Network Science 12 (1): 65-87, 2024

; CAMBRIDGE
do0i:10.1017/nws.2023.23

1% UNIVERSITY PRESS

RESEARCH ARTICLE

Audience selection for maximizing social influence

11,3,4

Balazs R. Sziklai"*(® and Balazs Lengye

nstitute of Economics, HUN-REN Centre for Economic and Regional Studies, Budapest, Hungary, 2Department of
Operations Research and Actuarial Sciences, Corvinus University of Budapest, Budapest, Hungary, >Corvinus Institute for
Advanced Studies, Corvinus University of Budapest, Budapest, Hungary, and *Institute of Data Analytics and Information
Systems, Corvinus University of Budapest, Budapest, Hungary

Corresponding author: Balazs R. Sziklai; Email: sziklai.balazs@krtk.hun-ren.hu

Abstract

Viral marketing campaigns target primarily those individuals who are central in social networks and hence
have social influence. Marketing events, however, may attract diverse audience. Despite the importance of
event marketing, the influence of heterogeneous target groups is not well understood yet. In this paper, we
define the Audience Selection (AS) problem in which different sets of agents need to be evaluated and com-
pared based on their social influence. A typical application of Audience selection is choosing locations for
a series of marketing events. The Audience selection problem is different from the well-known Influence
Maximization (IM) problem in two aspects. Firstly, it deals with sets rather than nodes. Secondly, the sets
are diverse, composed by a mixture of influential and ordinary agents. Thus, Audience selection needs to
assess the contribution of ordinary agents too, while IM only aims to find top spreaders. We provide a
systemic test for ranking influence measures in the Audience Selection problem based on node sampling
and on a novel statistical method, the Sum of Ranking Differences. Using a Linear Threshold diffusion
model on two online social networks, we evaluate eight network measures of social influence. We demon-
strate that the statistical assessment of these influence measures is remarkably different in the Audience
Selection problem, when low-ranked individuals are present, from the IM problem, when we focus on the
algorithm’s top choices exclusively.

Keywords: Influence maximization; sum of ranking differences; innovation spreading; audience selection; linear threshold
diffusion model

1. Introduction

Suppose an NGO would like to launch a drug prevention campaign in schools or a politician
competes for votes in towns. Due to limited resources, only few high schools can be visited in
the prevention campaign or few speeches can be held before elections. How should they select a
handful set of audiences to achieve the widest reach through word-of-mouth?

Targeting individuals in a marketing campaign to trigger a cascade of influence has been in the
spotlight of research in the past two decades. In their seminal paper, Kempe et al. (2003) formulate
the Influence Maximization problem (IM) as follows: Given a diffusion model D, a network G and
a positive integer k, find the most influential k nodes in G whose activation results in the largest
spread in the network.

However, it is less understood how the IM method can be applied in traditional marketing
settings, like public event organization. Marketing campaigns typically include group targeting
in the form of commercials or public events but the message of these potentially spreads fur-
ther in the social networks of the initial audience (Shi et al., 2019; Yan et al., 2017; Saleem et al.,
2017).
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Motivated by the frequent combination of target group selection and viral marketing, which is
difficult to address in the original IM setting, we formulate the Audience Selection (AS) problem.
Given a diffusion model D, a network G = (V, E) and an activation mechanism f 2V 5 2V assess
the collection of possible node sets (audiences) S; C V, i=1,...,n according to the spread that
their activation generates in order to find S; of maximum spread. We pose no restriction on the
subsets, they might be of varying sizes and some might even overlap. At the beginning of the
campaign, one S; is targeted. The activation mechanism denotes the individuals f(S;) € S; who
were successfully persuaded to participate in the campaign. The diffusion model is applied on
f(Si), and the influence spread is determined.

Note that f and D are different in nature. The activation mechanism is the result of a campaign
event that consists of various marketing elements (speeches, ads, or distributed product sam-
ples), while the diffusion mechanism imitates the personal interactions between users, commonly
referred to as word-of-mouth.

In the AS problem, we do not seek to construct the best seed set, but to compare available
seed sets. Each S; set represents an audience that could be reached through a campaign involving
several public events. There are two inherent difficulties involved. Firstly, the number of sets that
need to be evaluated can be astronomical. Secondly, the seed sets are relatively large and contain
a wide variety of people—not only opinion leaders, but ordinary folk too.

Although ordinary individuals do not have much influence on their own, they can be pivotal
collectively. This stands in contrast to influencers, who in turn can be powerful even if there are
only a few of them. The roles of both groups are illustrated by Wang et al. (2019) who found that
complex news stories spread much more effectively via “ordinary people.” Influencers only play
an important role in disseminating simple messages.

In order to evaluate the potential of the possible audiences we need to understand what ordi-
nary agents bring to the table. Influence in networks can be proxied by the centrality of the
individuals, but certain centrality indices might be better in ranking ordinary agents than oth-
ers. Put it differently, an influence measure that is successful in identifying the best spreaders on
the whole node set might be less efficient in classifying agents of average or low influence.

In this paper, we devise a statistical test to uncover the real ranking of influence maximization
proxies under the AS model. The situation is somewhat similar to polling. When a survey agency
wants to predict the outcome of an election it takes a random, representative sample from the
population. Our aim is to observe the performance of the measures on “average” nodes; thus, we
will take samples from the node set, then compare the obtained results using a novel comparative
test method: Sum of Ranking Differences (SRD or Héberger test).

SRD ranks competing solutions based on a reference point. It originates from chemistry where
various properties of a substance measured in different laboratories (or by various methods)
need to be compared (Héberger, 2010; Héberger and Kollar-Hunek, 2011). SRD is rapidly gaining
popularity in various fields of applied science such as analytical chemistry (Andri¢, 2018), phar-
macology (Ristovski et al., 2018), decision-making (Lourenc¢o and Lebensztajn, 2018), machine
learning (Moorthy et al., 2017), political science (Sziklai and Héberger, 2020), and even sports
(West, 2018).

Our test method is devised as follows. Let us suppose that the diffusion model D and the net-
work G are fixed. We take samples from the node set of G. For the sake of simplicity, we assume
that the activation function is the identity function, f(S) = S; thus, every user in the sample is acti-
vated. Although this is unrealistic in real campaigns, it is equivalent to the case of taking a bigger
sample and activating only a fraction of the users. Since, in this paper, we will work with random
samples, there is no difference between the two approaches.

We run the diffusion model with these samples as input and observe their performance, the
latter will serve as a reference ranking for SRD. Then, we calculate the influence maximization
proxies on the whole network. We aggregate the proxy values for each node in the sample sets.
This induces a ranking among the samples: different proxies will prefer different sample sets.
Finally, we compare the ranking of the sample sets made by the proxies with the reference ranking.
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The measured distances (SRD scores) show which proxies are the closest to the reference, that is,
the most effective in predicting the spreading potential of the different audiences.

