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The traditional frailty models used in genetic analysis of bivariate survival data assume that
individual frailty (and longevity) is influenced by thousands of genes, and that the contribution of
each separate gene is small. This assumption, however, does not have a solid biological basis. It
may just happen that one or a small number of genes makes a major contribution to determining
the human life span. To answer the questions about the nature of the genetic influence on life span
using survival data, models are needed that specify the influence of major genes on individual
frailty and longevity. The goal of this paper is to test the nature of genetic influences on individual
frailty and longevity using survival data on Danish twins. We use a new bivariate survival model
with one major gene influencing life span to analyse survival data on MZ (monozygotic) and DZ
(dizygotic) twins. The analysis shows that two radically different classes of model provide an
equally good fit to the data. However, the asymptotic behaviour of some conditional statisticsis
different in models from different classes. Because of the limited sample size of bivariate survival
data we cannot draw reliable conclusions about the nature of genetic effects on life span.
Additional information about tails of bivariate distribution or risk factors may help to solve this
problem. Twin Research (2000) 3, 51-57.
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Introduction

The notion of frailty, as a non-observable, hidden
susceptibility to death, was introduced in demo-
graphic researches at the end of the 1970s. The
univariate survival model with proportional hazard
and gamma-distributed frailty for the analysis of
mortality data was suggested and its properties were
studied by Vaupel, Manton and Stallard," Lancaster,?
Vaupel and Yashin.®> Hougaard* introduced to sur-
vival analysis the so-called three-parameter distribu-
tion of frailty, which includes as a special case,
gamma, inverse-Gaussian, positive stable and degen-
erate distributions. The first models for bivariate
survival data were shared frailty.>® Yashin and
lachine® suggested the correlated gamma-frailty
model and applied it to genetic analysis of twin data.
They showed that at least 50% of frailty variance is
conditioned by environmental factors. Different cor-
related and shared-frailty models were compared on
the basis of a general correlated-frailty model with
three-parameter distributed frailty.”® It was shown,
that a correlated-frailty model with finite mean of
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frailty can be regarded as most appropriate to
bivariate survival analysis. The choice of frailty
distribution for real sample sizes is not very impor-
tant and, for example, gamma distribution for frailty
can be assumed.

However, models with continuously distributed
frailty are not the only possible ones. It can be
assumed that frailty has a discrete distribution,
which may be the case, for example, if hazard is
determined by finite number of genes. A two-point
model for frailty among sibs based on Mendel’s law
of inheritance was considered by Mack et al."
Vaupel and Tan Qihua'® estimated the upper limits
of the number of longevity genes and found that
there are fewer than 400 genetic loci with survival
alleles. We suggest here bivariate models with
discrete and mixed discrete—continuous frailty dis-
tributions. We fit bivariate survival data to Danish
twins using these models and then compare our
results with previous results for continuously dis-
tributed frailty.

Materials and methods

We illustrate our approach using survival data on
Danish MZ and DZ twins born in the period
1870-1900 and who both survived until age x, = 30.
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We consider a total of 470male MZ twin pairs,
475female MZ pairs, 780male DZ twin pairs and
835female DZ twin pairs. Detailed information on
these data can be found in Hauge.”

We assume that an individual’s instantaneous risk
of death u at age t, as measured by the hazard of
mortality, depends linearly on frailty Z. Namely,
w(t;Z) = Zuo(t),where Z =2, + Z,, Z, is the gamma-
distributed, continuous, additive part of frailty, and
Z4, which is positive and discretely distributed, is
another additive part of frailty, corresponding to
finite the number ny of genotypes; Z. and Z, are
independent random variables.

For related individuals we assume that life spans
T, and T, are conditionally independent, given
frailtiesZ,, Z,,and Z,. = Y, + Y;, i = 1,2,

where Y; are gamma-distributed, independent
random variables.

