍 ′) = 𝑍  𝑍 ′′

for some R-quasi-finite closed subscheme 𝑍 ′′ ⊂ 𝐶. By the agreement with j, the image under 𝜋 of every
closed point of Y not in Z does not lie in 𝑍 ′ so that𝑌∩𝑍 ′′ = ∅. Thus, prime avoidance [SP, Lemma 00DS]
supplies a global section of C that vanishes on 𝑍 ′′ but does not vanish at any closed point of Y or Z. By
inverting this section, we obtain the desired affine open 𝐶 ′ ⊂ 𝐶. �

Remark 6.4. If Spec(𝑅) is connected, then any R-(finite locally free) closed subscheme 𝑍 ′ ⊂ A1
𝑅 is cut

out by a monic polynomial. This holds for any ring R with a connected spectrum: the coordinate t of
A1
𝑅 acts by multiplication on the projective R-module Γ(𝑍 ′,𝒪𝑍 ′ ), the characteristic polynomial of this

action is monic and cuts out an R-(finite locally free) closed subscheme 𝐻 ⊂ A1
𝑅, and Cayley–Hamilton

implies that 𝑍 ′ ⊂ 𝐻 inside A1
𝑅, so, by comparing ranks over R, even 𝑍 ′ = 𝐻.

We now refine Proposition 5.2 to the following statement adapted to passing to A1
𝑅 via patching.

Proposition 6.5. For a semilocal Dedekind ring O, the localization R of a smooth O-algebra at finitely
many primes 𝔭, a quasi-split reductive R-group G, a Borel R-subgroup 𝐵 ⊂ 𝐺 and a generically trivial
G-torsor E, there are

(i) a smooth, affine R-scheme C of pure relative dimension 1;
(ii) a section 𝑠 ∈ 𝐶 (𝑅);

(iii) an R-finite closed subscheme 𝑍 ⊂ 𝐶;
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(iv) a 𝐺𝐶 -torsor ℰ whose s-pullback is E such that ℰ reduces to a ℛ𝑢 (𝐵)-torsor over 𝐶 \ 𝑍;
(v) a flat R-map 𝐶 → A1

𝑅 that maps Z isomorphically onto a closed subscheme 𝑍 ′ ⊂ A1
𝑅 with

𝑍 � 𝑍 ′ ×A1
𝑅
𝐶.

Proof. Proposition 5.2 supplies C, s, Z and ℰ that satisfy the present (i)–(iv). We view s as a closed
subscheme of C, and we apply Lemma 6.1 to the R-finite closed subscheme (𝑍 ∪ 𝑠)red of C to see that
we may change C to assume that, in addition, for every maximal ideal 𝔪 ⊂ 𝑅,

#{𝑧 ∈ 𝑍𝑘𝔪 | [𝑘𝑧 : 𝑘𝔪] = 𝑑} < #{𝑧 ∈ A1
𝑘𝔪

| [𝑘𝑧 : 𝑘𝔪] = 𝑑} for every 𝑑 ≥ 1.

This allows us to apply Lemma 6.3 with 𝑌 = 𝑠 to shrink C and to arrange (v). �

7. Descending to A1
𝑹 via patching

With the suitable flat map𝐶 → A1
𝑅 already built in Proposition 6.5, descending the 𝐺𝐶 -torsorℰ𝐶 toA1

𝑅
concerns patching along the closed subscheme Z. Since our Z need not be cut out by a single equation
(relatedly, 𝐶 \ 𝑍 need not be affine), this patching is slightly more delicate than its most frequently
encountered instances. Its precise statement is captured by the following lemma, which follows from
more general results of Moret-Bailly [MB96] (for our purposes, we could also get by with the more
basic patching of Ferrand–Raynaud [FR70, Proposition 4.2]).

Lemma 7.1. Let 𝑆′ → 𝑆 be an affine, flat scheme map whose base change to a closed subscheme 𝑍 ⊂ 𝑆
cut out by a quasi-coherent ideal sheaf of finite type is an isomorphism and let 𝑈 ′ → 𝑈 be the base
change to 𝑈 := 𝑆 \ 𝑍 . For a quasi-affine, flat, finitely presented S-group scheme G, base change induces
an equivalence from the category of G-torsors to the category of triples consisting of a 𝐺𝑆′-torsor, a
𝐺𝑈 -torsor and a 𝐺𝑈 ′-torsor isomorphism between the two base changes to 𝑈 ′.

Of course, the isomorphism condition 𝑍 ×𝑆 𝑆
′ ∼
−→ 𝑍 ensures that 𝑆′ and U jointly cover S.

