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Φ-BOUNDED HARMONIC FUNCTIONS AND THE

CLASSIFICATION OF HARMONIC SPACES

WELLINGTON H. OW

1. By a harmonic space we mean a pair (X, H) where X is a locally
compact, non-compact, connected, locally connected Hausdorff space and
H is a sheaf of harmonic functions defined as follows: Suppose to each
open set Ω c X there corresponds a linear space H(Ω) of finitely-continu-
ous real-valued functions defined on Ω. Then H = {H(Ω)}Ω must satisfy
the three axioms of Brelot (1) and in addition Axiom 4 of Loeb (4): 1
is ίf-superharmonic in X.

Denote by Φ(t) SL nonnegative real-valued function defined on [0, oo).
We stress that except for the condition Φ(t) > 0 nothing is required of
Φ(t) such as continuity and measurability. A harmonic function u on X
(when H is well-understood we simply refer to X itself as the harmonic
space) is called Φ-bounded if the composite function Φ(\u\) possesses a
harmonic majorant on X. The notion of Φ-boundedness is due to Parreau
(9) who considered the special case of an increasing, convex Φ. Later
Nakai (6), using general Φ, completely determined the class OHΦ of Rie-
mann surfaces for which every Φ-bounded harmonic function reduces to
a constant. Recently Ow (8) considered the classification of harmonic
spaces with respect to Φ-bounded harmonic functions using a stronger
assumption that Loeb's Axiom 4 namely it was assumed that 1 e H.

Since the case 1 e Ή has already been considered, as mentioned above,
throughout this paper we will make the following assumption:

This condition occurs, for example, in the study of the harmonic space
of solutions of the elliptic partial differential equation Δu = Pu, where
P -φ. 0 is a nonnegative function on a manifold X.

The main object of this paper is to show that in view of the con-
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dition 1 g H, the assumed existence of a harmonic function u on X with
positive infimum is essential in the classification of harmonic spaces with
respect to Φ-boundedness. Furthermore, it is shown that is sometimes
necessary to further assume that the function u above is bounded in
order to obtain inclusion relations similar to those in (8). Before pro-
ceeding further it is necessary to give some preliminary results.

2. If K is a compact subset of X and E the family of all regular
regions Ω (cf. (4)) containing K then by a theorem of Loeb (4), E is an
exhaustion of X. We will always assume that X is countable at the ideal
boundary and therefore there exists a countable exhaustion of X by
regular regions {Ωn}ΐ such that Ώn c Ω%+1 and X = Un=i Ωn

We now state some results of Loeb-Walsh (5) using their terminology.
Let e be the greatest ίf-harmonic minor ant of 1 and assume that e Φ 0.
Denote by HB = HB(X) the Banach lattice of bounded functions in H.
Note that HB Φ {0}. Let X* be the ίfB-compactification of X, Γ = X* -
X, and

Δ = {t eΓ\e(t) = 1 and / ΛHg(t) = / Λ g(t) for all f,geHB} .

It is shown in (5) that Δ is regular for the Dirichlet problem and is also
equivalent to the harmonic boundary of Constantinescu-Cornea (3). Also
it is shown in (5) that the restriction mapping of HB onto C(Δ) is an
isometric isomorphism which preserves positivity and lattice operations.

3. If Ω is a subregion of X then we will say that Ω & SOHB provided
Ω contains a neighborhood of some point p e Δ. We then have the follow-
ing generalization of the well-known two-domain criterion for Riemann
surfaces (cf. e.g. (10)):

LEMMA 1. There exists at least k > 1 disjoint regions Ωt c X with
Ωt & SOHB if and only if dim HB > k.

Proof. It follows from the definition that if there exist at least
k > 1 disjoint regions Ωt & SOHB then Δ contains at least k points and
hence dim HB = dim C(Δ) > k. Conversely suppose dim HB > k. Then
there exists at least k points pj e Δ. Let / be a Wiener function, i.e. a
bounded, continuous, harmonizable function on X (cf. (10)) such that
/(Pi) = J. Set Gf = {VeX*\j-ϊ<f(p)<j + %} and Gό = Gf Π X.
Then G <£ SOHB and the Gj are disjoint. This completes the proof.
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4. As an immediate consequence of a result of Constantinescu-

Cornea (cf. (3), p. 32) the following maximum principle of Nakai (10) is

also valid for harmonic spaces:

LEMMA 2. Let Ω be a subregίon of X and s a super harmonic function

on Ω bounded from below. If

lim inf s(z) > 0
zeΩ, z-*p

for every point p e (Δ Π Ώ) U 3Ω then s > 0 on Ω. Here Ώ means the

closure of Ω in X* while dΩ denotes the boundary of Ω relative to X.