Let Corr(Z,,Z,)=p and E(Z,)=EZ,)=1,
Var(Z,.) = Var(Z,.) = o°.

We assume also, that Z, = a;; = a;; > 0 with proba-
bilities p;; = p;;, i,j = 1,...,na, Z;; p; = 1. This corre-
sponds to one gene loci with na different possible
allelesin two chromosomes. We assume that the first
allele in the index pair (i,j) is inherited from the
father and allelej isinherited from the mother, both

independently. Parents are chosen independently
and all persons have the same fertility. In the Hardy-
Weinberg equilibrium p;; = p;p;. If frailty is con-
ditioned by only one beneficial allele, then we have
a=ay(1-r)* and a = a,—rk in the case of k bene-
ficial alleles in the genotype, with correspondingly
independent multiplicative and additive action.

Now we can obtain the bivariate survival function
in the form S(x,y) = S.(x,y)S4(x,y), where

Se(X1)"? So(x2)'
Sc(X1,X2) = )
(Se(X4) ™2 + Se(X2) 2 = 1)P72,

S:(x) = {(1+H()/ @Y "2 Hx) = [po(ods, @)

Si(x,Y) = 2uSu *(x)S"(y), Sesl) =€ (3)

k!

and we sum in the third equation all possible
combinations of twin genotypes k, | with corre-
sponding weights p,,. Denote in the case na =2

Table 1 Parameter estimates for bivariate survival models with proportional hazards. Equal frailty distributions for males and
females. Hardy-Weinberg equilibrium. One beneficial allele with equal for males and females multiplicative action. Danish twins born
1870-1900
Frailty P 1-r az22 c Prnz Paz LogLik AlIC
Discrete 0.569 0.414 1.000 —20220.293 40460.586
sex-linked (0.085) (0.028)
Discrete 0.546 0.369 1.000 -20216.913 40453.826
autosomal (0.082) (0.027)
Gamma 1.263 0.494 0.239 —20214.558 40451.116
(0.132) (0.011) (0.073)
Mixed 0.010 1.350 0.508 0.237 —20213.801 40451.602
1 genotype (0.011) (0.162) (0.015) (0.080)
Mixed 0.013 0.708 0.009 1.355 0.506 0.235 —20213.800 40455.600
3 genotypes — — - - — _
P: frequency of beneficial allele, 1-r: coefficient of frailty’s decrease.
Table2 P values of different models
Discrete, Discrete, Mixed, Mixed,
Model sex-linked autosomal Gamma 1 genotype 3 genotypes
Discrete, sex-linked 0.277°
Discrete, autosomal 0.812°
Gamma 0.649°
Mixed, 1 genotype 0.219 0.916°
Mixed, 3 genotypes 0.183 0.679 0.999 0.966°

resulting from a comparison of the general case with the case of equal frailty distributions for males and females and
one beneficial allele with equal for males and females multiplicative action for males and females (for the discrete

part of frailty)
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genotype (1,1) as 1, genotypes (1,2) and (2,1) as 2, mz a a1,
and genotype (2,2) as 3. Let 8, = @y, 85 = A1pg = Sas(xy) = Ps, mp”S‘:d S(X)S(’d'sg))r >
321’3, é313 = 322,3, ﬁ1,s = p11’5,ﬁ2’5 = pl12’s + p.21’.s’ﬁ3’s = 0 5p1 mp2 f[Sgd S(X)Sgd;(y) Sgd‘,:(x)sgd:z(y)] +
P2os SEX S = m,f (males, females). It is not difficult to 0.5 mB1 IS (X)SAS(y) + SI2(x)SIS(y)] +
show that in the special case of autosomal locus, the 28/ 2 syl
monozygotic and dizygotic bivariate functions may P2,mP2,[0.5S04'5(X)Soa’s(Y) + 0.25S0q's(X)Soq’s(y) +
be expressed as 0.258532(X)Saa(y)] + B1.mParSoas(X)Soasly) +