Proof. By [SP, Theorem 06FI], the classifying S-stack B𝐺 is algebraic, and, by descent, its diagonal
inherits quasi-affineness from G. Thus, the claim is a special case of [MB96, Corollaire 6.5.1 (a)]. �

To be able to apply Lemma 7.1 in our setting, we need to descendℰ𝑈\𝑍 to a G-torsor overA1
𝑅 \𝑍

′. To
achieve this, we will use the following excision result that is similar (but simpler) than its counterparts
that recently appeared in [ČS22, Theorem 5.4.4] and in [BČ22, Section 2.3].

Lemma 7.2. Let 𝑆′ → 𝑆 be a flat morphism of affine, Noetherian schemes whose base change to a
closed subscheme 𝑍 ⊂ 𝑆 is an isomorphism and let 𝑈 ′ → 𝑈 be the base change to 𝑈 := 𝑆 \ 𝑍 .

(a) For a quasi-coherent 𝒪𝑆-module ℱ (or even a complex of such 𝒪𝑆-modules), we have

𝑅Γ𝑍 (𝑆,ℱ)
∼

−→ 𝑅Γ𝑍 (𝑆
′,ℱ𝑆′ ).

(b) For an affine, smooth S-group (resp., U-group) F with a filtration

𝐹 = 𝐹0 ⊃ 𝐹1 ⊃ . . . ⊃ 𝐹𝑛 = 0

by normal, affine, smooth S-subgroups (resp., U-subgroups) such that, for all 𝑖 ≥ 0, the quotient
𝐹𝑖/𝐹𝑖+1 is a vector group associated to a vector bundle on S (resp., such that the vector group
𝐹𝑖/𝐹𝑖+1 is also central in 𝐹/𝐹𝑖+1), the map

𝐻1 (𝑈, 𝐹) → 𝐻1(𝑈 ′, 𝐹) has trivial kernel (resp., is surjective).
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Proof.
(a) We let A and 𝐴′ be the coordinate rings of S and 𝑆′, respectively. By [SP, Lemmas 0ALZ and 0955],

𝑅Γ𝑍 (𝑆,ℱ) ⊗L𝐴 𝐴′ ∼
−→ 𝑅Γ𝑍 (𝑆

′,ℱ𝑆′ ).

Thus, since 𝐴′ is A-flat, to obtain (a) it remains to note that, by [SP, Lemma 05E9], we have

𝐻𝑖
𝑍 (𝑆,ℱ)

∼
−→ 𝐻𝑖

𝑍 (𝑆,ℱ) ⊗𝐴 𝐴′ for all 𝑖 ∈ Z.

(b) In the case when F is an S-group, the vanishing of quasi-coherent cohomology of affine schemes
and the assumed filtration show that both 𝐻1(𝑆, 𝐹) and 𝐻1(𝑆′, 𝐹) vanish. Thus, the assertion about
the kernel simply amounts to the claim that every 𝐹𝑈 -torsor that trivializes over 𝑈 ′ extends to an
F-torsor. This, however, is immediate from Lemma 7.1.

For the surjectivity assertion, we will induct on n. We begin with the case 𝑛 = 1, in which F
itself is the vector group associated to some vector bundle ℱ on U. By applying (a) to 𝑗∗(ℱ),
where 𝑗 : 𝑈 ↩→ 𝑆 is the indicated open immersion, and again using the vanishing of quasi-coherent
cohomology of affine schemes, we find that, for all 𝑖 ≥ 1, even

𝐻𝑖 (𝑈, 𝐹) � 𝐻𝑖 (𝑈,ℱ) � 𝐻𝑖+1
𝑍 (𝑆, 𝑗∗(ℱ)) ∼

(a)
�� 𝐻𝑖+1

𝑍 (𝑆′, 𝑗∗(ℱ)) � 𝐻𝑖 (𝑈 ′,ℱ𝑈 ′ ) � 𝐻𝑖 (𝑈 ′, 𝐹).

For the inductive step, we assume that 𝑛 > 1 and combine the inductive hypothesis, the preceding
display for 𝐹𝑛−1, and the nonabelian cohomology sequences [Gir71, Chapitre IV, Remarque 4.2.10]
of a central extension to obtain the following commutative diagram with exact rows:

𝐻1 (𝑈, 𝐹𝑛−1)

∼

��

�� 𝐻1 (𝑈, 𝐹) ��

��

𝐻1(𝑈, 𝐹/𝐹𝑛−1)

����

�� 𝐻2(𝑈, 𝐹𝑛−1)

∼

��

𝐻1 (𝑈 ′, 𝐹𝑛−1) �� 𝐻1 (𝑈 ′, 𝐹) �� 𝐻1(𝑈 ′, 𝐹/𝐹𝑛−1) �� 𝐻2(𝑈 ′, 𝐹𝑛−1).