We contribute to the literature in two ways. First, we introduce the Audience Selection prob-
lem and show that it is inherently different from the Influence Maximization problem. Second,
we apply a new statistical test, Sum of Ranking Differences, which enables us to compare net-
work centrality measures. We test the efficacy of different network centralities in a social network
environment under both the AS and IM frameworks.

2. Literature and research problem

Social networks became important elements of marketing campaigns. Targeting individuals based
on their position in the network and their capacity to influence others is an essential market-
ing tool and an active area of network science (Aral, 2011; Watts and Dodds, 2007). However,
marketing strategies often focus on communities and not on individuals. For example, health
interventions target specific groups and by changing their behavior also aim to have a wider impact
that can spread in the network (Gold et al., 2011). Similarly, a frequently used technique of brand
management is the identification of communities of customers that engage with the brand and
can also influence others (Gensler et al., 2013).

Here we argue that the market segmentation and influence maximization techniques should be
combined in marketing campaigns run on social networks. However, such an endeavor requires
a better understanding of what groups of individuals should be selected for targeting such that
social influence is maximized. To demonstrate this research niche, we shortly review grouping
techniques and then introduce the research niche in group targeting.

2.1 Grouping for targeting

Identifying the groups of influential individuals is a widely used technique in social network tar-
geting. One line of literature explores how network communities, groups of nodes that are densely
connected within and loosely connected across groups, interconnect and influence each other. Yan
etal. (2017) introduce a statistical method to reveal the influence relationship between communi-
ties, based on which they propose a propagation model that can dynamically calculate the scope
of influence spread of seed groups. Rahimkhani et al. (2015) identify the community structures of
the input graph, select the most influential communities, then choose a number of representative
nodes based on the result. Weng et al. (2014) predict which memes will be successful in spreading
using the network and the community structure. Hajdu et al. (2020) study passenger travel behav-
ior to reveal passenger groups that travel together on a given day and model epidemic spreading
risk among passengers.

Co-location of individuals is also used by many to group the users for targeting. Li et al. (2014)
examine the challenge of providing new companies (e.g., restaurants) with marketing services by
locating their potential customers in a region. Similarly, Song et al. (2016) investigate a depart-
mental sales event where the store’s location plays a significant role in the campaign. In this
scenario, individuals residing far away from the store are unlikely to be affected by the promo-
tional efforts. Both papers aim to find k users who can maximize the number of influenced users
within a specific geographical region.

An alternative spatial approach is presented by Cai et al. (2016) who propose a two-layered
graph framework, where one layer represents the social network and the other layer connects
users who are geographically close. In this framework, particular events (e.g., exhibitions, adver-
tisements, or sports meetings) take place in the physical world and influence multiple users located
near the event’s position. These influenced users then have the potential to propagate the event
further by sharing it with their friends in online social networks or with their neighbors in the
physical world. Similarly, Shi et al. (2019) consider influence maximization from an online-offline
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interactive setting. They propose the location-driven Influence Maximization problem, which
aims to find the optimal offline deployment of locations and durations to hold events subject
to a budget, so as to maximize the online influence spread. Saleem et al. (2017) use geo-tagged
activity data and track how users are navigating between locations and based on this information
they select the most influential locations.

2.2 Audience Selection: a niche for methodological development

Targeting groups of individuals is fundamentally different from targeting influential individuals.
Here, the task is to select an audience of the message that can be composed of highly influential
persons and of less influential ones.

We have found only one paper, that explicitly addresses the problem of group targeting.
Eftekhar et al. (2013) consider a billboard campaign that targets groups. The advertiser is allowed
to select k locations (that is, k groups) for the campaign. The individuals in the groups are acti-
vated with a certain probability. This so-called Fine-Grained Group Diffusion Model (FGD) has
a similar mathematical framework as ours, although our formulation, that we will introduce in
Section 3, is more general. For instance, Audience Selection can model when either three cam-
paign events can be organized on the East coast or four on the West coast, but it is impossible to
formulate this as an FGD.

The statistical assessment of the quality of group targeting is even scarcer. The comparison of
centrality measures is accomplished by Perra and Fortunato (2008) who analyze the rankings of
nodes of real graphs for different diffusion algorithms. Their focus is on spectral measures such
as PageRank and HITS and they adopt Kendall’s 7 index to calculate their pairwise correlation.
However, they do not validate their results by ground truth of diffusion. On the other hand, the
robustness of centrality measures has been studied, see Martin and Niemeyer (2019) and the ref-
erences therein. Here we propose the SRD ranking method, introduced in detail in Section 4, that
can assess the quality of Audience Selection and thus can provide new insights for group targeting.
SRD scores and distribution can be generated by rSRD, an R package written by Staudacher et al.
(2023) and downloadable from the Comprehensive R Archive Network. For the reliability of the
employed cross-validation technique, see Sziklai et al. (2022).

3. Audience Selection vs Influence Maximization

Since the proposed problem of Audience Selection is closely related to Influence Maximization, it
is worth to explore the differences between the two approaches. Let us consider a small example
in which grouping is based on co-location of individuals. Figure 1 depicts a social network with
additional geographic information. Colors signify different locations, say towns. Each town has
three inhabitants (agents). Red agents are all connected to all the orange and blue agents. The top
green agent is connected to all the orange agents and two blue ones, while the bottom green is
connected to all the blue agents and two orange. Finally, the middle green agent is connected to
all the pink agents.

In the Audience Selection problem, we have to find the most suitable locations for a series of
marketing events. Agents corresponding to the same location can be reached simultaneously. Let
us assume that the linear threshold diffusion model (a standard choice in the literature, see details
in Section 5) adequately represents influence spreading in this network. In our example, one event
is organized and every user is activated at the selected location. Which town should be chosen?

Formulating the question like this, we are asking which town provides the best audience. In
contrast, the Influence Maximization problem tries to find the k most pivotal agents in a diffusion.

Let us try to answer our questions from the perspective of Influence Maximization. Since each
town accommodates three agents, let us fix k = 3. Kempe et al. (2003) proposed a greedy algorithm
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Figure 1. Sketch of a social network with five geographical locations (red, orange, blue, green, and pink) each accommodat-
ing three agents.

to approximate the best set of k agents. Since then, many clever heuristics have been invented to
improve either the approximation or the running time of the greedy algorithm. However, for such
a small example we do not need sophisticated techniques. We can try each combination of agent
triplets in a diffusion simulation. It turns out that choosing any two of the red agents, and the
middle green agent is the best: On average, they can reach (activate) 78.6% of the nodes.

