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¢-BOUNDED HARMONIC FUNCTIONS AND THE
CLASSIFICATION OF HARMONIC SPACES

WELLINGTON H. OW

1. By a harmonic space we mean a pair (X, H) where X is a locally
compact, non-compact, connected, locally connected Hausdorff space; and
H is a sheaf of harmonic functions defined as follows: Suppose to each
open set 2 C X there corresponds a linear space H(2) of finitely-continu-
ous real-valued functions defined on 2. Then H = {H(2)}, must satisfy
the three axioms of Brelot (1) and in addition Axiom 4 of Loeb (4): 1
is H-superharmonic in X,

Denote by @(t) a nonnegative real-valued function defined on [0, o).
We stress that except for the condition @(¢) > 0 nothing is required of
@(t) such as continuity and measurability. A harmonic function # on X
(when H is well-understood we simply refer to X itself as the harmonic
space) is called @-bounded if the composite function @(u|) possesses a
harmonic majorant on X. The notion of @-boundedness is due to Parreau
(9) who considered the special case of an increasing, convex @. Later
Nakai (6), using general @, completely determined the class Oy, of Rie-
mann surfaces for which every @-bounded harmonic function reduces to
a constant. Recently Ow (8) considered the classification of harmonic
spaces with respect to @-bounded harmonic functions using a stronger
assumption that Loeb’s Axiom 4; namely it was assumed that 1e¢ H.

Since the case 1¢ H has already been considered, as mentioned above,
throughout this paper we will make the following assumption:

le H.

This condition occurs, for example, in the study of the harmonic space
of solutions of the elliptic partial differential equation 4w = Pu, where
P # 0 is a nonnegative function on a manifold X.

The main object of this paper is to show that in view of the con-
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dition 1¢ H, the assumed existence of a harmonic function » on X with
positive infimum is essential in the classification of harmonic spaces with
respect to @-boundedness. Furthermore, it is shown that is sometimes
necessary to further assume that the function % above is bounded in
order to obtain inclusion relations similar to those in (8). Before pro-
ceeding further it is necessary to give some preliminary results.

2. If K is a compact subset of X and E the family of all regular
regions 2 (cf. (4)) containing K then by a theorem of Loeb (4), E is an
exhaustion of X. We will always assume that X is countable at the ideal
boundary and therefore there exists a countable exhaustion of X by
regular regions {Q,}¢ such that Q, C 2y,, and X = Uz_; 2,.

We now state some results of Loeb-Walsh (5) using their terminology.
Let e be the greatest H-harmonic minorant of 1 and assume that e # 0.
Denote by HB = HB(X) the Banach lattice of bounded functions in H.
Note that HB =+ {0}. Let X* be the HB-compactification of X, = X* —
X, and

Ad={telle®) =1 and f Agg® = f N g() for all f,9eHB}.

It is shown in (5) that 4 is regular for the Dirichlet problem and is also
equivalent to the harmonic boundary of Constantinescu-Cornea (3). Also
it is shown in (5) that the restriction mapping of HB onto C(4) is an
isometric isomorphism which preserves positivity and lattice operations.

3. If Q is a subregion of X then we will say that Q2 ¢ SOy provided
£ contains a neighborhood of some point p € 4. We then have the follow-
ing generalization of the well-known two-domain criterion for Riemann
surfaces (cf. e.g. (10):

LEMMA 1. There exists at least k > 1 disjoint regions 2, C X with
0,2 SO0yxg if and only if dim HB > k.

Proof. It follows from the definition that if there exist at least
k> 1 disjoint regions 2,2 SOy then 4 contains at least & points and
hence dim HB = dim C(4) > k. Conversely suppose dim HB > k. Then
there exists at least & points p;e 4. Let f be a Wiener function, i.e. a
bounded, continuous, harmonizable function on X (cf. (10)) such that
Jw)=7. Set GF={peX*|j—i<f@)<j+4} and G,=GFNX.
Then G e SOy, and the G; are disjoint. This completes the proof.
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4. As an immediate consequence of a result of Constantinescu-
Cornea (cf. (3), p. 32) the following maximum principle of Nakai (10) is
also valid for harmonic spaces:

LEMMA 2. Let 2 be a subregion of X and s a superharmonic function
on Q2 bounded from below. If

Iiminfs(z) >0
ZEQR, z-p

for every point pe(d N Q) U R then s>0 on 2. Here 2 means the
closure of  in X* while 02 denotes the boundary of Q2 relative to X.

