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Abstract

Circular dichroism (CD) spectroscopy is a widely utilized technique for studying the structures
of chiral molecules, including nucleic acids. It is particularly valued for its ability to quickly probe
structural changes in these biomolecules. Despite its potential, the prediction of nucleic acid
structures by CD has been challenging due to insufficient families’ reference spectral data. This
study introduces a robust method for defining CD spectra families of nucleic acid structures. We
developed an iterative workflow that accurately classifies spectra for nucleic acid structures in
solution. Our approach demonstrates high robustness and accuracy in assigning CD spectra to
specific nucleic acid folds, facilitating advancements in nucleic acid structure analysis. The algorithm
we developed identifies structural classes based on reference spectra, aiding in the assignment of
unknown spectra. This method paves the way for creating a comprehensive list of reference spectra
for various nucleic acid structures, like those already available for proteins.

Introduction

Circular dichroism (CD) spectroscopy is a widely utilized technique for studying the structures of
chiral molecules (Gottarelli et al., 2008; Nordén et al., 2010). While extensively employed in
biology to determine the secondary structure of proteins (Greenfield, 2006), CD can also be
applied to investigate other chiral biomolecules, such as nucleic acids, which include many forms
(Gray et al., 1981; Steely et al., 1986; Johnson, 1990; Gray et al., 1995; Kypr et al., 2009; Del Villar-
Guerra et al., 2018). This makes CD suitable for studying their folding patterns as well, which is
important for understanding the functions of nucleic acid sequences. The interest of using CD
measurements is that it is a fast, non-destructive method to identify nucleic acid folding.
Compared to other techniques, such as crystallography, NMR, or cryo-electron microscopy that
provide 3D information (Neidle and Sanderson, 2022a, 2022b), CD can be applied to water
solutions of nucleic acids without impacting their structure. For protein studies, a circular
dichroism structural database (PCDDB) exists (Ramalli et al., 2022), enabling the indexing of
unknown structures by comparing their CD spectra to those referenced in the PCDDB and other
sources (Micsonai et al., 2022; Nagy et al., 2024). For nucleic acids, a similar database exists called
the NACDDB, comprising previous and new spectra (Cappannini et al., 2023). However, due to
the flexibility, structural variability, and greater repartition of electronic transitions within a
larger distance compared to the peptide bond, the number of possible spectra observed for
polynucleotides is extensive compared to proteins. Four major secondary structural types have
been assigned in proteins (α-helix, β-sheet, turn, and random coil) (Manavalan and Johnson,
1987; Sreerama andWoody, 1994;Wallace, 2009; Kuril et al., 2024). For protein CD, basis spectra
have been correlated to secondary structure elements. They correspond to secondary structure
subclasses, distinguishing regular and distorted α-helices, parallel β-sheets (including three
distinct twisting patterns) and antiparallel β-sheets, turns, and others (Micsonai et al., 2022;
Burastero et al., 2025). Multivariate statistical analysis performed in the NACDDB has revealed a
greater number of potential reference spectra compared to proteins due to their numerous
sequence specificities and chemical variations (Cappannini et al., 2023).

As a result, there is currently no well-established list of reference spectra for known nucleic
acid secondary structures, which hinders the assignment of unknown nucleic acid CD spectra to
specific structures.

Classical approaches, such as multivariate statistical analysis or other unsupervised classifi-
cation methods, as shown in Supplementary Figure 1a,b, are unsuitable for establishing these
reference spectra due to the structural heterogeneity and the limited availability of CD spectro-
scopic data for nucleic acids. One relevant factor to consider is the correct annotation of spectra,
as different spectra assigned to the same structural families and a wide spectral rangemay exist in
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the literature. Also, while most spectra in the literature have been
acquired in the 190 to 300 nm range, it has been demonstrated that
spectral extension down to the far UV (170 nm), accessible by
synchrotron radiation circular dichroism (SRCD) or with the very
latest CD top bench spectrometers, is crucial for discriminating
structural families (Gray et al., 1992; Le Brun et al., 2020). Due to
all these limitations, there is currently no robustmethod to classify
nucleic acid CD spectra. To address this issue, we have developed
a workflow identifying different structural classes and determin-
ing their corresponding reference spectra.