Since the majority of the most influential agents are red, we are inclined to choose the red town.
However, that would be a mistake. Green agents can activate on average 74.0% of all the nodes,
while red agents only score 63.6%. Thus, the green town outperforms the red one by a hefty 10%.

Let us approach the question from another angle. Influence Maximization techniques often
suffer from computational limitations. It is difficult to even approximate a suitable k set for a
huge network. The usual workaround is to use proxy measures, that is, network centralities that
were designed to find influential spreaders. For instance, we may calculate the average PageRank
value of each agent in a town (for definition and discussion of network centralities, see Section 6).
Table 1 contains the PageRank values as well as the Harmonic centrality of each node. It also lists
the average centrality values for each town.

PageRank correctly predicts the potential of the towns, in the sense, that larger PageRank values
correspond to greater spreading capabilities. Harmonic centrality is far less effective, as it ranks
the town with the best audience as the second worst.

From this small example, we can deduce a couple of interesting points.

« Influence Maximization techniques are ineffective in comparing sets of nodes, because the
most influential agents might be spread over different sets.

« Although some sets contain less influential agents (top and bottom green agents are less
influential than any of the red ones), as a group they might be more effective than any
other.

» Aggregating network centralities at a set level can be a good predictor of the sets’ spreading
potential.

« Some centrality measures are more effective than others. Their performance might also
vary depending on the underlying graph structure and the applied diffusion model.
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Table 1. The PageRank values and Harmonic centrality of the social network depicted in Figure 1. Agents are
referred as x;, where x denotes the first letter of the towns’ color (red, orange, blue, green, pink,) and i denotes
the agents location in the town (top, middle, bottom). Bold numbers represent the maximum value among

towns
Agent/ PageRank Harmonic Agent/ PageRank Harmonic
town (¢ =0.8) centrality town (¢ =0.8) centrality
re 0.0770 0.571429 9Im 0.1259 0.214286
I'm 0.0770 0.571429 9b 0.0660 0.52381
ry 0.0770 0.571429 Pt 0.0469 0.142857
ot 0.0547 0.488095 Pm 0.0469 0.142857
Om 0.0653 0.535714 Pp 0.0469 0.142857
Op 0.0653 0.535714 Red town (avg) 0.0770 0.5714
by 0.0653 0.535714 Orange town (avg) 0.0617 0.5198
bm 0.0653 0.535714 Blue town (avg) 0.0617 0.5198
bp 0.0547 0.488095 Green town (avg) 0.0859 0.4206
gt 0.0660 0.52381 Pink town (avg) 0.0469 0.1428

Based on these observations, we can formulate a hypothesis. We expect to observe a discrep-
ancy between the rankings of the best Influence Maximization proxies and the best algorithms for
the Audience Selection problem. In the next section, we will describe the ranking frameworks and
present our hypothesis formally. To avoid inferring too much from a small example, we test our
hypothesis on two real-life social networks.

Note that the best way to uncover the potential of an audience is by simulation. However, this
might be prohibitive for various reasons. Running diffusion simulations are costly, especially since
we have to do it many times—often on a very large network too—to get a reliable estimate of the
set’s spreading potential.

But the real difficulty comes from the cardinality of the sets rather than the running time of
one simulation. If a marketing campaign consists of a series of events, each tied to a different
location, the number of sets we need to assess can grow excessively. For instance, if we have to pick
five towns among 100, that already means more than 75 million combinations that each need an
evaluation by simulation. Calculating influence proxy measures, that is, network centralities that
were specifically designed with the underlying problem in mind, is a much cheaper and sometimes
the only feasible solution. In the example at hand, the analyst would select the five towns with the
highest average node centrality.

4, Methodology

In this section—following a brief overview of the data and the SRD method—we introduce our
hypothesis and the proposed testing framework.

4.1 Data

For demonstration, we use two real-life social networks. iWiW was the most widely used social
network in Hungary before the era of Facebook (Lengyel et al., 2020). Over its life cycle, it had
more than 3 million subscribers (nearly one-third of the population of Hungary) who engaged
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in over 300 million friendship ties. For computational reasons, we use a 10% sample of the node
set of this network chosen uniformly at random but stratified by towns and network community
structure. Pokec is a Slovakian dating and chatting website. Similarly, we took a random sample
of the users of Pokec.

The iWiW graph sample contains 271,913 users and 2,712,587 friendship ties, while the Pokec
is somewhat scarcer featuring 277,695 nodes and 2,122,778 edges. The iWiW dataset is accessible
upon request from the Databank of the HUN-REN Centre of Economic and Regional Studies,’
while the Pokec dataset is downloadable from the Stanford Large Network Dataset Collection.?

4.2 SRD

SRD is a statistical test method that compares solutions via a reference. The input of an SRD
analysis is an n x m matrix where the first m — 1 columns represent the methods we would like
to compare, while the rows stand for the different input instances of the solutions. In our con-
text, columns are centrality measures (influence proxies) and the rows are the samples we have
taken from the node set (potential audiences). The last column of the matrix has a special role.
It contains the benchmark values, called references, which form the basis of comparison. From
the input matrix, we compose a ranking matrix by replacing each value in a column—in order of
magnitude—by its rank. Ties are resolved by fractional ranking, i.e., by giving each tied value the
arithmetic average of their ranks. SRD values are obtained by computing the Manhattan distances
(or £1-norm) between the column ranks and the reference ranking. In our paper, the reference
values are given externally (they are the average spread of the sample sets in the simulation), but
in some applications, the reference values are extracted from the first m — 1 columns, this pro-
cess is called data fusion (Willett, 2013). Depending on the type of data, this can be done by a
number of ways (taking the average, median, or minimum/maximum). Since we have an external
benchmark, we do not delve into the intricacies of data fusion. A more detailed explanation with
a numerical example can be found in Sziklai and Héberger (2020).

