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ON DIRECT BIFURCATIONS INTO CHAOS AND ORDER FOR
A SIMPLE FAMILY OF INTERVAL MAPS

BAU-SEN Du

We present a simple one-parameter family of interval maps which has a direct
bifurcation from order to chaos and then a direct (reverse) bifurcation from chaos
back to order.

1. INTRODUCTION

In this note, we present a simple one-parameter family of interval maps which has
a direct bifurcation from order to chaos and then another direct bifurcation from chaos
back to order. (See also [4, 5].) In fact, for this family of interval maps, the creation
of the first non-fixed periodic point is more complicated than we expect. It is the limit
point of a series of bifurcations of period 2n (n 2> 3 odd) points. Consequently, the
creation of the first non-fixed periodic point is a bifurcation of period 12 points. After
the bifurcation into chaos, this family undergoes a series of bifurcations of period 2n
points with n (> 3 odd) in decreasing order. After the period 6 points are created and
live for a while, then, all of a sudden, all chaotic phenomena cease to exist and we have
order again. To be more precise, we shall prove the following two results.

THEOREM 1. Let b be a fixed number in [3/8,1/2). For 0 < ¢ < b, let

3/4, 0<z<ec
f(z) = z/(2—-4c)+(3~8c)/(4—8¢c), e<z<K1/2,
14 (c—1)(2z — 1), 1/2<2<1,
and, for b< c <1, let
3/4, 0<z<b
f(z)=( z/(2—4b)+(3—-8b)/(4—8), b<z<1/2,
14+ (c—1)(2z - 1), 1/2<z<1

Then the following hold:

(1) For ¢ =0, f. has a periodic orbit of least period 4 and no periodic orbit
of least period > 4.
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(2) For 0 < ¢ < 1/2, f. has periodic points of least period 12.

(3) For ¢=1/2, f. has infinitely many periodic orbits of least period 2 and
no periodic orbit of least period > 2.

(4) For 1/2 < ¢ £ 1, f. has exactly one fixed point and no other periodic
point.

REMARKS. (1) Parts (1) and (2) of Theorem 1 imply that ¢ = 0 is a bifurcation point
of period 12 points for f.. Consequently, ¢ = 0 is a bifurcation point of f. from order
to chaos.

(2) Parts (2)-(4) of Theorem 1 imply that ¢ = 1/2 is a bifurcation point of f.
from chaos back to order. Note that the results in the following Theorem 2 are much

stronger than Part (2) of Theorem 1.

THEOREM 2. Let g3(z) = 223 — 422 + 3z — 1/2 and, for odd integer k > 3, let
grs2(2) = 2/2 + [(1 — 2)?/(1 — 22)*gx(z). For every odd integer n > 3, let ¢, denote
the unique positive zero of g,(z) in [0, 1/2). For any fixed number b in [3/8,1/2) and
any 0 € ¢ £ 1, let f.(z) be the continuous map from [0, 1] into itself defined as in
Theorem 1. Then the following hold:

1) es>cs>ecr>-->0 andklim c2k+1 = 0.
— 00

(2) For every odd integer n > 3 and every c, < ¢ < 1/2, f. has at least one
periodic point of least period 2n.

REMARKS. (1) We note that, in Theorem 2, the value ¢, is a value for which
{1/2, 1, ¢,, 3/4, ...} is a period 2n orbit of f, .

(2) Since the map [(1 — z)/(1 — 2z))? is strictly increasing on [0, 1/2), it follows
by induction that each gi(z), k > 3 odd, is also strictly increasing on [0, 1/2). So,
each gi(z), k > 3 odd, has a unique (positive) zero in [0, 1/2).

2. PrROOFS OF THEOREMS 1 AND 2
For the proofs of Theorems 1 and 2, we need the following two well-known results:

LEMMA 1. (Sharkovskii’s theorem [1-3, 6-8, 10-13]). Rearrange the set of posi-

tive integers according to the following order: 3 5527 — .-+ 523 525 - 27—
o283 5265 527 5 .. 529 27710 4 L0528 592 52 5 1. Assume
that f is a continuous map from [0, 1] into itself which has a periodic point of least

period m. Then f also has a periodic point of least period n for every n with m — n.