5. Denote by HO = HO(X) the family of all @-bounded harmonic
functions on X and by Oy, the totality of harmonic spaces on which
every @-bounded harmonic function reduces to a constant. Similarly
denote by HP = HP(X), HB = HB(X) the class of functions on X which
are nonnegative harmonic and bounded harmonic, respectively; and by
Oyp (resp. Oyp) the class of harmonic spaces X for which the class HP
(resp. HB) consists only of constants. We define

do = lin? sup &)/t and dO = liminf &)/t .

t—oo

Suppose that there exists a positive harmonic function on X with
positive infimum. We then note first that if @ is bounded on [0, co) then
any nonconstant harmonic function on X is a nonconstant H@-function,
and consequently, Oy, consists only of trivial harmonic spaces. On the
other hand if @(t) is completely unbounded on [0, o), i.e. if @(f) is not
bounded in any neighborhood of any point of [0, ) then O, must con-
sist of all harmonic spaces. Having dispensed with these cases we now
prove a result similar to one obtained for Riemann surfaces by Nakai (6).

THEOREM 1. Assume there exists a bounded harmonic function u,
on X with infyu, > 0. Then if ® is not bounded nor completely un-
bounded on [0,c0), Oue = Oyp (resp. Oyp = Oyp) provided that d(d) is
finite (resp. infinite).

A proof of Theorem 1 will be given in section 7. Using stronger
assumptions on @, Chow-Glasner (2) have obtained results similar to
Theorem 1 in their investigation on @-bounded solutions of Adu = Pu,
P > 0, on Riemannian manifolds. Namely they assume that @ is convex,
positive, and increasing.
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6. The next theorem shows the effect of omitting either the bounded-
ness condition or the condition inf,u, > 0 as was required of the func-
tion %, in Theorem 1.

THEOREM 2. Assume @ is not bounded nor completely unbounded on
[0, o0).

a) If d(®) < co then Oyxp C Oy,

b) If d(®) < o and if there exists an HP-function u, with infy u, >0,
then Oyxp C Oyxp. But if d(@) < oo, if there ewists a monconstant HP-
function, and if uwe HP implies infyu = 0, then Oy, C Ogp s not neces-
sarily true.

¢) If d(®) = oo then Ogxz C Oy,

d) If d(®) = co and there exists an HP-function u, such that u, s
bounded and infyu, >0, then Ogxp C Oxp. However, if d(®) = o and
every HP-function 4 is either unbounded or infyu =0 then Oy, C Ogxp
18 not mecessarily true.

A proof of Theorem 2 appears in section 8. The existence of u, is
also considered by Schiff (12) in the special case concerning solutions of
Adu = Pu on a Riemann surface.

7. Proof of Theorem 1. First assume d(@) < co. Then there exists
a ¢ > 0 such that @) < ¢t for t > t,. If u is a nonconstant HP-function
on X then for a suitable constant %k > 0 the function » = u + ku, is a
nonconstant HP-function, and so Og, C Ogp.

Conversely if % is a nonconstant H@-function on X then there exists
an HP-function v on X with @(u)) < v on X. Since 1¢ H,v is noncon-
stant. Hence Oyp C Oy, completing the first part of the proof.

Now consider the case where d(®) = c. Suppose % is a nonconstant
HB-function on X. By hypothesis @ is bounded in some interval (a,bd)
C [0, o) within which @(¢) < ¢ = const. Then for suitable constants ¢,
and ¢, the range of v = c,u + c,u, is contained in (a, ), and consequently
Owo C Opgs.

