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Abstract
The notion of the capacity of a polynomial was introduced by Gurvits around 2005, originally to give dras-
tically simplified proofs of the van derWaerden lower bound for permanents of doubly stochastic matrices
and Schrijver’s inequality for perfect matchings of regular bipartite graphs. Since this seminal work, the
notion of capacity has been utilised to bound various combinatorial quantities and to give polynomial-
time algorithms to approximate such quantities (e.g. the number of bases of a matroid). These types of
results are often proven by giving bounds on how much a particular differential operator can change the
capacity of a given polynomial. In this paper, we unify the theory surrounding such capacity-preserving
operators by giving tight capacity preservation bounds for all nondegenerate real stability preservers. We
then use this theory to give a new proof of a recent result of Csikvári, which settled Friedland’s lower
matching conjecture.

2020 MSC Codes: Primary 05A20; Secondary 05C70, 26C10, 26D10

1. Introduction
Over the past few decades, the theory of real stable polynomials has found various applications,
particularly within combinatorics, probability, computer science, and optimisation (e.g. see [6, 11]
and references therein). Classic examples include the multivariate matching polynomial and the
spanning tree polynomial, both of which are real stable for any given graph. The role that polyno-
mials often play in these applications is that of conceptual unification: various natural operations
that one may apply to a given type of object can often be represented as natural operations applied
to associated polynomials. For the matching polynomial deletion and contraction correspond to
certain derivatives, and for the spanning tree polynomial, this idea extends to the minors of a
matroid in general. Even in optimisation (specifically hyperbolic programming), certain relax-
ations of convex domains translate into directional derivatives of associated polynomials in a
similar way [28].

Real stability then adds extra information that may be useful to track. For example, the real
stability of the matching polynomial easily implies that the number of size kmatchings of a graph
forms a log-concave sequence [23]. As it turns out, real stability is far more generally connected to
log-concavity than this, and we will see this at play in the main results of this paper. Specifically,
the so-called strong Rayleigh inequalities (see [9]) will play a crucial role in our analysis. Related
inequalities have recently have gained importance through the exciting work on a so-called Hodge
theory for matroids [3]. Results similar to those discussed here can even be extended to basis
generating polynomials of matroids in general (not all of which are real stable); see [24] and [2].

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1017/S0963548321000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000122
mailto:jonathan@jleake.com
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0963548321000122&domain=pdf
https://doi.org/10.1017/S0963548321000122


Combinatorics, Probability and Computing 957

The particular line into which this paper falls then begins with the work of the first author, who
in a series of papers (e.g. see [20]) gave a vast generalisation of the van der Waerden lower bound
for permanents of doubly stochastic matrices and the Schrijver lower bound on the number of
perfect matchings of regular graphs. In particular, he showed that a related inequality holds for
real stable polynomials in general, and then derives each of the referenced results as corollaries.
His inequality describes how much the derivative can affect a particular analytic quantity called
the capacity of a polynomial, and our main goal in this paper is to extend this bound to a much
larger class of linear operators on polynomials.

1.1 Prior results
Before stating our results, we recall a few results regarding capacity and stable polynomials which
will be crucial to the framing of our results. First, we give the definition of polynomial capacity,
where here (and throughout this paper) we use the notation xα :=∏

k x
αk
k .

Definition 1.1. Given a polynomial p ∈R[x1, ..., xn] with non-negative coefficients and a vector
α ∈R

n with non-negative entries, we define the α-capacity of p as

Capα (p) := inf
x>0

p(x)
xα

= inf
x1,...,xn>0

p(x1, . . . , xn)
xα1
1 · · · xαn

n
.

This definition was motivated by Gurvits’ capacity inequality for the derivative that we state
now.

Theorem 1.2 ([19]). Let p ∈R[x1, ..., xn] be a real stable polynomial of degree at most λk in xk with
non-negative coefficients. Then

Cap(1n−1)

(
∂xkp

∣∣
xk=0

)
Cap(1n) (p)

≥
(

λk − 1
λk

)λk−1
.

Here, (1j) denotes the all-ones vector of length j.

The way one should interpret this result is as a statement about the capacity preservation
properties of the derivative. That is, taking a partial derivative of a real stable polynomial (and
then evaluating to 0) can only decrease the capacity of that polynomial by at most the stated
multiplicative factor.

For those familiar with the real stability literature, the concept of preservation properties of
a linear operator (specifically that of the derivative here) is not new. Perhaps, the most essen-
tial result in the theory is the Borcea–Brändén characterisation [5], which characterises all linear
operators on polynomials which preserve the property of being real stable. This result relies on the
concept of the symbol of a linear operator T, denoted Symb (T), which is a single specific polyno-
mial (or power series) associated to T. We give the gist of the characterisation here, but delay the
definition of the symbol and the formal statement of the theorem until later.