We fix an 𝛼′ ∈ 𝐻1 (𝑈 ′, 𝐹) that we wish to lift to 𝐻1(𝑈, 𝐹) and note that, by a diagram chase, there at
least is an 𝛼 ∈ 𝐻1 (𝑈, 𝐹) whose image in 𝐻1 (𝑈 ′, 𝐹/𝐹𝑛−1) agrees with that of 𝛼′. Every inner fpqc
form of F inherits an analogous filtration, even with the same subquotients 𝐹𝑖/𝐹𝑖+1, so the change
of origin bijections [Gir71, Chapitre III, Proposition 2.6.1 (i)] allow us to twist F and reduce to the
case when the common image of 𝛼 and 𝛼′ in 𝐻1(𝑈 ′, 𝐹/𝐹𝑛−1) vanishes. In this case, however, the
surjectivity of the left vertical arrow suffices. �

Example 7.3. For example, F in Lemma 7.2 (b) could be the unipotent radical ℛ𝑢 (𝑃) of a parabolic
S-subgroup (resp., U-subgroup) P of a reductive S-group (resp., U-group) G: in this case, [SGA 3III new,
Exposé XXVI, Proposition 2.1] supplies the desired filtration.

We can now reduce to the case when the relative curve C in Proposition 6.5 is A1
𝑅.

Proposition 7.4. For a semilocal Dedekind ring O, the semilocalization R of a smooth O-algebra at
finitely many primes 𝔭, a quasi-split reductive R-group G and a generically trivial G-torsor E, there are
(i) a closed subscheme 𝑍 ⊂ A1

𝑅 that is finite over R;
(ii) a 𝐺A1

𝑅
-torsor ℰ whose pullback along the zero section is E such that ℰ is trivial over A1

𝑅 \ 𝑍 .

Proof. Let 𝐵 ⊂ 𝐺 be a Borel R-subgroup. Proposition 6.5 supplies a quasi-finite, affine, flat R-
morphism 𝜋 : 𝐶 → A1

𝑅 whose base change to an R-finite closed subscheme 𝑍 ⊂ A1
𝑅 (called 𝑍 ′ there)

is an isomorphism, as well as an 𝑠 ∈ 𝐶 (𝑅) and a 𝐺𝐶 -torsor ℰ̃ (called ℰ there) with s-pullback E such
that ℰ̃ reduces to a ℛ𝑢 (𝐵)-torsor over 𝐶 \ 𝜋−1(𝑍). By Lemma 7.2 (b) and Example 7.3, this ℛ𝑢 (𝐵)-
torsor descends to a ℛ𝑢 (𝐵)-torsor over A1

𝑅 \ 𝑍 , so ℰ̃𝐶\𝜋−1 (𝑍 ) descends to a 𝐺A1
𝑅\𝑍

-torsor. The patching
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Lemma 7.1 then ensures that ℰ̃ itself descends to a 𝐺A1
𝑅

-torsor ℰ that reduces to a ℛ𝑢 (𝐵)-torsor over
A1
𝑅 \ 𝑍 . By postcomposing with a change of coordinate automorphism of A1

𝑅 to ensure that s map to the
zero section ofA1

𝑅, we make the pullback ofℰ along the zero section be E. Finally, we apply Lemma 3.1
to P1

𝑅 to enlarge 𝑍 ⊂ A1
𝑅 to be a hypersurface in P1

𝑅. This ensures that A1
𝑅 \ 𝑍 is affine so that, due to the

filtration of ℛ𝑢 (𝐵) by vector groups as in Example 7.3 and the vanishing of quasi-coherent cohomology
of affine schemes, our ℰA1

𝑅\𝑍
is even trivial. �

8. The analysis of torsors over A1
𝑹

Our final task is to study generically trivial torsors overA1
𝑅, which may be viewed as a problem of Bass–

Quillen type beyond the case of vector bundles (that is, beyond GL𝑛-torsors). Although one may carry it
out much more generally, this analysis is significantly simpler for semisimple, simply connected, totally
isotropic reductive groups G. Total isotropicity, defined in Definition 8.1, is not quite unexpected; for
instance, it also seems necessary for generalizing the Bass–Quillen conjecture to G-torsors; see [AHW18,
Theorem 3.3.7] and [AHW20, Theorem 2.4] for such results when G comes from a ground field.