Conversely, if we assume % is a nonconstant H@-function on X then
there exists an HP-function v on X such that @(u]) < v on X. If v is
bounded we are done. If u is not bounded then following the approach
of Nakai (6) we show that X & Ogzz. Suppose to the contrary that
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X €Oy Then d(@) = co implies that there is a strictly increasing
sequence {t,}; of positive numbers for which lim, ¢, = oo, lim, ¢,/9(t,) = 0
and

G, ={peX|lup)| <t} +4¢.

Then G,C G,C -+ and X =7 G,. Now G, & SOy for all sufficiently
large n. For if not, consider the function a,v — |u| where a, = t,/0(t,).
Then a,v — |u| is superharmonic, bounded from below on G,, and non-
negative on 0G,. Hence G, € SOy implies a,v — |#| > 0 on G, by Lemma
2. Since a, — 0 and G, 1 X we have u = 0 on X, a contradiction. Hence
G, 2 SOyp for n > n,, say, and so we may as well assume

GnESOHB, 7?,:1,2,“-

If G, — G, SOy for some n > 1 then by Lemma 1, X ¢ Oy 5, contradict-
ing our original assumption. Hence

Gn_GleSOHB, n:2,3,...

The function w, = a,v + r, — |u| is superharmonic, bounded from below
on G, as well as G, — G,. Also w, > 0 on dG,. Since G, — G, SOy, this
implies w, > 0 on G,, i.e.

lul < a,v + 7,

on G,. Hence |u|< 7 on X, contradicting our assumption X € Ogysp.
Hence X ¢ O, 5, completing the proof.

8. Proof of Theorem 2. Parts a) and c¢) are proved exactly as in the
proof of Theorem 1 since the function %, is not involved. The first part
of b) follows exactly as in Theorem 1 since only the condition infy u, > 0
is used there. For the second half of b) consider the following example:

EXAMPLE 1. Define @(¢) = 1/#, t>0; #(0) = 0. Then d(®?) = 0 < co.
Also for any harmonic function u, either ue HP or —ue HP or u as-
sumes the value 0 on X. In either case infy|u|=0. It follows that
@(u]) has no HP-majorant on X, i.e. Ogp & Opp.

The first assertion in d) constitutes part of Theorem 1. For the second
part of d) consider the following example in the complex plane C:

EXAMPLE 2. Let X = {ze C|0 < |2| < 1} and H consist of all solutions
of the elliptic partial differential equation du = Pu on X, where P = 4/|z}

https://doi.org/10.1017/50027763000015075 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000015075

62 WELLINGTON H. OW

and 4 = 6°/3x* + 8*/0y*, # = x + iy. Note that u, = |2 e H, u, = 1/|2[ ¢ H,
but 1¢ H. Since u, ¢ H the equation 4u = Pu has no bounded solution
with infy% > 0. However, 4, is an unbounded positive solution with
infyu, > 0. Let @ be a nonnegative real-valued function on [0, co) which
is unbounded at the points 1/n, » =1,2, ..., and also at the points =,
n=2,8,.-.. Then since any member of H must either be unbounded
on X or have zero infimum in its absolute value on X, it follows that
there are no nonconstant @-bounded solutions on X, i.e. Oy, & Ogyp. This
completes the proof.

9. A harmonic funetion u on X is called essentially positive if u can
be represented as a difference of two HP-functions on X, or equivalently,
if |u| has a harmonic majorant on X. Let HP'(X) be the vector lattice
of essentially positive harmonic functions on X with lattice operations
V and A, where for two functions # and v in HP/(X) we denote by
%V v (resp. 4 /\ v) the least harmonic majorant (resp. the greatest harmonic
minorant) of 4 and v. Clearly HP(X) C HP'(X).

For any u e HP(X) we define the function Bu by

Bu(p) = sup {v(p)|ve HBX),v < u on X}.

If ue HP'(X) we define Bu = Bu, — Bu, where % = 4, — #, and 4,, 4,€ HP(X).
An HP’ function #% is called quasi-bounded (resp. singular) if Bu =
u (resp. Bu = 0). We denote the class of quasi-bounded (resp. singular)
functions on X by HB/'(X) (resp. HP”(X)). We then have the direct
decomposition

HP'(X) = HB'(X) + HP'(X) .