Theorem 1.3 (Borcea–Brändén characterisation [5]; see Theorems 2.5 and 2.8). Let T be a real
linear operator on polynomials. Then morally speaking, T preserves the property of being real stable
if and only if Symb (T) is real stable.

1.2 Our results
The Borcea–Brändén characterisation says that the symbol of a linear operator T holds the real
stability preservation information of T. In this paper, we make use of this concept by showing that

https://doi.org/10.1017/S0963548321000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000122


958 L. Gurvits and J. Leake

the symbol also holds the capacity preservation information of T. That is, we combine the ideas of
Gurvits and of Borcea and Brändén to create a theory of capacity-preserving operators. Our main
results in this direction are stated slightly informally in the following theorems. Note that Symb
will take on two different definitions in the formal statements of these results (see Definitions 2.4
and 2.7), and we will explicate this rigorously later.

Theorem 1.4 (= Theorem 4.11; Bounded-degree case). Let T be a linear operator on polynomials
of degree at most λk in xk, such that Symb (T) is real stable with non-negative coefficients. Further, let
p ∈R[x1, ..., xn] be a real stable polynomial of degree at most λk in xk with non-negative coefficients.
Then for any sensible non-negative vectors α, β ∈R

n:
Capβ (T(p))
Capα (p)

≥ αα(λ − α)λ−α

λλ
Cap(α,β) ( Symb (T)).

Further, this bound is tight for fixed T, α, β.

Theorem 1.5 (= Theorem 4.12; Unbounded-degree case). Let T be a linear operator on poly-
nomials of any degree, such that Symb (T) is in the Laguerre–Pólya classa with non-negative
coefficients. Further, let p ∈R[x1, ..., xn] be any real stable polynomial with non-negative coefficients.
Then for any sensible non-negative vectors α, β ∈R

n:
Capβ (T(p))
Capα (p)

≥ e−ααα Cap(α,β) ( Symb (T)).

Further, this bound is tight for fixed T, α, β.

Using these theorems, we are able to reprove several results. The first of these is Gurvits’ theo-
rem, which he used to obtain the corollaries mentioned above: the van der Waerden lower bound
(see [14] and [13] for the original resolution of this conjecture) and Schrijver’s inequality [29]. We
reprove Gurvits’ theorem using the capacity preservation theory, which amounts to a very basic
computation for T = ∂xk

∣∣
xk=0.

Our main application is then related to counting matchings of regular bipartite graphs.
Counting the number of matchings in a graph is related to the monomer–dimer problem of eval-
uating/approximating the monomer–dimer partition function of a given graph. This problem is
one of the oldest and most important problems in statistical physics, with much of the importance
being due to the famous paper of Heilmann and Lieb [23]. Their results on the location of phase
transitions of the partition function (i.e. the location of zeros of the matching polynomial) have
had widespread influence, even playing a crucial role in the (somewhat) recent resolution of the
Kadison–Singer conjecture by Marcus, Spielman, and Srivastava [27].

Specifically, in Section 3.2, we give a simpler proof of Csikvári’s bound on the number of
k-matchings of a biregular bipartite graph [12]. This result generalises Schrijver’s inequality and
is actually a strengthening of Friedland’s lower matching conjecture (see [16]). The computations
involved in this new proof never exceed the level of basic calculus. This was one of the most
remarkable features of Gurvits’ original result, and this theme continues to play out here. We state
Csikvári’s result now.

Theorem 1.6 ([12]). Let G be an (a, b)-biregular bipartite graph with (m, n)-bipartitioned vertices
(so that am= bn is the number of edges of G). Then the number of size-k matchings of G is bounded
as follows:

μk(G)≥
(
n
k

)
(ab)k

mm(ma− k)ma−k

(ma)ma(m− k)m−k .

aFor those unfamiliar, the Laguerre–Pólya class consists of limits of real stable polynomials.
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We also note that partial results towards such a bound, using techniques similar to those used
in this paper, were achieved prior to Csikvári’s result. First in [16], the original lower matching
conjecture (for regular graphs) was settled for degree 2 and for k≤ 4. Further in [15], partial
results are given for the asymptotic version of the lower matching conjecture, and in [22] this
asymptotic version is settled. In these last two papers, stable polynomials and results derived from
Theorem 1.2 were used.