LEMMA 2. ([9]). Let f be a continuous map from [0, 1] into itself and let n > 3
be an odd integer. Assume that, for some zo € [0, 1], we have either f"(zo) € zo <
f(zo) or f(zo) < zo < f*(z0). Then f has periodic points of least period n.
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PRroOF OF THEOREM 1: Parts (1), (3) and (4) are quite obvious. So we only give a
proof of Part (2). It is clear that f3(1/2) = (1+4¢)/2> 1/2, f3(1/2) = ®—c+1 > 1/2,
and f8(1/2) = 2¢® — 4c? + 3c. Since fE(1/2) is a strictly increasing map of ¢, there
is a unique value a = .221855 such that f8(1/2) = 1/2. So, for a < ¢ < 1/2, we
have f2(1/2) = ¢ < 1/2 < f&(1/2). By Lemma 2, f2 has a period 3 point and so, by
Lemma 1, f. has a period 6 point for a < ¢ < 1/2.

Now assume that 0 < ¢ < a. Then f8(1/2) < 1/2 so, f8(1/2) = —(c —1/2)* +
(e—1/2)* + (c—1/2)/2+1/2 4+ 1/[16(c — 1/2)]. Then,

2] -o2) o) -

5 1
= —3¢? +5%¢c— - ————< -3¢ +5c—§<0
4 [16(c—1/2)] 4
5 —-+v10
for, say, 0<c<£———2z.306.

6

That is, f3(1/2) is a decreasing map of ¢ for 0 < ¢ < a. In particular, f8(1/2) <
f8(1/2) = 1/2 for 0 < ¢ < a. Consequently, for 0 < ¢ < a, we obtain that

101 1 [(c-1/2)] 3[(c — 1/2)%) 1 1 1 1
fe (5) 27 4 + (° - 5) t3 T Be-12 T [64(c — 1/2)°]

={%[(c—%) ]}[32(c—%)5—48(c—%)4+64(c—%)3
w3 o)1

Let C = ¢—1/2. Thenit is easy to see that the map 32C° —48C*+64C3+8C?-2C +1
has a unique negative zero at approximately Co = —.307141 or, equivalently, at ¢g =
.192859. Therefore, we easily obtain that f1°(1/2) < 1/2 for 0 < ¢ < cp & .192859
and f1°(1/2) > 1/2 for ¢y < ¢ < a. So, assume that ¢o < ¢ < a. Then f1°(1/2) >
1/2 > f}(1/2). By Lemma 2, f? has a period 5 point and so, by Lemma 1, f. hasa
period 10 point for ¢g £ c < a.

Finally assume that 0 < ¢ < ¢o. Then f8(1/2) < 1/2, f3(1/2) < 1/2 and
f°(1/2) < 1/2. So

©\2 4 2 16 16
3 1 1

T Eac-1/2) [64(c — 1/2)%) * [256(c —1/2)°]

12 (1) _ _le—1/2)’ + [(c—1/2)°] e-1/2) 1

https://doi.org/10.1017/50004972700029853 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700029853

370 Bau-Sen Du (4]

Let C = c¢—1/2 and let h(C) = —C3/4+C?/2+5C/16+11/16+3/(64C)—1/(64C?) +
1/(256C%) —1/2. Then

h(C) = [—%10—3)] [64C° — 128C° — 80C* — 48C® — 12C% + 4C — 1]
= _1— 5 _ 4 _ 2 _ _ l
= [— (25603)] (2C +1)(32C*° ~ 80C* —24C® + 6C — 1) <O when — - < C <0.

Consequently, f}?(1/2) < 1/2 when 0 < ¢ < ¢p. So, for 0 < ¢ < ¢o, we have

12(1/2) < 1/2 < f3(1/2). By Lemma 2, f has a period 3 point and so, by Lemma
1, f. has a period 12 point for 0 < ¢ < ¢.

By Lemma 1, we obtain that f. has a periodic point of least period 12 for every

0 < ¢ < 1/2. This proves Part (2). The proof of Theorem 1 is now complete. 0

PROOF OF THEOREM 2: By assumption, we have, for n > 3 odd,
2
l1—=z

+ (1—22) 9n(2)
z+z: l—=2 2+ 1-z\* :c+ 1-z\? (z)
= — — _— n— e o
2 " 2\1-22 1-2z) |2 " \i-22/) 9

2 4 2k
:z:+:c l1-=z +:z: l—= + + 1-2 (z)
i (= z _ z
2 T 2\1-22 2\1- 2z 1-2¢) 9n2++2

_zf(l-z)/1—2=)* -1 (1-z\*
= —2— [(1 - :L‘)/(l - 2:1:)]2 -1 + (1 — 23) gn-—2k+z(:c)

N8

gn+2(z) =

In particular, g2m+1(0) = ¢g3(0) = —1/2 and

_z((l-=z)/(1-22)P" -1 1—z\*"
gam+1(2) = 2 [(A—2)/(1-22)2 -1 + (1 - 2z) 9s(2)-

Since (1 — c2m+1)/(1 = 2¢2m+1) > 1, it is clear that the zeros of gam+1 tend to 0% as
m tends to infinity.