Definition 8.1. A reductive group scheme G over a scheme S is totally isotropic if for every 𝑠 ∈ 𝑆 and
the canonical decomposition

𝐺ad
𝒪𝑆, 𝑠
�
∏
𝑖 𝐺𝑖

from [SGA 3III new, Exposé XXIV, Proposition 5.10 (i)] of 𝐺ad
𝒪𝑆, 𝑠

into the product of Weil restrictions
𝐺𝑖 of adjoint groups with simple geometric fibers over connected finite étale covers of 𝒪𝑆, 𝑠 , each 𝐺𝑖 is
isotropic in the sense that it contains a nontrivial split torus G𝑚,𝒪𝑆, 𝑠 (equivalently, each 𝐺𝑖 has a proper
parabolic 𝒪𝑆, 𝑠-subgroup; see [SGA 3III new, Exposé XXVI, Corollaire 6.12]).

Example 8.2. The parenthetical reformulation implies that every quasi-split G is totally isotropic.

By the following lemma, which generalizes the main result of [Tsy19], for analyzing a torsor over
A1
𝑅 the key is to extend it to a torsor over P1

𝑅 in such a way that the latter be trivial on closed R-fibers.

Lemma 8.3. For a semilocal ring R and a reductive R-group G such that rad(𝐺) splits over a finite étale
cover of Spec(𝑅) (a vacuous condition if R is normal, or if G is split, or if rad(𝐺) is of rank ≤ 1, for
instance, if G is semisimple), every 𝐺P1

𝑅
-torsorℰ whose base change to P1

𝑘𝔪
is trivial for every maximal

ideal 𝔪 ⊂ 𝑅 is the base change of a G-torsor.

Proof. By [Gil21, Theorem 1.1 and Corollary 4.3], the assumption on rad(𝐺) is equivalent to requiring
that G may be embedded as a closed subgroup of some GL𝑛, 𝑅 and it holds in the indicated parenthetical
cases. For the rest, we first use a limit argument to reduce to Noetherian R and then pass to connected
components to also assume that Spec(𝑅) is connected. Moreover, we begin with the case 𝐺 = GL𝑛, 𝑅,
in which we may regard ℰ as a vector bundle of rank n.

In this vector bundle case,

𝒱 := ℋ𝑜𝑚𝒪
P1
𝑅

(𝒪⊕𝑛
P1
𝑅

,ℰ) � ℰ⊕𝑛

is also a vector bundle on P1
𝑅. By [EGA III1, Théorème 3.2.1], the R-module𝑉 := Γ(P1

𝑅,𝒱) is finite. By
assumption, ℰ |P1

𝑘𝔪
is trivial for every maximal ideal 𝔪 ⊂ 𝑅, so for such 𝔪 we choose an isomorphism

𝒪⊕𝑛
P1
𝑘𝔪

∼
−→ℰ |P1

𝑘𝔪
, which corresponds to some 𝑣𝔪 ∈ Γ(P1

𝑘𝔪
,𝒱 |P1

𝑘𝔪
).

Likewise, each vector bundle 𝒱 |P1
𝑘𝔪

is trivial, so 𝐻1(P1
𝑘𝔪
,𝒱 |P1

𝑘𝔪
) � 0. Thus, by cohomology and base

change [EGA III1, Proposition 4.6.1], there is a �̃�𝔪 ∈ 𝑉/𝔪𝑉 that maps to 𝑣𝔪. Since R is semilocal and
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𝔪 ranges over its maximal ideals, we may then find a 𝑣 ∈ 𝑉 that maps to all the �̃�𝔪, so also to all the
𝑣𝔪. By construction and the Nakayama lemma [SP, Lemma 00DV], the 𝒪P1

𝑅
-module homomorphism

𝒪⊕𝑛
P1
𝑅

→ℰ

corresponding to v is surjective at every closed point, so it is surjective. Cayley–Hamilton [SP,
Lemma 05G8] then ensures that this homomorphism is an isomorphism, so ℰ is trivial, as desired.

To deduce the general case, we use our closed embedding 𝐺 ↩→ GL𝑛, 𝑅. Namely, the settled case
of GL𝑛, 𝑅 and the nonabelian cohomology sequence [Gir71, Chapitre III, Proposition 3.2.2] show that
our 𝐺P1

𝑅
-torsor ℰ comes from a some P1

𝑅-point of GL𝑛, 𝑅/𝐺. However, G is reductive, so, by [Alp14,
Theorem 9.4.1 and Theorem 9.7.5], this quotient is affine. By [MFK94, Proposition 6.1] (to reduce to
an R-fiber), this means that the only R-morphisms from P1

𝑅 to GL𝑛, 𝑅/𝐺 are constant, in particular, that
our P1

𝑅-point comes from an R-point. This then implies that our 𝐺P1
𝑅

-torsor ℰ is the base change of a
G-torsor, as desired. �

The preceding lemma leads to the triviality of generically trivial reductive group torsors over A1
𝑅

as follows. Examples from [Fed16] show that without some isotropicity condition on G such triviality
does not hold.