Beyond these specific applications, one of themain purposes of this paper is to unify the various
results that fit into the lineage of the concept of capacity. This includes inequalities for the perma-
nent, the mixed discriminant, and the number of perfect matchings of bipartite graphs [20, 22],
inequalities for coefficients of stable and log-concave polynomials [21], approximation algorithms
counting bases of stable matroids [1, 30], approximation algorithms for counting the intersection
of two general matroids [2], capacity preservation results for elementary symmetric differential
operators [32], and capacity preservation results for differential operators on multiaffine and
general degree polynomials [1].

The rest of this paper is outlined as follows. In Section 2, we discuss some preliminary facts
about real stability and capacity. In Section 3, we discuss applications of the capacity preservation
theory. In Section 4, we prove the main inequalities. In Section 5, we discuss some continuity
properties of capacity.

2. Preliminaries
Wefirst discuss some basics of the theories of real stability and of capacity. This section will consist
mainly of well-known and/or standard results that will enable us to state our main results in the
next section formally. Other results needed to prove themain theoremswill be left to later sections.

2.1 Notation
Let C,R,Z,N denote the complex numbers, real numbers, integers, and positive integers, respec-
tively. Also, let R+ and R++ denote the non-negative and positive reals, respectively, and let
Z+ denote the non-negative integers. With this we let K[x1, ..., xn] denote the set of polynomi-
als with coefficients in K, where K can be any of the previously defined sets of numbers. Further,
for λ ∈Z

n+ we let Kλ[x1, ..., xn] denote the set of polynomials of degree at most λk in xk with
coefficients inK.

For μ, λ ∈Z
n+, we define μ! :=∏

k (μk!) and
(
λ
μ

)
:= λ!

μ!(λ−μ)! . For x, α ∈R
n+ we define α ≤ x via

αk ≤ xk for all k, we define xα :=∏
k xkαk, and we define xα :=∏

k x
αk
k as in the definition of capac-

ity. We also let (1n) ∈Z
n+ denote the all-ones vector of length n. Finally for p ∈K[x1, ..., xn], we let

pμ denote the coefficient of p corresponding to the term xμ, and in this vein we will sometimes let
x refer to the vector of variables (x1, ..., xn).

2.2 Real stability
We call a polynomial p ∈R[x1, ..., xn] real stable if p≡ 0 or p(x1, ..., xn) �= 0 whenever all xk are in
the upper half-plane. Note that for n= 1, p is a univariate polynomial and real stability is equiv-
alent to having all real roots. The theory of stable polynomials enjoys a nice inductive structure
deriving from a large class of linear operators on polynomials which preserve the property of being
real stable. We called such operators real stability preservers, and the most basic of these are given
as follows.

Proposition 2.1 (Basic real stability preservers). Let p ∈R
λ[x1, ..., xn] be real stable. Then the

following are also real stable.
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(1) Permutation: p(xσ (1), ..., xσ (n)) for any σ ∈ Sn.
(2) Scaling: p(a1x1, ..., anxn) for any fixed a ∈R

n+.
(3) Specialisation: p(b, x2, ..., xn) for any fixed b ∈R.
(4) Inversion: xλp(x−1

1 , ..., x−1
n ).

(5) Differentiation: ∂xkp for any k.
(6) Diagonalisation: p

∣∣
xj=xk

for any j, k.

A classical but more interesting real stability preserver is polarisation. Polarisation plays a cru-
cial role in the theory of real stability preservers, as it allows one to restrict to polynomials of
degree at most 1 in every variable. We will see later that polarisation also plays a crucial role in the
theory of capacity preservers.

Definition 2.2. Given q ∈R
d[x], we define Pold (q) to be the unique symmetric f ∈R

(1d)[x1, ..., xd]
such that f (x, ..., x)= q(x). Given p ∈R

λ[x1, ..., xn], we define Polλ (p) := ( Polλ1 ◦ · · · ◦ Polλn )(p),
where Polλk acts on the variable xk for each k. Note that Polλ (p) ∈R

(1λ1+···+λn )[x1,1, ..., xn,λn].

Proposition 2.3 ([31]). Given p ∈R
λ[x1, ..., xn], we have that p is real-stable iff Polλ (p) is real

stable.

Beyond these basic real stability preservers, various preservation results regarding different
classes of operators have been proven over the past century or so. In 2008, many of these results
were encapsulated and vastly generalised in the Borcea–Brändén characterisation, which gives a
useful equivalent condition for a linear operator to be a real stability preserver. Wementioned this
result in the introduction, and now we present it formally. To that end, we first define the symbol
of an operator, a crucial concept to the rest of this paper.

Definition 2.4 (Bounded-degree symbol). Given a linear operator

T :Rλ[x1, ..., xn]→R
γ [x1, ..., xm],

we define Symbλ (T) ∈R
(λ,γ )[z1, ..., zn, x1, ..., xm] as follows, where T acts only on the x variables:

Symbλ (T) := T[(1+ xz)λ]=
∑

0≤μ≤λ

(
λ

μ

)
zμT(xμ).