On the other hand, if z = ¢,, where n 2> 3 is odd, then gn{c,) = 0 and so
gn+2(cn) = cn/2 > 0. But gn42(0) = —1/2 < 0. So 0 < ¢ny2 < ¢n. This proves Part
(1).

For the proof of Part (2), we note that g5 is strictly increasing and has a unique zero
at c3 = .221855. Furthermore, for ¢3 < ¢ < 1/2, we have f8(1/2) = gs(c)+1/2 > 1/2.
By Lemmas 1 and 2, f. has at least one period 6 orbit for ¢35 € ¢ < 1/2. Let
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a=max{0 < c<cs| f3(1/2) =1/2}. Then

2(3)=32(3)=12(3)=e<5

On the other hand,

2(3)=3aG) -va()-e<pn) -

and 1°<1) _(e) g

So, if ¢s = min{0 < ¢ < ¢s | f1°(1/2) > 1/2 on (c, c3)}, then ¢5 > a and hence, for
es < ¢ < cg, we have f8(1/2) < 1/2, fI(1/2) > 1/2, f3(1/2) < 1/2, and f2(1/2) >
1/2. So, by direct computation,

1.1
272

£2(3) =)+ 5 =5+ [((11—_—2))] HORIE

for ¢s €< ¢ < ¢3. It then follows from Lemmas 1 and 2 and the above that f. has
periodic points of least period 10 for ¢s < ¢ < 1/2.

Assume that c3 > ¢5 > ¢7 > -+ > capy1 > 0 are defined with the following
properties:

() For each 2 < i < k, c2i41 = min{0 < 8 < €c2i—1 | f3(2i+1)(1/2) >
1/2 on (s, c2i-1)}.

(b) For crig1 < ¢ < c2ic1, 2 < i < k, we have fEEH(1/2) = gpiyq(c) +
1/2=c/2+[(1 - ¢)*/(1 - 2P £2%7D(1/2) - 1/2] + 1/2 2 1/2.

() For cpiy1 £ ¢ < 1/2,1 <1 <k, fo has periodic points of least period
2(2i +1).

Note that since, for each odd m > 3, gm+2(z) = 2/2 + [(1 — 2)*/(1 — 22)%]gm(z),
we see that gm42(z) 2 0 whenever gp(z) 2 0 and 0 < z < 1/2. Consequently, the
c2i+1’s defined here are exactly the same as those defined in Theorem 2. Now since
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fc§2k+1)(1/2) 1/2, hence

E+1
1 1 1 3
4k+3 4k+4 - 4k+5 _
.fczk+1 (-) f"zk+1 (-) C2k+1 < = fczk+1 (§> = Z’

1 (1 +ca41) _ 1
4k+6 _ 2k+1
a'nd fczk+1( )_T>§
aksaf ] 1
If d = max{0 < ¢ < ¢z+1 | f2 3 =2},
1 1
then 3’”4 (5> 3 f‘“‘"‘s( ) =1,
and fikte (%) =d< %
1 1
4k+6 _ 1k+6
S te(z) me<s < (z)

. . 1
Thus, if c2k+3 = min{0 < s < cap41 | ff(zk“) (5) 2 = on (s, cak+1)}y

(V)

then d < ¢c3k+3 < ¢2x+1. Therefore, for cyr43 € ¢ < cak+1, we have

1 1 1 1 1 1 1 1
2(2k+1) [ 2 2 opak+3( 2 2 paktaf - 2 4k+5 -
fe (2> <z fe (2) > o fe (2) 5> and fe (2) >3

So, by direct computation, we obtain that

1 1
fc2(2k+3)(§) = gax+a(c) + 2= +

c
2

ORI

By Lemmas 1 and 2, f. has periodic points of least period 2(2k + 3) for cap4s < ¢ <
Car+1- Since f. has periodic points of least period 2(2k + 1) for cyp+1 € ¢ < 1/2,
we obtain that, by Lemma 1, f. has periodic points of least period 2(2k + 3) for
c2k+s < ¢ < 1/2. Part (2) now follows from induction on & > 1

This completes the proof of Theorem 2. 0
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