Quasi-bounded and singular harmonic functions as well as the decompo-
sition were introduced by Parreau (9). We now give relations between
the classes H®,HB’, and HP’'. The following theorem is similar to that
obtained by Nakai (7) for Riemann surfaces:

THEOREM 3. Assume there exists an HP-function u, on X with
infy u, > 0.

a) If d(®) >0 then HO(X) C HP'(X).

b) If, however, d(®) = 0 then HO(X) C HP'(X) is not necessarily true.

Proof. To prove a) we set d(@) = 2¢ > 0 and choose ¢, e (0, ) so
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that @(t) > ct for t > ¢,. If ue HO(X) then @(u|) has a harmonic majorant
v on X. It follows that for a suitable constant k¥ > 0 we have

v + cku, = O(u)) + oty > clul

on X and |u| possesses a harmonic majorant on X; so ue HP'(X), there-
by proving a).
To prove b) we consider the following example in the plane:

EXAMPLE 3. As in Example 21let X = {2 C|0 <|z| <1} and H con-
sist of solutions of du = Pu, with P = 4/|z. Recall that », = 1/|z} is
an HP-function on X with infyu, > 0. Consider the function » in H
given by

w(z) = cos («/?ﬁ)//]"3 s z = rett

and also the function @(f) = max (logt,0) on [0,o0). Then d(®) =0,
e HP(X) but ue HP'(X). This completes the proof.
The following theorem of Nakai (7) is also valid for harmonic spaces:

THEOREM 4. If d(®) = oo then HO(X) N HP'(X) C HB'(X).

Proof. For uec HO(X) N HP/(X) there exists an HP-function ¥ on
X with &(ul) < v. Define Mu =4V 0+ (—u) V0. Since B commutes
with the operations M,\/, and A we need only show

BMu = Mu .

Since d(@) = oo there is an increasing sequence {t,}7 of positive numbers
with &(t,) > 0 and @, = t,/9(t,) — 0. Setting G, = {p € X||u(p)| < t,} we
have G, 1 X. Let {2,} be an exhaustion of X. Let w, be harmonic on
2, NG, with w,|©@2,) N G, = min (Mu — BMu, t,) and w,|@G,) N 2, =
0. Here the values of w,, on 3(2, N G,) need only be prescribed at the
points regular for the Dirichlet problem. If we further define w,|(2,
— @G,) = 0 then w,, is subharmonic on £,, and hence

wm > w'm+1

on 2,, (cf. Loeb-Walsh (5)). Also let w,, be harmonic on 2,, with boundary
values w,,| (@2, N G, = min Mu — BMu,t,) and w, |02, — G, = 0.
Then {w,} is a bounded sequence and 0 < w), < Mu — BMu, m = 1,2, ...
It follows from a theorem of Loeb-Walsh (5) that if 2 € X is a region
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and the family T = {h e H(2)|0 < h} is bounded then T is equicontinuous
on . Consequently by the Arzela-Ascoli theorem T is a normal family.
Hence {w,} has a convergent subsequence with limit function w’. We
obtain 0 < Bw’ < B(Mu — BMu)=0. Since %’ is bounded and nonnegative,

w=Bw =0
on X. In addition w),, > w, > 0 implies
lim,, w, =0

on X. Now on (@2, NG, we have |u|<t, and |u|< Mu = BMu +
(Mu — BMw). Hence on (62,) N G,, 4| — BMu < min (Mu — BMu,t,) =
Wn. On 0G,, |u|=t, = ¢,0(Ju) < a,v, and so

lu| < av + BMu + w,

on (2, N G,) and hence on 2, N G,. Upon letting m — ~ and then
n — co we obtain

|lu| < BMu

on X. Since Mu is the least harmonic majorant of |#| on X we must
have Mu < BMw and hence BMu = Mu as was to be shown. This com-
pletes the proof.

Remark. Note that the existence of a function #, as in Theorem 3
is not required here.
Upon combining Theorem 3 and Theorem 4 we have the following

COROLLARY. Assume there exists an HP-function u, on X with
infy 4, > 0. Then if d(®) = o and d(®) > 0, we have HO(X) C HB'(X).
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