Wemay simply write Symb (T) when λ is clear from the context. (Note that this definition is slightly
different from that of [5], but this difference is inconsequential.)

The characterisation then essentially says that T preserves real stability if and only if Symbλ (T)
is real stable, with the exception of a certain degeneracy case. We state the full statement of the
characterisation for bounded-degree operators.

Theorem 2.5 (Borcea–Brändén). Let T :Rλ[x1, ..., xn]→R
γ [x1, ..., xm] be a linear operator on

polynomials. Then T preserves real stability if and only if one of the following holds.

(1) Symbλ (T) is real stable.
(2) Symbλ (T)(z1, ..., zn,−x1, ...,−xm) is real stable.
(3) The image of T is of degree at most 2 and consists only of real stable polynomials.
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Notice that the above definition and result deal only with operators which only allow inputs up
to a certain fixed degree. And this is important to note, as the symbol changes based upon which
degree is being considered. For operators that do not inherently depend on some fixed maximum
degree (e.g. the derivative), there is another symbol definition and characterisation result.

Of course, the degree of the symbol above is the same as the maximum degree of the input
polynomials. So if one were to define a symbol for operators with no bound on the input degree,
it is likely that the symbol would not have a bound on its degree. This is where the Laguerre–Pólya
class comes in. This is a class of entire functions in C

n, defined as follows.

Definition 2.6. A function f is said to be in the Laguerre–Pólya (LP) class in the variables x1, ..., xn,
if f is the limit (uniformly on compact sets) of real stable polynomials in R[x1, ..., xn]. If f is the limit
of real stable polynomials inR+[x1, ..., xn], then we say f is in the LP+ class. In these cases, we write
f ∈LP[x1, ..., xn] and f ∈LP+[x1, ..., xn], respectively.

There are interesting equivalent definitions for these classes of functions (e.g. see [10]), but we
omit them here. With this class of functions, we can state the Borcea–Brändén characterisation
for operators with no dependence on the degree of the input polynomial. First though we need to
define the ‘transcendental’ symbol.

Definition 2.7 (Transcendental symbol). Given a linear operator
T :R[x1, ..., xn]→R[x1, ..., xm],

we define Symb∞ (T) as a formal power series in z1, ...., zn (with polynomial coefficients in x1, ..., xm)
as follows, where T acts only on the x variables:

Symb∞ (T) := T[ex·z]=
∑
0≤μ

1
μ!z

μT(xμ).

Theorem 2.8 (Borcea–Brändén). Let T :R[x1, ..., xn]→R[x1, ..., xm] be a linear operator on
polynomials. Then T preserves real stability if and only if one of the following holds.

(1) Symb∞ (T) ∈LP[z1, ...., zn, x1, ..., xm].
(2) Symb∞ (T)(z1, ..., zn,−x1, ...,−xm) ∈LP[z1, ...., zn, x1, ..., xm].
(3) The image of T is of degree at most 2 and consists only of real stable polynomials.

2.3 Capacity
Recall the definition of capacity:

Capα (p) := inf
x>0

p(x)
xα

.

In general, the conceptual meaning of capacity is not completely understood. However, in this
section, we hope to illuminate some of its basic features. This will include its connections to
the coefficients of a polynomial, to probabilistic interpretations of polynomials, to the AM-GM
inequality, and to the Legendre (Fenchel) transformation.

As discussed in the introduction, the sort of capacity results we will be interested in are
those of capacity preservation (i.e. bounds on how much the capacity can change under vari-
ous operations). In fact, our use of the Borcea–Brändén characterisation consists in combining
it with capacity bounds in order to give something like a characterisation of capacity preservers.
This can be seen as an analytic refinement of the characterisation: not only do such operators pre-
serve stability, but they also preserve capacity. That said, we now state a few basic properties and
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interpretations of capacity that will be needed to state and discuss this analytic refinement. First,
recall the definitions of the Newton polytope and the support of a polynomial.

Definition 2.9. Given p ∈R[x1, ..., xn], the Newton polytope of p, denoted Newt (p), is the convex
hull of the support of p. The support of p, denoted supp (p), is the set of all μ ∈Z

n+ such that xμ has
a non-zero coefficient in p.

Capacity is perhaps most basically understood as a quantity which mediates between the
coefficients of p and the evaluations of p. For example, if μ ∈ supp (p) then

pμ ≤Capμ (p)≤ p(1, ..., 1).