Proposition 8.4. For a semilocal ring R and a totally isotropic, semisimple, simply connected reductive
R-group G, every 𝐺A1

𝑅
-torsorℰ that is trivial away from an R-finite closed subscheme 𝑍 ⊂ A1

𝑅 is trivial.

Proof. Due to the canonical decomposition [SGA 3III new, Exposé XXIV, Sections 5.2–5.3, Proposi-
tion 5.10 (i)], we may assume that

𝐺 � Res𝑅′/𝑅 𝐺
′

for a finite étale R-algebra 𝑅′ and a semisimple, simply connected 𝑅′-group 𝐺 ′ whose geometric 𝑅′-
fibers are simple (in the sense that the Dynkin diagrams of these geometric fibers are connected). By
[SGA 3III new, Exposé XXIV, Proposition 8.4], we may then replace R and G by 𝑅′ and 𝐺 ′, respectively,
to assume that the geometric R-fibers of G are simple.

We let t be the inverse of the coordinate on A1
𝑅 and consider 𝑅�𝑡� as the completion of P1

𝑅 along
infinity. Due to its R-finiteness, Z is closed in P1

𝑅, so its pullback to Spec(𝑅�𝑡�) is also closed and hence
is even empty because it does not meet the locus {𝑡 = 0}. Thus, we may use formal glueing supplied
by, for instance, [BČ22, Lemma 2.2.11 (b)] (or Lemma 7.1 when R is Noetherian) to extend ℰ to a
𝐺P1

𝑅
-torsor ℰ by glueing ℰ with the trivial 𝐺𝑅�𝑡�-torsor. It suffices to argue that we can glue like this

so that ℰP1
𝑘𝔪

be trivial for every maximal ideal 𝔪 ⊂ 𝑅: Lemma 8.3 will then imply that ℰ is the base

change of its pullback by the section at infinity, and hence that ℰ and ℰ are trivial.
Explicitly, the elements of 𝐺 (𝑅((𝑡)))/𝐺 (𝑅�𝑡�) give rise to all the possible glueings of ℰ and the

trivial 𝐺𝑅�𝑡�-torsor to a 𝐺P1
𝑅

-torsor and likewise over the residue fields 𝑘𝔪 of R. We will first build a
trivial 𝐺P1

𝑘𝔪
-bundle ℰP1

𝑘𝔪
from ℰP1

𝑘𝔪
by such a glueing for every maximal ideal 𝔪 ⊂ 𝑅 and then argue

that these glueings come from a single glueing over R. These steps reduce, respectively, to the following:

(1) for every maximal ideal 𝔪 ⊂ 𝑅, the 𝐺A1
𝑘𝔪

-torsor ℰA1
𝑘𝔪

is trivial;
(2) letting 𝔪 ⊂ 𝑅 range over all the maximal ideals, the following map is surjective:

𝐺 (𝑅((𝑡)))/𝐺 (𝑅�𝑡�) �
∏

𝔪 𝐺 (𝑘𝔪 ((𝑡)))/𝐺 (𝑘𝔪�𝑡�).

For (1), sinceℰA1
𝑘𝔪

is trivial away from 𝑍𝑘𝔪 , we may glue it arbitrarily with the trivial 𝐺𝑘𝔪�𝑡�-torsor
to obtain a 𝐺P1

𝑘𝔪
-torsor whose pullback along the infinity section is trivial. By [Gil02, Lemme 3.12]

(see also [Gil05]), such torsors are trivial over A1
𝑘𝔪

, so ℰA1
𝑘𝔪

is trivial, that is, (1) holds.
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For the claim (2), we first note that the isotropicity assumption implies that G has a proper parabolic
subgroup 𝑃 ⊂ 𝐺 (see Definition 8.1). By [Gil09, Fait 4.3, Lemme 4.5] (this is where we use the
assumptions on G), the Whitehead group of the base changes of G is of unramified nature, that is,

𝐺 (𝑘𝔪 ((𝑡))) = 𝐺 (𝑘𝔪 ((𝑡)))+𝐺 (𝑘𝔪�𝑡�) for every maximal ideal 𝔪 ⊂ 𝑅,

where 𝐺 (𝑘𝔪 ((𝑡)))+ ⊂ 𝐺 (𝑘𝔪 ((𝑡))) is the subgroup generated by (ℛ𝑢 (𝑃)) (𝑘𝔪 ((𝑡))) and
(ℛ𝑢 (𝑃