The established workflow enabled us to determine reference spec-
tra for five well-known structures: parallel DNA quadruplexes, DNA
triplexes, Z-DNA,DNA, andRNAstem loops (Sinden, 1994;Vanegas
et al., 2012).Moreover, themethod’s robustness was demonstrated by
correctly assigning unknown spectra (predicting their structure) to
the correct spectral family and reclassifying spectramanually assigned
to the incorrect family. This workflow can thus serve as a useful tool to
create a list of reference spectra for nucleic acids’ various structures,
akin to those existing for proteins, and to assign unknown spectra to a
defined family. Due to redundancy issues and the limited number of
available spectra compared to assigned structures, it is currently not
possible to expand the list beyond five structures (basis spectra).
However, we are convinced that this number will increase as add-
itional spectra are published or made publicly available. In the future,
a complementary approach that allows determining the number or
percentage of distinct structures in larger and more complex nucleic
acids could be developed.

Methods

CD data sets

The dataset utilized for developing ourworkflow comprises 118 spec-
tra. Among these, 64 were sourced from the NACDDB (Cappannini
et al., 2023), with 59 initially acquired on the DISCO beamline of the
Synchrotron SOLEIL and the other 5 originating from the literature
(Gray et al., 1981; Steely et al., 1986; Johnson, 1990; Gray et al., 1995;
Del Villar-Guerra et al., 2018). Among the remaining 54 spectra not
yet included in the NACDDB, 48 have been acquired from the
DISCO beamline and 6 from literature (AI Holm et al., 2010;
Vanloon et al., 2023). All spectra in the dataset are scaled to differ-
ential molar ellipticity (Δε) following the formulae:

Δε =
θ ×MRW

PL×C × 3298
:

where θ is the circular dichroism measured in millidegrees (mdeg),
MRW is the mean residue weight of the sample (g.mol�1.residue�1),
PL is the path length in centimeters (cm), C is the concentration of
the sample in grammes per liter (g L�1), and 3298 is a constant used
for unit conversion. In all, the Δε is expressed in M�1.cm�1.
residue�1.

The spectra retainedwere the ones including signals between 175
and 300 nm. This range presents characteristic UV absorption
maxima andminima corresponding to the absorption by electronic
transition of the base pairing, stacking, and overall twisting of the
polynucleotide, e.g. n-> p, p-> p* as well as n-> s* (Miyahara et al.,
2012, 2016). Although a clear attribution of electronic transitions
within a strand of nucleic acids has not yet been established, there
exists a few indications, such as the 260–280 nm CD-absorption
band for the base stacking, a band around 190 nm for the backbone
conformation, and another one in-between for the twisting of
helical nucleic acids (AI Holm et al., 2010).

For workflow validation, a validation subset of 56 spectra, each
corresponding to a well-known nucleic acid structure, was estab-
lished. The list of utilized spectra and their corresponding structures
is presented in Supplementary Table 1. It contains 7 families: DNA
quadruplexes parallel (3 spectra), DNA triplexes (6 spectra), Z-DNA
(3 spectra), DNA loops (3 spectra), RNA loops (15 spectra),
DNA loops (6 spectra), and unclassified spectra (20 spectra). The
latter group comprises spectra belonging to 11 other structural
families butwith representative spectra countper family lower than 3.

Statistical tools

Spectra normalization
All scaled spectra used in this work have been normalized to average
0 and standard deviation 1. This normalization ensures that spectra
are comparable to a centered normal distribution weighing the con-
tribution of high amplitudes thatwould otherwise biasing the analysis.
To achieve this, we calculated themean and standard deviation for all
wavelengths of each spectrum, then subtracted thatmean and divided
it by the standard deviation for all wavelengths.

Self-organizing mapping
For classification methods, we employed a simple neural network
known as Kohonen self-organizing maps (SOM), which has previ-
ously been used to classify nucleic acid CDspectra data (Sathyaseelan
et al., 2021). The implementation of the SOM was performed using
the MiniSom Python package (https://github.com/JustGlowing/min
isom/). The neural networkwas customized using several parameters
following recommendations from the MiniSom function package
built-in help.

Multivariant statistical analysis
Multivariate analysis was conducted on the entire dataset to group
the spectra into families. Initially, hierarchical clustering was
employed using theWardmethod and Euclidean distances between
each pair of spectra. This analysis was conducted using the Python
package SciPy (http://www.scipy.org/). Additionally, principal com-
ponent analysis was carried out simultaneously using the SIMCA
software (V17) to identify clusters and significant components for
class differentiation.

Singular value decomposition
Singular value decomposition (SVD) was performed using the
NumPy Python package (Harris et al., 2020) to identify the initial
references during workflow initialization.