B3.mP1.:S0as(X)Soas(y) + 0.56mPsdSoas(X)Seas(y) +
S0a200x)Soa'sY)] + 0.5P5mP2Soa2(x)Soaaly) +
Soa2(X)SoasY)] + PambarSoas(X)Soas(y),

STa%Y) = P1mP1Soas(X)Soas(y) + 0.25(B1mP2s +

Table 3 Life expectancies and frequencies at age 30 yearsin the a2,

modal with boneioial slided 98y BaomBr)[Saaa(x) + SSaIISEER(Y) + Saasy)] +

Genotype e30 frequency 0 25 p2 mp2f [Sggz ( ) + O 583&11 Z( ) + 0 58332 ( )]
males females males females [S533 (y) + 0.5S372 (y) + 058533 (y)] +

AA 31.9 33.5 0.206 0.206 0.25(P2mPas + BamPar)[Soas(x) + Seas(x)[Scasly) +

Aaor aA 41.5 43.9 0.496 0.496 a3 a2 a2

aa 50.3 52.9 0.298 0.298 SoaeY)] + (P1mPas + PamPr1.1)Soaa(X)Soasly) +

all 42.1 44.4 1.000 1.000 s

B3.mP3.rSods(X )Sgﬁ,i(y)-

MZ males, estimated DZ males, estimated
100 100
80 80¢
e =
60 60
40 40
40 60 80 100 40 60 80 100
T1 T
MZ males, empirical (smoothed) DZ males, empirical (smoothed)
100 100
80 80
o o
" 60 T 60
40 40
40 60 80 100 40 60 80 100
T1 T

Figure1 Contour maps of empirical and estimated probability density functions ( X 1000) for continuous (solid) and discrete (dashed)
frailty models
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Analogous formulae can be written for the sex-
linked locus.

Marginal univariate survival
approximated with the formula

functions were

1
3

S(x)=[1+¢? (ax + % (e™ — eCXO))

For models with discrete and mixed discrete—
continuous frailty we estimated all unknown param-
eters. These estimates were made for combined MZ
and DZ populations for both sexes.

Results

The results of our bivariate analysis are presented in
Tables1-3. All estimates were obtained through
maximisation of likelihood function. Unfortunately,
standard deviations for the model with mixed

MZ females, estimated

100

80

T2

60

40

40 60 80 100

T1
MZ females, empirical (smoothed)
100

80

~
60

40

40 60 80 100
T

discrete—continuous frailty with three genotypes
could not be ascertained, because of the non-
invertable Hessian. The discrete models with Hardy-
Weinberg equilibrium and one beneficial allele
which assume multiplicative action of an allele and
the discrete models without these last assumptions
are nested. That is, we can compare two these types
of models by means of the likelihood ratio test.
Analysing likelihood values, we conclude that null
hypothesis about the Hardy-Weinberg equilibrium
and one beneficial allele with multiplicative action
which is equal for males and females can be
accepted both by autosomal and sex-linked frailty
inheritance (Table2).

We cannot directly compare models with frailty
inheritance in autosomal and sex-linked loci since
they are not nested. But we can see that the AKAIKE
Information Criteria (AIC) is greater in the latter case
than in the former (Table1). In accordance with the
likelihood ratio test we accept the null hypothesis
about the equality of parameters of gamma-distrib-
uted frailties for both males and females (Table?2).

DZ females, estimated

100

80

T2

60

40

40 60 80 100

T
DZ females, empirical (smoothed)
100

80

(4]
" 60

40
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Figure2 Contour maps of empirical and estimated probability density functions ( X 1000) for continuous (solid) and discrete (dashed)

frailty models
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We studied two classes of model with mixed
frailty: one with one genotype and one with three
genotypes (two allelesin onelocus). In both caseswe
can reduce models with assumptions of non-equality
of frailty parameters for males and females and non
Hardy-Weinberg equilibrium to models with equal
frailty parameters for males and females and one
beneficial allele with equal, multiplicative action for
males and females. In accordance with the like-
lihood ratio test the mixed frailty model has no
advantage over models with purely discrete or
purely continuous frailties (Table2).