−))(𝑘𝔪 ((𝑡))) with 𝑃− ⊂ 𝐺 being a parabolic opposite to P in the sense of [SGA 3III new, Ex-
posé XXVI, Définition 4.3.3, Corollaire 4.3.5 (i)]. To conclude (2), it suffices to show that the following
pullback maps are surjective:

(ℛ𝑢 (𝑃)) (𝑅((𝑡))) �
∏

𝔪 (ℛ𝑢 (𝑃)) (𝑘𝔪 ((𝑡))) and (ℛ𝑢 (𝑃
−))(𝑅((𝑡))) �

∏
𝔪 (ℛ𝑢 (𝑃

−))(𝑘𝔪 ((𝑡))).

For this, we combine the surjectivity of the map 𝑅((𝑡)) �
∏

𝔪 𝑘 ((𝑡)) with [SGA 3III new, Exposé XXVI,
Corollaire 2.5], according to which both ℛ𝑢 (𝑃) and ℛ𝑢 (𝑃

−) are isomorphic to affine spaces A𝑑𝑅. �

Remark 8.5. One difference between Proposition 8.4 and some of its versions in the literature is that
we work directly with the 𝐺A1

𝑅
-torsor ℰ instead of first glueing it arbitrarily to a 𝐺P1

𝑅
-torsor and then

modifying this extension. Ultimately, this is an expository point, but it highlights that in (2) there is no
need to pursue the analogous surjectivity before taking the quotients.

9. The quasi-split unramified case of the Grothendieck–Serre conjecture

We turn to the quasi-split case of the Grothendieck–Serre Conjecture 1.1: we are ready to settle its
semilocal version over unramified regular local rings. By choosing O to be either Z, or Q, or F𝑝 for
some prime p and R to be local, this recovers the first assertion in Theorem 1.2; see Example 9.2.

Theorem 9.1. For a Dedekind ring O, a semilocal, regular, flat O-algebra R whose O-fibers are
geometrically regular6 and a quasi-split reductive R-group G, no nontrivial G-torsor trivializes over
the total ring of fractions 𝐾 := Frac(𝑅) of R, that is,

Ker(𝐻1(𝑅, 𝐺) → 𝐻1 (𝐾,𝐺)) = {∗}.

Proof. We pass to connected components to assume that Spec(𝑅) is connected so that R is a domain
and, in particular, 𝑅 ≠ 0. We use Proposition 2.2 to replace G by (𝐺der)sc and, hence, reduce to the case
when our quasi-split G is also semisimple and simply connected.

Let E be a G-torsor that trivializes over K, so also over 𝑅[ 1
𝑟 ] for some 𝑟 ∈ 𝑅 \ {0}. By Popescu

theorem [SP, Theorem 07GC], the ring R is a filtered direct limit of smooth O-algebras. Thus, a limit
argument allows us to assume that R is the semilocalization of a smooth O-algebra at finitely many
primes. In this case, Proposition 7.4 gives a 𝐺A1

𝑅
-torsor ℰ whose pullback along the zero section is

E such that ℰ is trivial away from an R-finite closed subscheme 𝑍 ⊂ A1
𝑅. By Proposition 8.4 (with

Example 8.2), this ℰ is trivial, so E is also trivial, as desired. �

Example 9.2. In the case when O is a perfect field, such as Q or F𝑝 , any regular O-algebra is geometri-
cally regular, so, for quasi-split G, Theorem 9.1 simultaneously reproves the equicharacteristic case of
the Grothendieck–Serre conjecture settled in [FP15] and [Pan20a]. Similarly, in the case when O = Z,
the Z-fibers of a Z-flat R are geometrically regular if and only if for every prime p and every maximal
ideal 𝔪 ⊂ 𝑅 of residue characteristic p, we have 𝑝 ∉ 𝔪2, equivalently, p is a regular parameter for the
regular local ring 𝑅𝔪. In particular, Theorem 9.1 recovers Theorem 1.2.

With our main result in hand, we are ready to settle the second assertion of Theorem 1.2.

6We recall from [SP, Definition 0382] that a Noetherian algebra over a field k is geometrically regular if its base change to
every finite purely inseparable (equivalently, to every finitely generated) field extension of k is regular.
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Theorem 9.3. For a Dedekind ring O and a semilocal, regular, flat O-algebra R whose O-fibers are
geometrically regular, a reductive R-group G is split if and only if so its generic fiber 𝐺Frac(𝑅) .