Capacity can also be understood probabilistically. If p ∈R
(1n)
+ [x1, ..., xn] and p(1, ..., 1)= 1, then

p can be considered as the probability generating function for some discrete distribution on
supp (p). In this case, a simple proof demonstrates:

Fact 2.10. Let p ∈R
(1n)
+ [x1, ..., xn] be the probability generating function for some distribution ν.

Then

(1) 0≤Capα (p)≤ 1 for all α ∈R
n+.

(2) Capα (p)= 1 if and only if α is the vector of marginal probabilities of ν.

Proof. (1) is straightforward, and (2) follows from concavity of log (e.g. see [20], Fact 2.2) and the
fact that Capα (p)= 1 implies p(x)

xα is minimised at the all-ones vector. �

The following ‘log-exponential polynomial’ associated to p has some nice properties which
often makes it convenient to use in the context of capacity. These properties also shed light on the
potential connection between capacity, convexity, and the Legendre transformation (consider the
expressions which show up in Fact 2.12 below).

Definition 2.11. Given a polynomial p ∈R+[x1, ..., xn], we let capitalised P denote the following
function:

P(x) := log (p( exp (x)))= log
∑
μ

pμeμ·x.

Fact 2.12. Given p ∈R+[x1, ..., xn], consider P as defined above. We have

(1) Capα (p)= exp infx∈Rn (P(x)− α · x)
(2) P(x)− α · x is convex in R

n for any α ∈R
n.

The next result is essentially a corollary of the AM-GM inequality. In a sense, this inequality is
the foundational result that makes the notion of capacity so useful. Because of this, we provide a
partial proof of the following result taken from [1].

Fact 2.13. For p ∈R+[x1, ..., xn], P defined as above, and α ∈R
n+, the following are equivalent:

(1) α ∈Newt (p).
(2) Capα (p)> 0.
(3) P(x)− α · x is bounded below.

https://doi.org/10.1017/S0963548321000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000122


Combinatorics, Probability and Computing 963

Proof. That (2)⇔ (3) follows from the previous fact. We now prove (1)⇒ (2). The (2)⇒ (1)
direction also has a short proof, based on a separating hyperplane for α and Newt (p) whenever
α �∈Newt (p). The details can be found in Fact 2.18 of [1].

Suppose that α ∈Newt (p). So, α =∑
μ∈S cμμ, where S⊂ supp (p), cμ > 0, and

∑
μ∈S cμ = 1.

Using the AM-GM inequality and the fact that the coefficients of p are non-negative, we have the
following for x ∈R

n+:

p(x)≥
∑
μ∈S

pμxμ =
∑
μ∈S

cμ
pμxμ

cμ
≥
∏
μ∈S

(
pμxμ

cμ

)cμ
= xα

∏
μ∈S

(
pμ

cμ

)cμ
.

This then implies:

Capα (p)= inf
x>0

p(x)
xα

≥
∏
μ∈S

(
pμ

cμ

)cμ
> 0.

�

Due to the previous result, we will only ever consider values of α which are in the Newton
polytope of the relevant polynomials. Other α can be considered but most results will then become
trivial. That said, we will often make this assumption about α without explicitly stating it.

The next result emulates Proposition 2.1 (the basic real stability preservers) by giving a col-
lection of basic capacity-preserving operators. Note that these results are either equalities, or give
something of the form Cap (T(p))≥ cT ·Cap (p) for various operators T.

Proposition 2.14 (Basic capacity preservers). For p, q ∈R
+
λ [x1, ..., xn] and α, β ∈R

n+, we have

(1) Scaling: Capα (bp)= b ·Capα (p) for b ∈R+.
(2) Product: Capα+β (pq)≥Capα (p) Capβ (q).
(3) Disjoint product: Cap(α,β) (p(x)q(z))=Capα (p) Capβ (q).
(4) Evaluation: Cap(α1,...,αn−1) (p(x1, ..., xn−1, yn))≥ yαn

n Capα (p) for yn ∈R+.
(5) External field: Capα (p(cx))= cα Capα (p) for c ∈R

n+.
(6) Inversion: Cap(λ−α) (xλp(x−1

1 , ..., x−1
n ))=Capα (p).

(7) Concavity: Capα (bp+ cq)≥ b ·Capα (p)+ c ·Capα (q) for b, c ∈R+.
(8) Diagonalisation: Cap∑ αk

(p(x, ..., x))≥Capα (p).
(9) Symmetric diagonalisation: Capn·α0 (p(x, ..., x))=Capα (p) if α = (α0, ..., α0) and p is sym-

metric.
(10) Homogenisation: Cap(α,λ−α) ( Hmgλ (p))=Capα (p).