Normalized correlation coefficient and normalized mutual
information
A normalized correlation coefficient (NCC) was used to measure
the linear resemblance of a family’s reference spectrum compared
to all spectra of our dataset, whereas normalized mutual informa-
tion (NMI) was to measure non-linear resemblance.

The NCC is defined as

NCCðX,YÞ=
Pðx�mxÞðy�myÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðx�mxÞ2

Pðy�myÞ2
q

whereX andY correspond to spectra value vector, x and y to spectra
value at a wavelength and mx and my to the means of the spectra.

These coefficients were computed using the Python package
SciPy (http://www.scipy.org/).
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Each NMI was computed using the mutual information coeffi-
cient (I) defined as

IðX,YÞ=
X

PðX⋂YÞlog PðX⋂YÞ
PðXÞPðYÞ

whereX andY corresponding to spectra value vectors, P(X) and P(Y)
the probability for the spectra to reach a certain value and P(X⋂Y)
the probability for both spectra to reach the same value at the same
wavelength. Probability values are calculated from integer rounded
spectral intensities.

Entropy (H) is defined as

HðXÞ= �
X

PðXÞlogPðXÞ

the NMI was then calculated by applying the following equation:

NMI X,Yð Þ= I X,Yð Þ
H Xð ÞþH Yð Þ½ �=2

as implemented in the scikit-learn Python package.

Workflow initialization

The workflow was initiated by manually defining structural fam-
ilies based on the theoretical understanding of their structures.

The assignment of a spectrum to a particular family relies on the
anticipated structure of an oligonucleotide sequence and the
characteristics of the spectrum, including the position and inten-
sity of its peaks when normalized. Once a structural family accu-
mulates at least four normalized spectra (heuristically determined
value), an SVD is performed on it to define an initial reference
spectrum (first eigen-vector) for the family. Subsequently, the
initial reference spectrum is validated by ensuring that the spectra
forming the basis of the reference exhibit an NCC and an NMI
whose product exceeds a threshold value. This threshold value is
determined by identifying the first peak above the baseline in the
derivative of this product.

Workflow validation

To assess the robustness of the workflow, three metrics were
calculated: sensitivity, specificity, and similarity (Jaccard index).
Each of the seven families within the validation subset was indi-
vidually evaluated against the entire validation subset by running
the workflow. For each run, the number of true positives, false
positives, and false negatives was determined. The total count for
each category was then calculated by summing the results obtained
for each family. These cumulative totals were utilized to compute
the value of each figure of merit.

Figure 1. Graphical diagram of the iterative workflow. In yellow the point where data are selected, red are mathematical operation, blue the decision point and green the output.

Figure 2. Example of threshold for class assignment. (a) Plot of the correlation multiplied by the mutual information ordered from higher to lower values. Red line depicts the
inflexion point where score above are spectra kept for the class. (b) First derivative of data shown in (a). Red circlet evidences the position of the inflection point used to defining the
threshold shown in (a). Abscises correspond to the spectrum position ordered from higher to lower NCC and NMI product. Ordinates has no unit as it corresponds to coefficient
product value.
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Figure 3. Comparison of the reference spectra and the dataset used. (a) reference spectra obtained after spectra value decomposition and (b) the variance of this data set at each wavelength. (c) The whole dataset showed normalized to
have comparable intensities and (d) its’ associated variance at eachwavelength. The orange points are the oneswhere chirality is invariant in the two datasets. Abscises correspond to thewavelength in nanometers (nm). Ordinates has no
unit as it corresponds to normalized data or variances.
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Results

Due to the large structural heterogeneity and the yet limited availabil-
ity of relevant CD spectroscopic data, the use ofmultivariate statistical
analysis and neural networks does not produce relevant and repro-
ducible results. Specifically, the first eigen-vectors explaining the
highest percentage of variance by principal component analysis
do not correspond to any spectrum having physical significance.
Moreover, hierarchical classification (Supplementary Figure 1)
merges spectra belonging to different structural families. Equiva-
lent results, with inconsistent family assignments, were observed
for self-organizing mapping. Therefore, we chose to combine
approaches targeting two different types of information: shape
similarity (by using the NCC) and probability of value occurrence
(NMI).