We can describe the optimal model with discrete
frailty and one beneficial allele in terms of the life
expectancies and frequencies of the genotype
(Table3). One can see from this table, that neigh-
bouring genotypes differ from each other by approx-
imately 10yearsin life expectancy and that for each
genotype female, life expectancy exceeds that of
males by about 2 years.

In Figures1 and 2 one can compare estimated
bivariate probability density functions for discrete
and gamma-distributed frailties for four populations.
These probability density functions were calculated
at the age points (x,y), x,y = 30,31,...,100, and then
smoothed. It seems that the shapes of probability
density functions are very similar in both cases for
all populations. In spite of the similar uni- and
bivariate fit, the models with discrete and gamma-
distributed frailties differ, however, in their under-
lying hazards, as can be seen in Figure3. In the
model with discretely distributed frailty, underlying
hazard does not increase as rapidly as it does in the

In 1
Males

gamma

discrete

marg.est.

d marg.emp.

6 I Age

30 40 50 60 7O 80 90 100 110
Figure3
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one with gamma-distributed frailty. One can see in
Figure4 that |life-span correlation drastically
decreases to zero by the age of 90 in the model with
discrete frailty and stabilises at some positive level
for the model with continuous frailty.

Discussion

Survival models with continuously distributed
frailty are not the only possible ones. As an alter-
native, one can suggest survival models with dis-
cretely distributed frailty. In some sense thelatter are
more interesting and rich in content. They allow us
to measure the influence on mortality of separate
genes with specific mechanisms of frailty inher-
itance, as opposed to the averaged influence of a
large number of genes in the case of continuously
distributed frailty.

Our analysis reveals a surprising degree of sim-
ilarity between models with discrete and those with
gamma-distributed frailties. This similarity was
expressed in the likeness of probability density
functions and fits of marginal hazards and maximum
likelihood values for all populations we considered.
The essential difference between the two models
involves the behaviour of underlying hazards and in
the asymptotic behaviour or life-span correlations.
But these differences are based on the nature of the
frailty distribution. In the model with discretely
distributed frailty one can see three basic rates of
growth of the underlying hazard, corresponding to

Inp

Females

-6 r Age

30 40 50 60 70 80 90 100 110

Comparison of the marginal and underlying hazards for gamma and discrete frailty
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Figure4 Dynamics of the conditional life span correlations

the three genotypes. In the final period, when the
population groups with the two largest values of
frailty almost disappear, the underlying hazard is
proportional to the marginal hazard, with the coeffi-
cient of proportionality equal to the lowest value of
frailty.

We observed no deviation from the Hardy-Wein-
berg equilibrium in a statistical test of this null
hypothesis. In addition, we can reduce the model
with discrete frailty to the model with the Hardy-
Weinberg equilibrium and one beneficial allele with
multiplicative action. In our estimation, this bene-
ficial allele is spread with a probability of approx-
imately 1/2 and decreases mortality risk by a factor
of about 3 for both sexes. One can see from Table 3
that life expectancy at age 30 years for all genotypes
is approximately 2 years longer for females than for
males. We can reject the model with frailty inher-
itance through a sex-linked locus, because it gives
greater AIC. This model is probably not as informa-
tive as the one with frailty inheritance through an
autosomal locus.

Both the model with continuously distributed
frailty and the one with discretely distributed frailty
are nested in a mixed-frailty model. But in accor-
dance with the likelihood ratio test we cannot reject
models with purely discrete and purely continuous
frailties. Thisis probably due to the insufficient size
of the sample — in reality we must take into account
both the dominant influence of a major gene as well
as spread influence of a large number of genes.
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