SRD values are normalized by the maximum possible distance between two rankings of size n.
In this way, SRD values corresponding to problems of different sizes can be compared. A small
SRD score indicates that the solution is close to the reference (ranks the rows almost or entirely
in the same order as the latter). The differences in SRD values induce a ranking between the
solutions. SRD calculation is followed by two validation steps.

i. The permutation test (sometimes called randomization test, denoted by
CRRN = comparison of ranks with random numbers) shows whether the rankings
are comparable with a ranking taken at random. SRD values follow a discrete distribution
that depends on the number of rows and the presence of ties. If n exceeds 13 and there are
no ties, the distribution can be approximated with the normal distribution. By convention,
we accept those solutions that are below 0.05, that is, below the 5% significance threshold.
Between 5% and 95% solutions are not distinguishable from random ranking, while above
95% the solution seems to rank the objects in a reverse order (with 5% significance).

ii. The second validation option is called cross-validation and assigns uncertainties to the
SRD values. Cross-validation enables us to statistically test whether two solutions are essen-
tially the same or not, that is, whether the induced column rankings come from the same
distribution. We assume that the rows are independent in the sense that removing some
rows from the matrix does not change the values in the remaining cells (in our setting this
is trivially true). Cross-validation proceeds by taking £ samples from the rows and com-
puting the SRD values for each subset. Different cross-validation techniques (Wilcoxon,
Dietterich, Alpaydin) sample the rows in different ways (Sziklai et al., 2022). Here we
opted for 8-fold cross-validation coupled with the Wilcoxon matched pair signed rank test
(henceforward Wilcoxon test). For small row sizes (n < 7) leave-one-out cross-validation
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Table 2. SRD computation. nSRD stands for normalized SRD

Input data Ranking matrix
Solution 1 Solution 2 Ref. Solution 1 Solution 2 Ref.
Inputl 0.37 0.65 0.49 — Inputl 1 3 2
Input2 0.51 0.14 0.34 Input2 2 1 1
Input3 0.82 0.88 1 — Input3 3 5 5
Input4 0.93 0.65 0.84 Input4 5 3 3.5
Input5 0.88 0.65 0.84 — Input5 4 3 3.5
SRD 6 2
nSRD 0.5 0.16

is applied, each row is left out once. For larger row sizes (as in this paper), a reasonable
choice is leaving out [n/£] rows uniformly and randomly in each fold. The obtained SRD
values are then compared with the Wilcoxon test with the usual significance level of 5% for
each pair of solutions.

4.2.1 Example
Table 2 features a toy example. Suppose we would like to compare two solutions along five input
instances for which we have reference values. The input table shows how the two solutions per-
form according to the different data. The ranking matrix converts these values to ranks. Note
that there is a three-way tie for Solution 2. Since these are the 2nd, 3rd, and 4th largest values in
that column, they all get the average rank of 3. Similarly, in the reference column the 3rd and 4th
largest value coincide, thus they get an average rank of 3.5.

We compute the SRD scores by calculating the distances between the ranking vectors of
the solution vector and the reference ranking vector in £;-norm. For the first solution, this is
calculated as follows:

6=[1—2|+2—1|+|3—5|+|5—3.5+]4—3.5|.

The maximum distance between two rankings that rank objects from 1 to 5 is 12. Thus, we
divided the SRD scores by 12 to obtain the normalized SRD values. In the permutation test, we
compare these values to the 5% thresholds of the discrete distribution that SRD follows. For n =15,
we accept those solutions (with 5% significance) which have a normalized score of 0.25 or less.
This value comes from the discrete SRD distribution which depends on the number of rows and
the presence of ties. Compared to the reference Solution 1 seems to rank the properties randomly,
while Solution 2 passes the test.

4.3 Testing framework for the Audience Selection problem

In the Audience Selection problem, we are presented with several possible audiences (node sets of
the underlying social network) and we need to predict that, upon activation, which are spreading
influence better. Spreading potential can be proxied by network centrality. Our aim is to find out
which centrality has better prediction power. Now we describe a step by step a comparison method
that enables us to evaluate network centralities with statistical significance.

1. We determine the influence measures (centralities) for each node of the network.

2. We take n samples of size g from the node set.
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3. For each set, we calculate its average centrality according to each measure. Depending on
the data, alternative statistical aggregates, e.g., the sum (for unequal set sizes) or the median
(in the presence of outliers), can be applied.

4. The activation function is used on the sets. In this paper, every user in the set is activated.

We run a Monte Carlo simulation multiple times with diffusion model D for each of the
sample sets as seeds and observe their performance, that is, how many nodes do they
manage to activate on average.

6. We compile the ranking matrix from the values obtained in step 3 and step 4. These
correspond to the solution columns and the reference column, respectively.

7. We compute the SRD values and validate our results.

This framework enables us to test our hypothesis. The SRD analysis results in a ranking that
tells us which centrality measures perform well in the Audience Selection problem. In parallel,
we also run a diffusion simulation on the centralities’ top choices, which gives us the ranking of
the centralities in the Influence Maximization problem. Our hypothesis is that different measures
prevail in one setting than the other.

Hypothesis 1.The ranking of centralities in the Audience Selection problem significantly differs from
a ranking obtained in the Influence Maximization problem.

For validation, we test our hypothesis on two datasets, the iWiW and the Pokec networks. If
the set size, g, is chosen to be too big, then the whole graph will be activated during the diffusion
simulation, if it is set too small, then hardly anybody will be infected outside the original sets.
Keeping this in mind, the hypothesis should be true for a wide range of set size values. Thus, we
set ¢ = 500 for iWiW, but opted for g = 2000 for the Pokec graph. These correspond to 0.183% and
0.720% of the total number of nodes, respectively. Note that iWiW and Pokec have approximately
the same number of nodes, although Pokec is somewhat less dense.

Increasing the number of sets, #, is costly as we have to run simulations for each set, but it
also helps to create a clear ranking over the proxy measures. Under a high n parameter, even small
differences in performance will be statistically significant. Considering the distribution of SRD, we
opted for n = 24. SRD already follows approximately normal distribution if n > 13 provided there
are no ties in the rankings. As n becomes larger than 13, the distribution becomes sufficiently
dense to detect small differences. In the presence of a few ties, the distribution is even denser,
although it moves away slightly from normality. Thus, we use the empirical distribution, provided
by the rSRD package, to determine p-values.

5. Diffusion models

A central observation of diffusion theory is that the line that separates a failed cascade from a
successful one is very thin. Granovetter (1978) was the first to offer an explanation for this phe-
nomenon. He assumed that each agent has a threshold value, and an agent becomes an adopter
only if the amount of influence it receives exceeds the threshold. He uses an illuminating exam-
ple of how a peaceful protest becomes a riot. A violent action triggers other agents who in turn
also become agitated and a domino effect ensues. However, much depends on the threshold dis-
tribution. Despite the similarities, network diffusion can substantially differ depending on the
type of contagion we deal with. A basic difference stems from the possible adopting behaviors.
In most models, agents can adopt two or three distinct states: susceptible, infected, and recovered.
Consequently, the literature distinguishes between SI, SIS, and SIR types of models.

In the conventional Influence Maximization setup, a seed set of users are fixed as adopters
(or are infected), then the results of diffusion are observed. In the SI model, agents who become
adopters stay so until the end of simulation (Carnes et al., 2007; Chen et al., 2009; Kim et al., 2013).
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A real-life example of such a diffusion can be a profound innovation that eventually conquers the
whole network (e.g., mobile phones, internet). In SIS models, agents can change from suscepti-
ble to adopter and then back to susceptible again (Kitsak et al., 2010; Barbillon et al., 2020). For
example, an innovation or rumor that can die out behaves this way. Another example would be of
a service that agents can unsubscribe from and subscribe again if they want. In SIR models, agents
can get “cured” and switch from adopter to recovered status (Yang et al., 2007; Gong and Kang,
2018; Bucur and Holme, 2020). Recovered agents enjoy temporary or lasting immunity to addic-
tive misbehavior (e.g., to online gaming). Other models allow users to self-activate themselves
through spontaneous user adoption (Sun et al., 2020).