Proof. Symmetric diagonalisation is the only non-trivial property, and it is a consequence of the
AM-GM inequality. First of all, we automatically have (the diagonalisation inequality):

Capn·α0 (p(x, ..., x))= inf
x>0

p(x, ..., x)
xα0 · · · xα0

≥ inf
x>0

p(x1, ..., xn)
xα0
1 · · · xα0

n
=Capα (p).

For the other direction, fix x ∈R
n+ and let y := (x1 · · · xn)1/n. Further, let S(p) denote the

symmetrisation of p. For any μ ∈Z
n+, the AM-GM inequality gives:

S(xμ)= 1
n!
∑
σ∈Sn

xμ1
σ (1) · · · xμn

σ (n)

≥
⎛
⎝∏

σ∈Sn
xμ1
σ (1) · · · xμn

σ (n)

⎞
⎠

1/n!
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=
⎛
⎝∏

j,k
xμk
j

⎞
⎠

1/n

= yμ1 · · · yμn .

Additionally, xα = xα0
1 · · · xα0

n = yn·α0 . Since p is symmetric, we then have the following:
p(x)
xα

= S(p)(x)
xα

=
∑

μ∈supp (p)
pμ

S(xμ)
xα

≥
∑

μ∈supp (p)
pμ

yμ1 · · · yμn

yn·α0
= p(y, ..., y)

yn·α0
.

That is, for any x ∈R
n+, there is a y ∈R+ such that p(x)

xα ≥ p(y,...,y)
yn·α0 . Therefore,

Capα (p)≥Capn·α0 (p(x, ..., x)).
This completes the proof. �

Many of these operations are similar to those that preserve real stability. This is to be expected,
as we hope to combine the two theories. In this vein, we now discuss the capacity preservation
properties of the polarisation operator. As it does for real stability preservers, polarisation will
play a crucial role in working out the theory of capacity preservers. To state this result, we define
the polarisation of the vector α as follows, where each value αk

λk
shows up λk times:

Polλ (α) :=
(

α1
λ1

, ...,
α1
λ1

,
α2
λ2

, ...,
α2
λ2

, ...,
αn
λn

, ...,
αn
λn

)
.

Proposition 2.15. Given p ∈R
λ+[x1, ..., xn] and α ∈R

n+, we have that CapPolλ (α) ( Pol
λ (p))=

Capα (p).

Proof. We essentially apply the diagonalisation property to each variable in succession.
Specifically, we have

Capα (p)= inf
y1,...,yn−1>0

1
yα1
1 · · · yαn−1

n−1
inf
xn>0

p(y1, ..., yn−1, xn)
xαn
n

= inf
y1,...,yn−1>0

1
yα1
1 · · · yαn−1

n−1
Capαn (p(y1, ..., yn−1, xn))

= inf
y1,...,yn−1>0

1
yα1
1 · · · yαn−1

n−1
CapPolλn (αn) ( Pol

λn (p(y1, ..., yn−1, ·))).

By now rearranging the inf’s in the last expression above, we can let infyn−1>0 be the innermost inf.
We can then apply the above argument again, and this will work for every yk in succession. At the
end of this process, we obtain:

Capα (p)=Cap( Polλ1 (α1),...,Polλn (αn)) ( Pol
λ1 ◦ · · · ◦ Polλn (p))

=CapPolλ (α) ( Pol
λ (p)). �

Note that the two main results on polarisation—capacity preservation and real stability
preservation—imply that we only really need to prove our results in themultiaffine case (i.e. where
polynomials are of degree at most 1 in each variable). We will make use of this reduction when we
prove our technical results in Section 4.

Finally before moving on, we give one basic capacity calculation which will prove extremely
useful to us almost every time we want to compute capacity.
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Lemma 2.16. For c, α ∈R
n+ and m :=∑

k αk, we have the following:

Capα ((c · x)m)≡Capα

((∑
k

ckxk
)m)=

(mc
α

)α

.

Proof. Note first that:

Capα ((c · x)m)=
(
Cap α

m
(c · x)

)m
.

To compute Cap α
m
(c · x), we use calculus. Let β := α

m , and for nowwe assume that β > 0 and c> 0
strictly. We have

∂xk

( c · x
xβ

)
= xβck − βkxβ−δk(c · x)

x2β
= xkck − βk(c · x)

xβ+δk
.

That is, the gradient of c·x
xβ is the 0 vector whenever ck

βk
xk = c · x for all k. And in fact, any vector

satisfying those conditions should minimise c·x
xβ , by homogeneity. Since

∑
k βk = 1, the vector

xk := βk
ck satisfies the conditions. This implies:

Capβ (c · x)= c · (β/c)
(β/c)β

=
(
c
β

)β

.