Proof. We pass to connected components to assume that Spec(𝑅) is connected so that R is a domain,
and we set 𝐾 := Frac(𝑅). Only the ‘if’ part requires an argument, so we assume that 𝐺𝐾 is split.
The geometric fibers of G have a constant type (see [SGA 3III new, Exposé XXII, Définition 1.13]), and
we let G be a split reductive R-group of this type so that G is a form of G that corresponds to some
𝑥 ∈ 𝐻1 (𝑅,Aut(G)) whose pullback to 𝐻1 (𝐾,Aut(G)) is trivial. We wish to show that x is trivial.

By [SGA 3III new, Exposé XXIV, Théorème 1.3], we have a short exact sequence of group schemes

1 → Gad → Aut(G) → Out(G) → 1

that, via a fixed pinning of G, is split by a homomorphism

Out(G) ↩→ Aut(G),

whose source is a constant R-group scheme. Any Out(G)-torsor E is constant étale locally on R, so, by
[SGA 3II, Exposé X, Corollaire 5.14], its connected components are finite étale over R. Thus, by, for
instance, [Čes17, Lemma 3.1.9], every K-point of E extends to an R-point, to the effect that no nontrivial
Out(G)-torsor trivializes over K.

The nonabelian cohomology exact sequence now lifts x to an �̃� ∈ 𝐻1(𝑅,Gad), and, since the map

Aut(G) (𝐾) � Out(G) (𝐾)

is surjective due to the splitting, it also shows that the pullback of �̃� to 𝐻1 (𝐾,Gad) is trivial. Theorem
9.1 then implies that �̃� itself is trivial, and then so is x. �

The ideas of the preceding proof also give a version for quasi-split groups in Theorem 9.5. To put it
into context, we recall the following conjecture, which may be traced to results of [CT79] or [Pan09].
Even though not formulated there explicitly, it is sometimes attributed to Colliot-Thélène or Panin.

Conjecture 9.4 For a regular local ring R, if the generic fiber of a reductive R-group scheme G has a
parabolic subgroup, then G itself has a parabolic subgroup of the same type.

This conjecture ‘of Grothendieck–Serre type’ seems to lie deeper than the Grothendieck–Serre
conjecture: even in equicharacteristic, it is only known in few cases; see [CT79], [Pan09], [PP10],
[PP15], [Scu18] for precise results. We use the ideas of this article to settle its equicharacteristic case
for minimal parabolics, that is, for Borel subgroups, as follows.

Theorem 9.5. Let R a regular semilocal ring, let 𝐾 := Frac(𝑅) be its total ring of fractions, and let G
be a reductive R-group such that every form G of 𝐺ad satisfies

𝐻1(𝑅,G) ↩→ 𝐻1(𝐾,G)

(this holds for every G if R contains a field). Then G is quasi-split if and only if 𝐺𝐾 is quasi-split.

Proof. The injectivity assumption is a special case of the Grothendieck–Serre conjecture and of the
‘change of origin’ twisting bijections in nonabelian cohomology [Gir71, Chapitre III, Proposition 2.6.1
(i)], so the parenthetical assertion follows from the known equicharacteristic case of the Grothendieck–
Serre conjecture; see §1.4. By [Guo20, Proposition 14] (whose proof is similar to that of Theorem 9.3
above), this assumption implies that G is the unique reductive model of its generic fiber, so all we need
to do is to assume that 𝐺𝐾 is quasi-split and to produce a quasi-split reductive R-model of 𝐺𝐾 . By
the properness of the scheme of Borel subgroups, there is an open subscheme 𝑈 ⊂ Spec(𝑅) whose
complement is of codimension ≥ 2 such that even 𝐺𝑈 has a Borel subgroup.
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Analogously to the proof of Theorem 9.3, we reduce to the setting when Spec(𝑅) is connected, we
have a split reductive R-group G, and G corresponds to an element 𝑥 ∈ 𝐻1(𝑅,Aut(G)). We fix a Borel
subgroup B ⊂ G that arises from a pinning of G, and we consider the subfunctor

Aut(G,B) ⊂ Aut(G)

that parametrizes those automorphisms that preserve B. In a reductive group, any two Borels are Zariski
locally conjugate, so we are reduced to showing that for our 𝑥 ∈ 𝐻1 (𝑅,Aut(G)) such that 𝑥 |𝑈 lifts to
𝐻1 (𝑈,Aut(G,B)), the restriction 𝑥 |𝐾 ∈ 𝐻1 (𝐾,Aut(G)) lifts to 𝐻1 (𝑅,Aut(G,B)).