In this paper, we feature a classical SI diffusion model: the Linear Threshold (LT) framework.
We represent our network G with a graph (V, E), where V is the set of nodes and E is the set of
arcs (directed edges) between the nodes. In LT, each node, v chooses a threshold value #, uniform
at random from the interval [0, 1]. Similarly, each edge e is assigned a weight w, from [0, 1], such
that, for each node the sum of weights of the entering arcs add up to 1, formally

Z We=1. forallve V.

{e€Ele=(u,v),ueV}

One round of simulation for a sample set S; took the following steps.

1. Generate random node thresholds and arc weights for eachve Vand e € E.
2. Activate each node in V that belongs to S;.

3. Mark each leaving arc of the active nodes.
4

For eachu € V'\ §; sum up the weights of the marked entering arcs. If the sum exceeds, the
node’s threshold activate the node.

5. If there were new activations go back to step 3.

6. Output the spread, i.e., the percentage of active nodes.

We ran 5000 simulations and took the average of spread, that is, the expected percentage of
individuals that the campaign will reach if S; is chosen as initial spreaders.

In this setup, we can think of node thresholds as a measure of innovativeness or risk atti-
tude of the users, while edge weights represent how much influence they bear on each other.
Randomization of the parameters is useful in two ways. First, it is difficult to measure peer influ-
ence and individual thresholds. There are much more data available, since Kempe et al. (2003)
introduced this diffusion model, so there is room for potential improvements in this aspect. For
instance, a strong argument can be made that the parameters for innovators and early adopters
should be chosen from different intervals, as they play a key role in the diffusion (Sziklai and
Lengyel, 2022). Nevertheless, randomization is also essential for obtaining multiple observations
needed for statistical inference. Perturbing parameter values is a standard technique to achieve
this.

6. Influence Maximization proxies

In this section, we give a brief overview of the measures we employed in our analysis.

Among the classical centrality measures, we included Degree and Harmonic Centrality. The
former is a self-explanatory benchmark, and the latter is a distance-based measure proposed by
Marchiori and Latora (2000). Harmonic centrality of a node, v is the sum of the reciprocal of dis-
tances between v and every other node in the network. For disconnected node pairs, the distance
is infinite; thus, the reciprocal is defined as zero. A peripheral node lies far away from most of the
nodes. Thus, the reciprocal of the distances will be small which yields a small centrality value.
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PageRank, introduced by Page et al. (1999), is a spectral measure and a close relative of
Eigenvector centrality (Bonacich, 1972). Eigenvector centrality may lead to misleading valuations
if the underlying graph is not strongly connected. PageRank overcomes this difficulty by (i) con-
necting sink nodes (i.e., nodes with no leaving arc) with every other node through a link and (ii)
redistributing some value uniformly among the nodes. The latter is parameterized by the so-called
damping factor, & € (0, 1). The method is best described as a stochastic process. Suppose we start
arandom walk from an arbitrary node of the network. If anytime we hit a sink node, we restart the
walk by choosing a node uniform at random from the node set. After each step, we havea (1 — )
probability to teleport to a random node. The probability that we occupy node v as the number of
steps tends to infinity is the PageRank value of node v. The idea was to model random surfing on
the World Wide Web. PageRank is a core element of Google’s search engine, but the algorithm
is used in a wide variety of applications. The damping value is most commonly chosen from the
interval (0.7, 0.9), here we opted for v = 0.8. For an axiomatic characterization of PageRank, see
Was and Skibski (2023).

Generalized Degree Discount (GDD) introduced by Wang et al. (2016) is a suggested
improvement on Degree Discount (Chen et al., 2009) which was developed specifically for the
independent cascade model. The latter is an SI diffusion model where each active node has a sin-
gle chance to infect its neighbors, transmission occurring with the probability specified by the arc
weights. Discount Degree constructs a spreader group of size g starting from the empty set and
adding nodes one by one using a simple heuristic. It primarily looks at the degree of the nodes but
also takes into account how many of their neighbors are spreaders. GDD takes this idea one step
further and also considers how many of the neighbors’ neighbors are spreaders. The spreading
parameter of the algorithm was chosen to be 0.05.

k-core, sometimes referred to as, k-shell exposes the onion-like structure of the network
(Seidman, 1983; Kitsak et al., 2010). First, it successively removes nodes with only one neigh-
bor from the graph. These are assigned a k-core value of 1. Then it removes nodes with two or less
neighbors and labels them with a k-core value of 2. The process is continued in the same manner
until every node is classified. In this way, every node of a path or a star graph is assigned a k-core
value of 1, while nodes of a cycle will have a k-core value of 2.

Linear Threshold Centrality (LTC) was, as the name suggests, designed for the Linear
Threshold model (Riquelme et al., 2018). Given a network, G with node thresholds and arc
weights, LTC of a node v represents the fraction of nodes that v and its neighbors would infect
under the Linear Threshold model. In the simulation, we derived the node and arc weights that
is needed for the LTC calculation from a simple heuristics: each arc’s weight is defined as 1 and
node thresholds were defined as 0.7 times the node degree. Note that we ran LTC and GDD under
various parameters and chose the one which performed the best during the CRRN test (see Fig. Al
in the Appendix).

Suri and Narahari (2008) define a cooperative game on graphs and derive node centrality by
computing the Shapley value. Nodes are considered players who cooperate to compose the best
k-element set, for some given k. The Shapley value is the expected marginal contribution of each
player when players are added to the set one by one and each order of the players is equally likely.
Marginal contribution of a node u is just the difference between the value of the node set with
and without u. Depending on how we define the value of a node set, we can derive different
cooperative games. Here we use the G1 game variant proposed by Michalak et al. (2013) who also
gave a polynomial-time algorithm to compute the corresponding Shapley(G1)-value. In G1, the
characteristic function value of a node set C, is the number of nodes in C plus the number of
distinct neighbors of C.