Therefore,

Capα ((c · x)m)=
(
c
β

)mβ

=
(mc

α

)α

. �

3. Applications of capacity preservers
We now formally state and discuss our main results and their applications. As mentioned above,
we will emulate the Borcea–Brändén characterisation for capacity preservers. Further, we will also
demonstrate how our results encapsulate many of the previous results regarding capacity. With
this in mind, we first give our main capacity preservation results: one for bounded-degree opera-
tors a la Theorem 2.5 and one for unbounded-degree operators a la Theorem 2.8. Notice that the
unbounded-degree case is something like a limit of the bounded-degree case: the scalar αα(λ−α)λ−α

λλ

is approximately
(

α
λ

)α e−α as λ → ∞. (The proof of Theorem 4.8 shows why the extra λ−α factor
disappears.)

Theorem 3.1 (= Theorem 4.11; Bounded-degree case). Fix a linear operator T :Rλ+[x1, ..., xn]→
R

γ
+[x1, ..., xm] with real stable symbol. For any α ∈R

n+, any β ∈R
m+, and any real stable p ∈

R
λ+[x1, ..., xn] we have

Capβ (T(p))
Capα (p)

≥ αα(λ − α)λ−α

λλ
Cap(α,β) ( Symbλ (T)).

Further, this bound is tight for fixed T, α, and β.

Theorem 3.2 (= Theorem 4.12; Unbounded-degree case). Fix a linear operator
T :R+[x1, ..., xn]→R+[x1, ..., xm] with real stable symbol. Then for any α ∈R

n+, any β ∈R
m+, and

any real stable p ∈R+[x1, ..., xn] we have
Capβ (T(p))
Capα (p)

≥ ααe−α Cap(α,β) ( Symb∞ (T)).

Further, this bound is tight for fixed T, α, and β.
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Note that by Theorems 2.5 and 2.8, the above theorems apply to real stability preservers of rank
greater than 2 (see Corollaries 4.13 and 4.14).

3.1 Gurvits’ theorem
With these results in hand, we now reprove Gurvits’ theorem and discuss its importance. Gurvits’
original proof of this fact was not very complicated, and our proof will be similar in this regard.
This is, of course, what makes capacity and real stability more generally so intriguing: answers to
seemingly hard questions follow from a few basic computations on polynomials.

Theorem 3.3 (Gurvits). For real stable p ∈R
λ+[x1, ..., xn] we have

Cap(1n−1)

(
∂xkp

∣∣
xk=0

)
Cap(1n) (p)

≥
(

λk − 1
λk

)λk−1
.

Proof. We apply Theorem 4.11 above for T := ∂xk
∣∣
xk=0, α := (1n), and β := (1n−1). To do this we

need to compute the right-hand side of the expression in Theorem 4.11, making use of properties
from Proposition 2.14. We have

αα(λ − α)λ−α

λλ
Cap(α,β) ( Symbλ (T))

= (λ − 1)λ−1

λλ
Cap(1n,1n−1)

(
∂xk(1+ xz)λ

∣∣
xk=0

)

= (λ − 1)λ−1

λλ
Cap(1n,1n−1)

⎛
⎝λkzk

∏
j�=k

(1+ xjzj)λj

⎞
⎠

= (λ − 1)λ−1

λλ
λk
∏
j�=k

Cap(1,1)
(
(1+ xjzj)λj

)
.

Note that Cap(1,1) ((1+ xjzj)λj)=Cap1 ((1+ xj)λj). Using the homogenisation property and
Lemma 2.16, we then have

Cap1 ((1+ xj)λj)=Cap(1,λj−1) ((xj + yj)λj)= λj

(
λj

λj − 1

)λj−1
.

Therefore,

αα(λ − α)λ−α

λλ
Cap(α,β) ( Symbλ (T))

= (λ − 1)λ−1

λλ
λk
∏
j�=k

Cap(1,1)
(
(1+ xjzj)λj

)

= (λ − 1)λ−1

λλ
λk
∏
j�=k

λj

(
λj

λj − 1

)λj−1

=
(

λk − 1
λk

)λk−1
. �
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This proof will serve as a good baseline for other applications of our main theorems. Roughly
speaking, most applications will make use of Lemma 2.16 and the properties of Proposition
2.14 in interesting ways. And often, the inequalities obtained will directly translate to various
combinatorial statements.

Specifically, what sorts of combinatorial statements can be derived from Gurvits’ theorem?
The most well-known are perhaps Schrijver’s theorem and the van der Waerden bound on the
permanent (see [20]). What forms the link between capacity and combinatorial objects like dou-
bly stochastic matrices and perfect matchings is the following polynomial defined for a given
matrixM:

pM(x) :=
∏
i

∑
j

mijxj.