5. Denote by HΦ = HΦ(X) the family of all Φ-bounded harmonic

functions on X and by OHΦ the totality of harmonic spaces on which

every Φ-bounded harmonic function reduces to a constant. Similarly

denote by HP = HPiX), HB = HB(X) the class of functions on X which

are nonnegative harmonic and bounded harmonic, respectively; and by

OHP (resp. OHB) the class of harmonic spaces X for which the class HP

(resp. HB) consists only of constants. We define

dΦ = lim sup Φ(t)/t and dΦ = lim inf Φ(t)/t .
ί-»oo ί-»oo

Suppose that there exists a positive harmonic function on X with

positive infimum. We then note first that if Φ is bounded on [0, oo) then

any nonconstant harmonic function on I is a nonconstant ίfΦ-function,

and consequently, OHΦ consists only of trivial harmonic spaces. On the

other hand if Φ(t) is completely unbounded on [0, oo), i.e. if Φ(t) is not

bounded in any neighborhood of any point of [0, oo) then OHΦ must con-

sist of all harmonic spaces. Having dispensed with these cases we now

prove a result similar to one obtained for Riemann surfaces by Nakai (6).

THEOREM 1. Assume there exists a bounded harmonic function u0

on X with infx u0 > 0. Then if Φ is not bounded nor completely un-

bounded on [0, oo), OHΦ = OHP (resp. OHΦ = OHB) provided that d(Φ) is

finite (resp. infinite).

A proof of Theorem 1 will be given in section 7. Using stronger

assumptions on Φ, Chow-Glasner (2) have obtained results similar to

Theorem 1 in their investigation on Φ-bounded solutions of Δu = Pu,

P > 0, on Riemannian manifolds. Namely they assume that Φ is convex,

positive, and increasing.
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6. The next theorem shows the effect of omitting either the bounded-

ness condition or the condition infx u0 > 0 as was required of the func-

tion uQ in Theorem 1.

THEOREM 2. Assume Φ is not bounded nor completely unbounded on

[0, oo).

a) If d{Φ) < oo then OHP C OHΦ.

b) If d(Φ) < oo and if there exists an HP-function ux with infz ux > 0,

then OHΦ c OHP. But if 3(Φ) < oo, if there exists a nonconstant HP-

function, and if u e HP implies infx u = 0, then OHΦ c OHP is not neces-

sarily true.

c) If d(Φ) = oo then OHB c OHΦ.

d) If 3(Φ) = oo and there exists an HP-function u0 such that u0 is

bounded and infx u0 > 0, then OHΦ c OHB. However, if d(Φ) — oo and

every HP-function u is either unbounded or mίx u — Q then OHΦ c OHB

is not necessarily true.

A proof of Theorem 2 appears in section 8. The existence of ux is

also considered by Schiff (12) in the special case concerning solutions of

Δu = Pu on a Riemann surface.

7. Proof of Theorem 1. First assume d(Φ) < oo. Then there exists

a c > 0 such that Φ(t) < c£ for ί > ί0. If % is a nonconstant flP-function

on X then for a suitable constant k > 0 the function v = % + ku0 is a

nonconstant HΦ-function, and so OHΦ c OHP.

Conversely if u is a nonconstant £fΦ-function on Z then there exists

an HP-i unction t o n Z with Φ(\u\) < v o n l Since lgH,v is noncon-

stant. Hence OHP c OHΦ, completing the first part of the proof.

Now consider the case where d(Φ) = oo. Suppose u is a nonconstant

ίΠ?-function on X. By hypothesis Φ is bounded in some interval (α, b)

c [0, oo) within which Φ(t) < c — const. Then for suitable constants cx

and c2 the range of v = ctw + c2^0 is contained in (α, &), and consequently

OHΦ c O M .