Workflow allowing to define nucleic acids structural classes
from CDs spectra

Based on NCC and NMI, we have established an iterative work-
flow (Figure 1) to determine the reference spectrum for each
structural family. The workflow is applied to each manually
defined family determined during the initialization process as
follows:

(1) MCC and NMI values are calculated between every normal-
ized N(0,1) spectrum from our dataset and the reference
spectrum for the family.

(2) The product of these values (Score = NCC×NMI) is ordered
from highest to lowest, thus defining the order as an abscissa
(Xn) and the result of the product as an ordinate (Yn).

(3) The first derivative of the (Xn, Yn) array is computed to
determine the position of the first inflection point.

(4) The coordinates of the first inflection point are used as a
family belonging threshold (Figure 2).

(5) Spectra whose Score are above the Score at the inflection
point are included in the family, regardless of whether they
were part of the initial group used for the family definition.

(6) SVD is computed from all spectra of a family and the first
component is used as the new reference spectrum for that
family.

(7) The process is repeated from (1) until the included spectra are
constant (convergence of the iterative workflow).

Once convergence is reached, the first component of SVD computed
froma family’s normalized spectra is set as the reference spectrum for
that structural family.

Evaluation of the workflow

Once the five CD reference spectra have been determined, the
robustness and accuracy of the workflow was evaluated by using
a data set of 56 manually assigned spectra and standardized figures
of merit as described in materials and methods. Sensibility, speci-
ficity, and Jaccard (similarity) values were 1, 0.94, and 0.94, respect-
ively. This confirms that the workflow is robust enough to assign
unknown spectra to one of the defined families. Other workflows
previously described in the literature appear to be less accurate with
87.33%, 85.33%, and 78.66% for the XGBoost algorithm, neural
network, and Kohonen approaches, respectively (Sathyaseelan
et al., 2021).

Applications and workflow limits

Based on the robustness of the workflow, we have successfully
defined reference spectra for five families using 118 normalized
spectra, with or without initial manual assignment. These families
are DNA quadruplexes parallel, DNA triplexes, Z-DNA, DNA
loops, and RNA loops. The superposition of the five references

Figure 4. Spectra of the used for the definition of the DNA loop family. (a) The normalized spectra used to define the family. (b) The spectra of the newly defined DNA loop
family. (c) The spectra defined for the R-loop family. Abscises correspond to the wavelength in nanometers (nm). Ordinates has no unit as it corresponds to normalized data or
variances.
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(Figure 3a) allows us to identify regions (between 220 and 250 nm
and between 275 and 300 nm), where the CD signal remains
invariant (orange in Figure 3b). This observation holds even when
the normalized spectra of the entire dataset are superposed
(Figure 3c,d). It is noteworthy that, due to the limited number
of available spectra in databases or published structures, we opted
to apply the workflow without any discontinuity in the wave-
length.

Furthermore, several spectra not initially assigned to any family
were identified as belonging to one in coherence with their bio-
logical characteristics. For instance, the classification of the DNA
sequence TT(GGGT)4, predicted by the workflow to belong to the
quadruplex family, was confirmed by NMR (ref unpublished results,
personal communication). Interestingly, of the four spectra that had
beenmanually assigned as R-loops (orange lines in Figure 4a), two of
them (dashed light and dark orange lines in Figure 4a) were rejected
from that family due to the NCC and NMI product being below the
determined threshold. As these 2 spectra have a similar shape, and as
their corresponding sequences are compatible with DNA loops, a
new reference spectrumwas generated for the DNA-loops family. By
running the workflow with the DNA-loops family reference across
the entire dataset, we identified an additional spectrum (dashed blue
line in Figure 4a), which provided validation of this new family. In
summary, running the workflow allowed us to define a new reference
spectrum for both the DNA loops (Figure 4b) and the R-loops
(Figure 4c) families.

Originally designed to determine reference CD spectra, the
workflow described here can also predict yet unknown secondary
structures. However, it is limited to identifying elementary refer-
ence spectra from sequences with a single secondary structure.
It cannot be used to determine the percentage of different struc-
tures in complex spectra from sequences with multiple secondary
structures.

In summary, the workflow introduced here, with its Python
code available in the supplementary data, helps identify elementary
reference CD spectra for nucleic acids. Currently limited to five
families, this number is expected to grow as more nucleic acid
spectra are added to public reference datasets. This advancement
lays the groundwork for an online tool to determine the percentage
of structures in complex CD spectra, similar to existing tools for
proteins. The next steps include designing this tool and developing
accurate algorithms for deconvoluting complex spectra.
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