Top candidate (TC) algorithm originates from the field of social choice. It is a group iden-
tification method designed to find experts on recommendation networks (Sziklai, 2018, 2021).
The algorithm takes a graph as an input and outputs a list of experts. The size of the output can
be adjusted with a parameter, « € [0, 1]. The smallest set (@ = 0) corresponds to the elite, while
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the largest set (o« = 1) is composed by anyone who could conceivably considered as expert. The
algorithm works as follows. In the beginning, each node is considered as an expert and asked to
nominate « fraction of its most popular neighbors. Popularity is measured by the number of rec-
ommendations the node received, that is, in the number of entering arcs. The nodes that receive
no nominations are surely not experts; hence, they are removed from the expert set and their
nominations are withdrawn. This in turn might leave some other nodes without nominations.
The removal of experts continues until the set stabilizes. The o parameter is what makes TC suit-
able as a centrality index for strongly connected graphs. We run the algorithm multiple times,
incrementing the o parameter by 0.01. Each node is assigned the largest 1 — « value for which
the node first becomes expert. This can be considered as a measure of exclusivity. For strongly
connected graphs, every node becomes an expert at « = 1 the latest, but those nodes will have an
exclusivity value of 0. Note that social networks consisting of one component become strongly
connected when the undirected link between the users (the “friendship”) is converted into two
opposing directed edges.

This is by no means a comprehensive list, there are other proxy and centrality measures, e.g.,
HITS (Kleinberg, 1999), LeaderRank (Lii et al., 2011), DegreeDistance (Sheikhahmadi et al., 2015),
IRIE (Jung et al.,, 2012), GroupPR (Liu et al., 2014), Attachment centrality (Skibski et al., 2019) for
more see the survey of Li et al. (2018). Announcing a clear winner falls outside the scope of this
manuscript. A real ranking analysis should always consider the diffusion model and a network
characteristics carefully, as different algorithms will thrive in different environments.

7. Ranking analysis

The performance of the sample sets according to the various influence measures is displayed in
Tables Al (for iWiW) and A3 (for Pokec). The last column shows the percentage of nodes that the
samples managed to activate on average in the diffusion simulation. The ranking matrix together
with the SRD values is displayed in Tables A2 and A4. The tables can be found in the Appendix.
The SRD score of a centrality is the distance between the ranking induced by the measure and the
reference ranking, that is, the last column. In the CRRN test (Comparison of Ranks with Random
Numbers), we compare the SRD scores with those of random rankings. Figures 2 and 3 show the
result of the CRRN test. The SRD distribution is generated by observing the distances of random
rankings from the reference. We accept a solution if the distance between the solution’s ranking
and the reference ranking falls left to the 5% significance thresholds.

For both networks, all of the methods pass the test, that is, they rank the sample sets more
or less correctly. The performances vary, although degree and PageRank rank high, while k-core
and Harmonic centrality rank low on both networks. The first places of degree should be taken
with a grain of salt. A possible reason behind its exceptional performance might come from the
fact that sample sets were created by random sampling. It remains to be seen how degree performs
compared to other measures when sets are generated in a more realistic way, e.g., based on location
data.

Cross-validation reveals how the methods are grouped. Multiple SRD scores are generated by
sampling the data and recalculating the rankings. We create 8-folds, by repeatedly removing three
random rows (sample sets) and recalculating the rankings. Then, an 8-fold Wilcoxon test com-
pares the median values. Figures 4 and 5 show the boxplots of the attained SRD values. On the
iWiW network, there is no significant difference between Harmonic centrality, Shapley G1 and
GDD. On the Pokec network, Linear Threshold Centrality and Shapley G1 are tied for the 4th
place.

Our main goal was to show that Audience Selection and Influence Maximization are two dif-
ferent problems. So let us take a look at how the top choices of these measures perform in the
simulation. In case of iWiW, we took the 500 highest-ranked agents for each measure. If the
500th and 501st agents tied with each other, we discarded agents with the same score one by
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Figure 2. iWiW CRRN test. The order of the centrality measures in the legend (from top to bottom) follows the same order as
the colored bars in the figure (from left to right). The bars’ height is equal to their normalized SRD values. The black curve is
a continuous approximation of the cumulative distribution function of the random SRD values. All (normalized) SRD values
fall outside the 5% threshold (XX1: 5% threshold, Med: Median, XX19: 95% threshold).
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is a continuous approximation of the cumulative distribution function of the random SRD values. All (normalized) SRD values
fall outside the 5% threshold (XX1: 5% threshold, Med: Median, XX19: 95% threshold).
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Figure 4. Cross-validation on iWiW data. The boxplot shows the median (black diamond), Q1/Q3 (blue box), and min/max
values. The measures are ranked from left to right by the median values. The ‘~’ sign between two neighboring measures
indicates that the Wilcoxon test found no significant difference between the rankings induced by the measures.
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Figure 5. Cross-validation of Pokec data. The boxplot shows the median (black diamond), Q1/Q3 (blue box), and min/max
values. The measures are ranked from left to right by the median values. The ‘~’ sign between two neighboring measures
indicates that the Wilcoxon test found no significant difference between the rankings induced by the measures.
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Table 3. Comparing the rankings of centralities induced by the Audience Selection (AS) and Influence Maximization
(IM) problem on iWiW. Ranks in brackets show the tied ranks according to the cross-validation

Degree  Harmonic  PageRank  GDD (0.05) k-core LTC(0.7) Shapley (G1) TC

Avg. spread (%) 21.124 16.243 21.013 21.178 4.559 20.970 20.207 17.770
Rank by IM 2 7 3 1 8 4 5 6
nSRD 0.066 0.333 0.108 0.344 0.385 0.083 0.330 0.250
Rank by AS 1 6 (6) 3 7(6) 8 2 5 (6) 4
Rank difference 1 1 0 6 0 2 0 2
With ties 1 1 0 5 0 2 1 2

Table 4. Comparing the rankings of centralities induced by the Audience Selection (AS) and Influence Maximization
(IM) problem on Pokec. Ranks in brackets show the tied ranks according to the cross-validation

Degree  Harmonic  PageRank  GDD (0.05) k-core LTC(0.7) Shapley (G1) TC

Avg. spread (%) 31.989 26.550 32.498 32.655 10.718 28.782 31.133 29.129
Rank by IM 3 7 2 1 8 6 4 5
nSRD 0.038 0.431 0.132 0.188 0.274 0.222 0.233 0.292
Rank by AS 1 8 2 3 6 4(4.5) 5 (4.5) 7
Rank difference 2 1 0 2 2 2 1 2
With ties 2 1 0 2 2 1.5 0.5 2

one randomly until the size of the set became 500. We ran 5000 simulations to obtain the average
spread of the measures. The same procedure was repeated on the Pokec data, but there the top
2000 nodes were considered. Tables 3 and 4 display the results.

In case of iWiW, there is a significant disparity in the performances of GDD under the Influence
Maximization and Audience Selection problems. In Influence Maximization, GDD is the best-
performing method, while in Audience Selection, it performs poorly compared to other methods.
In case of Pokec, the rank difference between methods is not as massive as in iWiW. However,
there are many smaller differences in the performance of methods.