Conversely, if we assume u is a nonconstant ίfΦ-function on X then

there exists an HP-function v on X such that Φ(\u\) < v on Z . If v is

bounded we are done. If u is not bounded then following the approach

of Nakai (6) we show that X £ OHB. Suppose to the contrary that
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X e OHB. Then d(Φ) = oo implies that there is a strictly increasing

sequence {tn}™ of positive numbers for which lim^ tn = oo, limw tn/Φ(tn) = 0

and

Then Gx c G2 c and Z = UΓ Gn. Now Gw £ SOH2? for all sufficiently

large n. For if not, consider the function anv — \u\ where an = tn/Φ(tn).

Then αwv — \u\ is superharmonic, bounded from below on GTO, and non-

negative on dGn. Hence Gn e SOHB implies anv — \u\ > 0 on Gw by Lemma

2. Since αn —* 0 and Gn | X we have M Ξ O on X, a contradiction. Hence

Gn <s SO H β for n > ^ , say, and so we may as well assume

GneSOHB, w = l,2, . . .

If Gn — Gx^ SOHB for some w > 1 then by Lemma 1, Z g 0^^, contradict-

ing our original assumption. Hence

G n - GιeSOHB9 n = 2,3,. .

The function ^;n = αw^ + rx — \u\ is superharmonic, bounded from below

on Gn as well as Gn — Gx. Also wn^ 0 on dGn. Since Gn — Gλe S0HB this

implies wB > 0 on Gra, i.e.

on Gn. Hence \u\ < rx on X, contradicting our assumption XeOHB.

Hence X g 0^ 5 , completing the proof.

8. Proo/ o/ Theorem 2. Parts a) and c) are proved exactly as in the

proof of Theorem 1 since the function uQ is not involved. The first part

of b) follows exactly as in Theorem 1 since only the condition infx uQ > 0

is used there. For the second half of b) consider the following example:

EXAMPLE 1. Define Φit) = lit2, t>0; Φ(0) = 0. Then d(Φ) = 0<co.

Also for any harmonic function u, either ueHP or —ueHP or u as-

sumes the value 0 on Z. In either case inf^lwl = 0. It follows that

Φ(\u\) has no ίfP-majorant on Z, i.e. OHΦ <£. OHP.

The first assertion in d) constitutes part of Theorem 1. For the second

part of d) consider the following example in the complex plane C:

EXAMPLE 2. Let Z = { 2 e C | 0 < | 2 | < l } and H consist of all solutions

of the elliptic partial differential equation Δu = Pu on Z, where P = 4/|z|2
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and Δ = d2/dx2 + 32/dy2, z = x + iy. Note t h a t ux = \z\2 eH,u2 = l/ |z | 2 e H,

but 1 β H. Since uλeH the equation J^ = P^ has no bounded solution u

with inf x u > 0. However, w2 is an unbounded positive solution with

infx u2 > 0. Let Φ be a nonnegative real-valued function on [0, oo) which

is unbounded at the points 1/n, n = 1,2, , and also at the points n,

n — 2,3, . Then since any member of H must either be unbounded

on X or have zero infimum in its absolute value on X, it follows that

there are no nonconstant Φ-bounded solutions on X, i.e. OHΦ ς£ OHB. This

completes the proof.

9. A harmonic function u on X is called essentially positive if u can

be represented as a difference of two HP-functions on X, or equivalently,

if \u\ has a harmonic majorant on X. Let ΉP\X) be the vector lattice

of essentially positive harmonic functions on X with lattice operations

V and Λ, where for two functions u and v in HP\X) we denote by

u V v (resp. u/\v) the least harmonic majorant (resp. the greatest harmonic

minorant) of u and v. Clearly HP(X) c HP'(X).

For any ueHP(X) we define the function i?% by

Bu(p) = sup {v(p) I v e HB(X), v <,u on X} .

Hue HP'(X) we define Bu = i?^ — Z?%2 where u — ̂  — ̂  and ul9u2e HP(X).

An ίfP7 function % is called quasi-bounded (resp. singular) if β^ =

% (resp. #M = 0). We denote the class of quasi-bounded (resp. singular)

functions on X by HB'(X) (resp. HP'\X)). We then have the direct

decomposition

HP\X) = #£'(X) + HP"(X) .