By [SGA 3III new, Exposé XXIV, Théorème 1.3, Proposition 2.1], letting Bad ⊂ Gad be the Borel
subgroup of Gad corresponding to B, we have a morphism of short exact sequences of group schemes

1 �� Bad
� �

��

�� Aut(G,B)� �

��

�� Out(G) �� 1

1 �� Gad �� Aut(G) �� Out(G) �� 1

that, due to our fixed pinning, are compatibly split by some homomorphism

Out(G) ↩→ Aut(G,B).

We may first map x to an 𝑥 ∈ 𝐻1(𝑅,Out(G)) and then map 𝑥 via the splitting to obtain a

𝑦 ∈ 𝐻1(𝑅,Out(G,B))

whose image in 𝐻1(𝑅,Out(G)) is also 𝑥. Twisting by (the images of) y gives us the morphism of short
exact sequences of R-groups of corresponding forms:

1 �� B� �
��

�� A0� �
��

�� E �� 1

1 �� G �� A �� E �� 1

and, via the ‘change of origin’ bijections [Gir71, Chapitre III, Proposition 2.6.1 (i)], we obtain an
𝑥 ′ ∈ 𝐻1(𝑅,A) such that 𝑥 ′ |𝑈 lifts to 𝐻1 (𝑈,A0) for which we need to lift 𝑥 ′ |𝐾 ∈ 𝐻1(𝐾,A) to 𝐻1(𝑅,A0)
or even to 𝐻1 (𝑅,B).

By the nonabelian cohomology sequence, 𝑥 ′ |𝑈 even lifts to some 𝑏 ∈ 𝐻1(𝑈,B). By descent, B ⊂ G
is the inclusion of a Borel R-subgroup, and we let

T := B/ℛ𝑢 (B)

be the indicated torus. The image of b is a 𝑡 ∈ 𝐻1(𝑈, T), which, by purity for torsors under tori [CTS79,
Corollaire 6.9], extends uniquely to a

�̃� ∈ 𝐻1 (𝑅, T).

Any Levi R-subgroup of B splits the surjection B� T, and then �̃� gives a �̃� ∈ 𝐻1 (𝑅,B) whose image in
𝐻1 (𝐾,B), thanks to [SGA 3III new, Exposé XXVI, Corollaire 2.3], is nothing else but 𝑏 |𝐾 . In particular,
the image of �̃� in 𝐻1(𝐾,A) is 𝑥 ′ |𝐾 , to the effect that �̃� is the desired lift. �

We thank Uriya First for pointing out the following further consequence about quadratic forms.

Corollary 9.6. For a regular semilocal ring R as in Theorem 9.1 with 2 ∈ 𝑅×, we have

𝐻1 (𝑅, SO𝑛) ↩→ 𝐻1 (Frac(𝑅), SO𝑛) and 𝐻1 (𝑅,O𝑛) ↩→ 𝐻1(Frac(𝑅),O𝑛) for all 𝑛 ≥ 1;
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moreover, no two nonisomorphic quadratic forms over R that are nondegenerate (in the sense that their
associated symmetric bilinear forms are perfect) become isomorphic over Frac(𝑅).

Proof. Every inner form of SO𝑛 is an SO(𝐸) for a nondegenerate quadratic space E over R of rank n.
Thus, by twisting [Gir71, Chapitre III, Proposition 2.6.1 (i)], the injectivity assertion for SO𝑛 reduces
to showing that

Ker(𝐻1(𝑅, SO(𝐸)) → 𝐻1 (Frac(𝑅), SO(𝐸))) = {∗}.

By the analysis of the long exact cohomology sequence [CT79, page 17, proof of (D) (E)], this triviality
of the kernel is, in turn, equivalent to its analogue for O(𝐸). Thus, by twisting again, we are reduced
to the injectivity assertion for O𝑛, which itself, for varying n, is a reformulation of the assertion about
quadratic forms. For the latter, however, due to the cancellation theorem for quadratic forms, specifically,
due to [CT79, Proposition 1.2 (D) ⇔ (F)], we may assume that one of the forms is a sum of copies of
the hyperbolic plane. In terms of O𝑛-torsors, this means that it suffices to show that

Ker(𝐻1 (𝑅,O𝑛) → 𝐻1(Frac(𝑅),O𝑛)) = {∗} for all even 𝑛 ≥ 1.

We then use [CT79, page 17, proof of (D) ⇔ (E)] again to replace O𝑛 by SO𝑛 in this display. With this
replacement, however, the desired triviality of the kernel is a special case of Theorem 9.1. �
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