Are these differences statistically significant? Luckily, the same CRRN test, that we used before
can be applied, but now our input data is different. When we compared centralities, we looked at
how they rank the sample sets. Now we want to compare Influence Maximization with Audience
Selection, therefore we look at how they rank centralities. We can set either the ranking of IM or
that of AS as the reference and compare their distance to the empirical SRD distribution of size
n = 8 (since there are 8 centrality measures).

In case of iWiW, the distance between the IM and the AS ranking equals to a normalized SRD
value of 0.375. In the SRD distribution, this corresponds to a p-value of 0.0685. If we consider
ties the distance remains the same, however, the p-value becomes 0.07104 due to the change in
the distribution. Assuming the usual 5% significance level, these two p-values mean that the AS
ranking is indistinguishable from a random ranking compared to the IM ranking. In other words,
the rankings significantly differ from each other and Hypothesis 1 holds.

In case of Pokec, the SRD values are 0.375 (in the strict ranking case) and 0.34375 (when ties
are considered). The first value corresponds to a p-value of 0.0688, while the second to p = 0.0380.
In other words, statistical significance depends on whether we allow ties or not. Nevertheless, an
SRD score of 0.34375 is substantial even if it is not statistically significant. Considering that both
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Influence Maximization and Audience Selection are optimization problems, the difference is too
big to treat them the same—especially, since they do not agree on the best method.

In conclusion, both our example and simulations on real data point toward that Hypothesis 1
holds: different methods perform well under the Influence Maximization model and the Audience
Selection model.

8. Conclusion

We described a realistic decision situation that occurs in viral marketing campaigns. A company
that organizes a series of public events wants to maximize social influence by selecting suitable
locations/audiences. For this reason, the company must evaluate the collective impact of the
selected audiences. As exact computation is infeasible, the potential is estimated by influence
proxies (e.g., network centralities). The question is which measure suits our needs the best? The
Audience Selection problem resembles to the Influence Maximization at first glance. To prove that
they are different, we proposed a testing framework that is capable to rank influence measures by
their predictive power on sets. For this, we used a novel comparative statistical test, the Sum of
Ranking Differences (SRD).

We demonstrated our results on two real-life social networks. We took samples from the node
sets and created multiple rankings using various centrality measures. We compared these rankings
to a reference ranking induced by the spreading potential of these sets under a Linear Threshold
diffusion model. The algorithm whose ranking is the closest to the reference has the best predictive
power. We compared this ranking to a ranking obtained by running a simulation with the top
choices of these measures (in the manner of Influence Maximization).

In the iWiW network, the best-performing influence maximization algorithm fared relatively
poorly on the Audience Selection test. On both networks, we found that the ranking of centralities
in the Audience Selection problem substantially differed from a ranking obtained in the Influence
Maximization problem. The discrepancy between the two rankings implies that we cannot blindly
assume that the algorithm that finds the top spreaders in a network is the best in predicting the
potential of an arbitrary set of agents.

The innovative use of SRD is one of the novelties of this paper. The test proved to be an excellent
tool for comparing network centralities. Its use is not restricted to Influence Maximization, it can
be applied in a wide variety of settings.

To examine the influence of ordinary users on the diffusion process, we utilized random sam-
pling and compared Audience Selection and Influence Maximization on the randomly selected
sample sets. All centrality measures pass the CRRN test, indicating that they order the sets signifi-
cantly better than a random ranking. However, not every centrality is equally effective. PageRank
and degree perform well on both networks. The effectiveness of degree may be attributed to the
nature of the model. In a more realistic setting, sample sets should be based on locations, demo-
graphic groups, or other social traits. It remains to be seen how degree performs under a more
realistic sampling technique.

Another simplifying assumption we had was to fix the activation function as the identity
function, that is, every user in the seed set was activated. Although with random sampling this
assumption imposes no bias, it becomes less realistic if the seed sets are composed in a more rea-
sonable way (e.g., based on location). A simplistic approach is to activate only a fix fraction of the
targeted group. An even better way is to consider the adopter classification of users—innovators
and early adopters in the seed set should become active with a higher probability.

Similarly to the activation function, different diffusion mechanisms need to be tested. Another
popular diffusion model is independent cascade where each newly activated agent has one oppor-
tunity to infect its neighbors. We conjecture that Audience Selection and Influence Maximization
rank centralities differently under other diffusion frameworks. Nevertheless, it would be interest-
ing to examine the AS problem under the independent cascade model too.
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Finally, we focused on comparing the Audience Selection to the Influence Maximization
problem and also proposed a statistical framework to rank centralities in the former. A more
comprehensive comparison study is needed to find the best method in the Audience Selection
problem.
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Appendix A: Tables

Table Al. Average centrality values of the 24 randomly selected seed sets of iWiW. Avg. spread denotes the
percentage of nodes the sample sets managed to infect on average over 5000 runs

Degree Harmonic PageRank GDD (0.05) k-core LTC(0.7) Shapley (G1) TC  Avg.spread (%)

S1  19.686 0.2197 3.6226 32.924 10.152  22.522 0.9846 0.2853 3.270
S2  20.132 0.2210 3.6639 33.660 10.532  22.964 0.9784 0.2971 3.350
S3  19.500 0.2205 3.6198 32.976 10.248  22.362 0.9833 0.2887 3.270
S4  20.058 0.2197 3.6984 32.947 10.078 23.014 1.0170 0.2875 3.330
S5  19.664 0.2199 3.6625 33.037 10.226  22.570 1.0114 0.2879 3.290
S6  18.300 0.2193 3.4616 32.580 10.100  20.970 0.9470 0.2742 3.075
S7  20.972 0.2212 3.7904 34.108 10.606  23.932 1.0245 0.3011 3.462
S8  20.848 0.2215 3.8019 35.055 10.838  23.942 1.0265 0.3010 3.443
S9  18.948 0.2195 3.5252 32.467 10.036  21.768 0.9607 0.2821 3.162
S10 19.538 0.2210 3.6277 33.875 10.560 22.334 0.9836 0.2938 3.265
S11 19.486 0.2196 3.5936 33.431 10.334  22.254 0.9698 0.2908 3.239
S12  20.284 0.2213 3.7126 33.744 10.498  23.136 0.9973 0.2985 3.380
S13  20.166 0.2195 3.7371 33.069 10.204  23.148 1.0296 0.2962 3.350
S14 20.076 0.2193 3.7118 33.288 10.058  23.000 1.0267 0.2831 3.330
S15 20.268 0.2215 3.7231 33.826 10.500 23.184 1.0070 0.2990 3.367
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Table Al. continued.