Quasi-bounded and singular harmonic functions as well as the decompo-

sition were introduced by Parreau (9). We now give relations between

the classes HΦ, HB', and HP'. The following theorem is similar to that

obtained by Nakai (7) for Riemann surfaces:

THEOREM 3. Assume there exists an HP-function ux on X with

inf x uλ > 0.

a) // d{Φ) > 0 then HΦ(X) c HP\X).

b) //, however, d(Φ) — 0 then HΦ{X) c HP\X) is not necessarily true.

Proof. To prove a) we set d(Φ) = 2c > 0 and choose t0 e (0, oo) so
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that Φ(t) > ct for t > ί0. If % e HΦ{X) then Φ(|^|) has a harmonic majorant

v on Z . It follows that for a suitable constant k > 0 we have

v + cfĉ i > Φ(\u\) + ct0 > c|w|

on X and |%| possesses a harmonic majorant on X; so ueHP\X), there-

by proving a).

To prove b) we consider the following example in the plane:

EXAMPLE 3. As in Example 2 let X = {z e C\ 0 < \z\ < 1} and H con-

sist of solutions of Δu = Pu, with P = 4/|z|2. Recall that wt = l/|s|2 is

an jffP-function on Z with infx ux > 0. Consider the function u in H

given by

u(z) = cos (Vδίί/r 3 , « = rβ ί 5 ,

and also the function Φ(fi) — max (log ί, 0) on [0, oo). Then d(Φ) = 0,

ueHΦ(X) but ueHPXX). This completes the proof.

The following theorem of Nakai (7) is also valid for harmonic spaces:

THEOREM 4. // d(Φ) = oo then HΦ(X) f] HP'(X) c HB'(X).

Proof. For u e HΦ(X) Π HPf(X) there exists an HP-function v on

Z with Φ(|^|) < v. Define Mu = uV 0 + (—u) V 0. Since B commutes

with the operations M9 V, and Λ we need only show

BMu = Mu .

Since d(Φ) = oo there is an increasing sequence {tn}ι of positive numbers

with Φ(tn) > 0 and an = tn/Φ(tn) -> 0. Setting Gn = {p e Z | |w(p)| < tn) we

have Gw t Z . Let {βm} be an exhaustion of Z. Let wm be harmonic on

fim Π Gn with ^ m I (3flTO) f)Gn = min (M^ - SM^, tn) and ^ m | (aGn) f l 5 m =

0. Here the values of wm on d(βTO Π Gn) need only be prescribed at the

points regular for the Dirichlet problem. If we further define wm\(Ωm

— Gn) — 0 then wm is subharmonic on Ωm, and hence

on Ωm (cf. Loeb-Walsh (5)). Also let wr

m be harmonic on Ωm with boundary

values w'm \ (3flm) Π G n = min (M^ — BMu, tn) and ^ ^ | (3Ωm — Gn) = 0.

Then {w'm} is a bounded sequence and 0 < w'm < M^ — BM^, m = 1,2, .

It follows from a theorem of Loeb-Walsh (5) that if Ω c Z is a region
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and the family T — {h e H(Ω) | 0 < h} is bounded then T is equicontinuous
on Ω. Consequently by the Arzela-Ascoli theorem T is a normal family.
Hence {w'm} has a convergent subsequence with limit function w'. We
obtain 0 < Bw' < B(Mu — BMu) = 0. Since wf is bounded and nonnegative,

wf = β w ' = 0

on Z . In addition w'm > w m > 0 implies

limTO w m = 0

on Z . Now on (3flTO) Π Gn we have |w| < tn and |w| < Mu =

(ϋf^ — BMu). Hence on (3flTO) Π Gn, \u\ — J5M^ < min (ilί^

wm. On aG n, |w| = tn = αn(P(|w|) < e^;, and so

|w| < anv + BMu + wm

on d(Ωm Π Gn) and hence on Ωm Π G«. Upon letting m —> oo and then

n —> oo we obtain

on Z. Since MM is the least harmonic majorant of |w| on I we must
have Mu < BMu and hence BMu = MM as was to be shown. This com-
pletes the proof.

Remark. Note that the existence of a function ux as in Theorem 3
is not required here.

Upon combining Theorem 3 and Theorem 4 we have the following

COROLLARY. Assume there exists an iϊP-function ux on Z with
inf̂ Mx > 0. Then if d(Φ) = oo and d(Φ) > 0, we have HΦ{X) c ffB'(Z).
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