Degree Harmonic PageRank GDD (0.05)

k-core

LTC (0.7) Shapley (G1)

TC

Avg. spread (%)

S16
S17
S18
S19
S20

S21

S22
S23

S24

20.658
20.764
20.544
19.662
19.072

19.874

19.534
20.382

19.646

0.2217 3.8264 34.869
0.2207
0.2215
0.2201

0.2189

0.2204
0.2212

0.2207

0.2212

3.7817
3.7619

3.6355

3.6521

3.6190

3.7190

3.6318

3.5767

33.879
34.239
33.450
32.822
34.361

33.562

34.284

33.962

10.786
10.446
10.602
10.382
9.964

10.672

10.380
10.534

10.560

23.680

23.438

22.308
23.276

22.532

23.678

22.472
21.864

22.836

1.0436

0.9852
0.9981

0.9814

1.0211
1.0093
0.9882
0.9807

0.9790

0.3040
0.3045
0.2983
0.2971
0.2759

0.2936

0.2918
0.2951

0.2904

3.425
3.455
3.413
3.281
3.199
3.290
3.275
3.380

3.292

Table A2. iWiW ranking matrix. Data compiled from Table Al. Spreads closer than 0.005% to each other were
considered as a tie. nSRD stands for normalized SRD

Degree Harmonic PageRank GDD (0.05)

k-core LTC(0.7)

Shapley (G1)

TC Avg. spread (rn.)

S1
S2
S3
S4
S5
S6

ST

S8

S9

S10
S11
S12
S13
S14
S15

S16

S17

S18

S19

S20
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15
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9

13

15
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14
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4
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Degree Harmonic PageRank GDD (0.05) k-core LTC(0.7) Shapley (G1)

TC

Avg. spread (rn.)

S21
S22
S23
S24

SRD

nSRD

19

0.066 0.333

12
6
19

8

96

18
11
17

14

31

11
5
17

9

0.108

99

0.344 0.385  0.083

22
12
21

18

111

22
11
17

18.5

24

12
5)
19

10

95

0.330

5)
11
14

7

11

14

72

0.250

12

9

11

0.000

Table A3. Average centrality values of the 24 randomly selected seed sets of Pokec. Avg. spread denotes the

percentage of nodes the sample sets managed to infect on average over 5000 runs

Degree Harmonic PageRank GDD (0.05) k-core LTC(0.7) Shapley (G1)

TC

Avg. spread (%)

S1

S2

S3

S4

S5

S6

S7
S8
S9

S10

S11

S12

S13

S14
S15

S16

S17
S18
S19

S20

S21

S22

S23

S24

15.049
15.639
14.982

15.357
15.366
15.458

15.725

15.447

15.319

15.638
15.237

14.983

14.904
15,353
15.364
14.719

15.156

15.213

15.962

15.960
15.934
14.764

15.060

15.615

0.1920
0.1919
0.1921
0.1922
0.1924
0.1922

0.1921

0.1922

0.1917

0.1926
0.1917
0.1917
0.1919
0.1923
0.1923
0.1918

0.1923

0.1923

0.1919

0.1926
0.1926
0.1916

0.1916

0.1925

3.5720
3.6628
3.5307
3.6022
3.6297
3.6073

3.6189

3.6306

3.6074

3.6573
3.5871
3.5674
3.5509
3.6075
3.5989
3.4987

3.5715

3.6048

3.7730

3.7120
3.7204
3.5011

3.5549

3.6550

26.153
26.777
26.478
26.602
26.759
26.446
26.788

26.529

26.218

26.905
26.491
26.305
26.006
26.657
26.965
25.978

26.372

26.174

27.138

27.083
27.348
25.968

26.246

26.825

7.9635
8.0790
8.0980
8.1625
8.1615
8.1155

8.2080

8.1140

7.9845

8.1930
8.0540
8.0355
7.9805

8.0835
8.2150
7.9945

8.0805

7.9650

8.1415

8.2355
8.2590
7.9370

8.0035

8.1960

14.855 0.9884

14.837

15.402

14.930

15.424

15.039

15.360

14.565

15.352

15.260

14.759

15.364
15.063

15.163

14.723
14.775
14.634
15.132
15.051
14.254

14.960

15.491
15.279

14.535

1.0147
0.9814
1.0020
1.0114
0.9963

0.9955

1.0000

1.0067

1.0092
0.9925
0.9932
0.9843
1.0016
0.9867
0.9681

0.9809

0.9967

1.0759

1.0262
1.0392
0.9652

0.9883

1.0145

0.2649
0.2674
0.2622
0.2666
0.2683
0.2664
0.2693

0.2732

0.2682

0.2709
0.2632
0.2655
0.2653
0.2622
0.2679
0.2636

0.2680

0.2642

0.2695

0.2787
0.2726
0.2590

0.2658

0.2701

7.334
7.265

7.409

7.206
7.241

7.544

7.398

7.170
7.398
7.133
7.288
7.342
7.345

7.421

7.269
7.157
7.106
7.296
7.309

7.033

7.527
7.523
7.071

7.170

https://doi.org/10.1017/nws.2023.23 Published online by Cambridge University Press

85


https://doi.org/10.1017/nws.2023.23

86 B. R. Sziklai and B. Lengyel

Table A4. Pokec ranking matrix. Data compiled from Table A3. Spreads closer than 0.005% to each other were

considered as a tie. rSRD stands for normalized SRD

Degree Harmonic PageRank GDD (0.05) k-core LTC(0.7) Shapley (G1)

TC Avg.spread (rn.)

S1

S2

s3
sS4

S5

S6
ST
S8
SO
S10
S11

S12

S13
S14

S15

S16

S17
S18
S19
S20
S21

S22

S23

S24

SRD

nSRD

4

13

15

12

14

7
18

11

6

20

17
21
16
11
19

10

24
23
22

2

10
7

12

15

20

14
11
13

5

24

17

19

16

18

22
23

2

1
21

124

4

17

11

14

16
10
18
13
6
20

12

15

21

23
22
24

1

7

19

38

21

3

11

17

13
16

18

14

20

15

10

12
24
22
23

2

5
19

54

2

8
10

13

18

17

15
21
14

5

19

12

22
6
11
3
16
23

24

7

20

79

1

17

6
8

21

14
16
22
10

23

15

13

11
12
20
24
18

2

3
19

64

9

1

8
21

4

16

19

12
11
14
17
18
9
10

5)

15

13
24
22

23

7

20

67

1

7

13

2

12

17

11

18
23
16

21

14
5)

15

19
24
22

1

10

20

84

6

6.5

13

14

24

22.5

22.5

0.038 0.431 0.132 0.188 0.274  0.222 0.233 0.292
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Figure Al. Parameter selection for Linear Threshold Centrality and Generalized Degree Discount. Smaller SRD values indi-
cate better alignment with the reference, which was the spreading potential of the sample sets on iWiW (XX1: 5% threshold,
Med: Median, XX19: 95% threshold).
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