Note that this polynomial is real stable whenever the entries ofM are non-negative. The following
is then quite suggestive.

Lemma 3.4 (Gurvits). If M is a doubly stochastic matrix, then Cap(1n) (pM)= 1.

Proof. Follows from Fact 2.10. �

For most of the arguments, one considers p= pM and T such that T(p) computes the desired
quantity related toM. The above theorems then give something like:

desired quantity= Cap (T(pM))
Cap (pM)

≥ constant depending on T but not onM.

This gives us a bound on the desired quantity (e.g. perfect matchings or the permanent) for any
M, so long as we can compute the capacity of Symb (T).

In addition to these types of inequalities, Gurvits also demonstrates how his theorem implies
similar results for ‘doubly stochastic’ n-tuples of matrices (a conjecture due to Bapat [4]). In fact,
this notion of doubly stochastic aligns with a generalised notion used recently in [18, 7]. In those
papers, doubly stochastic matrices and other similar objects play a crucial role in defining certain
important orbits of actions on tuples of matrices. Specifically in [18] (or [17]), a version of this idea
was used to produce a polynomial-time algorithm for the non-commutative polynomial identity
testing problem. A certain notion of capacity for matrices was quite important in the analysis of
their algorithms.

3.2 Imperfect matchings and biregular graphs
The most important application of our results is a new proof of a bound on size-k matchings
of a biregular bipartite graph, due to Csikvári [12]. This result is a generalisation of Schrijver’s
bound, and it also settled and strengthened the Friedland matching conjecture [16]. We first state
Csikvári’s results in a form more amenable to the notation of this paper.

Theorem 3.5 (Csikvári). Let G be an (a, b)-biregular bipartite graph with (m, n)-bipartitioned
vertices (so that am= bn is the number of edges of G). Then the number of size-k matchings of G is
bounded as follows:

μk(G)≥
(
n
k

)
(ab)k

mm(ma− k)ma−k

(ma)ma(m− k)m−k .

Notice that this immediately implies the following bound for regular bipartite graphs.
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Corollary 3.6 (Csikvári). Let G be a d-regular bipartite graph with 2n vertices. Then

μk(G)≥
(
n
k

)
dk
(
nd − k
nd

)nd−k ( n
n− k

)n−k
.

To prove these results, we first need to generalise Gurvits’ capacity lemma for doubly stochastic
matrices. Specifically we want to be able to handle (a, b)-stochastic matrices, which are matrices
with row sums equal to a and columns sums equal to b. We care about such matrices, because
the bipartite adjacency matrix of a (a, b)-biregular graph is (a, b)-stochastic. Note that if M is an
(a, b)-stochastic matrix which is of sizem× n, then am= bn.

Lemma 3.7. If M is an (a, b)-stochastic matrix, then Cap(mn ,...,mn ) (pM)= am.

Proof. Follows from Fact 2.10. �

We also need a linear operator which computes the number of size-k matchings of an (a, b)-
biregular bipartite graph. In fact when M is the bipartite adjacency matrix of G, we have the
following:

am−kμk(G)=
∑

S∈([n]k )

∂SxpM(1)=Cap
∅

( ∑
S∈([n]k )

∂SxpM(1)
)
.

Note that each differential operator in the sum picks out a disjoint collection of k× k subpermu-
tations of the matrix M. After applying each differential operator, we are left with terms which
are products of m− k remaining linear forms from pM . Plugging in 1 then gives am−k (since row
sums are a), and this is why that factor appears above.

Next, we need to prove that we can apply Theorem 4.11 to the operator T :=∑
S∈([n]k )

∂Sx
∣∣
x=1.

We choose λ = (b, ..., b) here because (a, b)-regularity of G implies every variable will be of degree
b in the polynomial pM (where M is the bipartite adjacency matrix of G). That is, some of the
degree information of G is encoded as the degree of the associated polynomial pM . This same
thing was done in [19] and [15], and this further demonstrates how capacity bounds can combine
an interesting mix of analytic and combinatorial information.

Lemma 3.8. The operator T :=∑
S∈([n]k )

∂Sx
∣∣
x=1 has real stable symbol.

Proof. Here the input polynomial space is R(b,...,b)+ [x1, ..., xn], since degree is determined by the
column sums. Denoting λ := (b, ..., b), we compute Symbλ (T):

T[(1+ xz)λ]=
∑

S∈([n]k )

∂Sx
∣∣
x=1 (1+ xz)λ

=
∑

S∈([n]k )

bkzS(1+ z)λ−S

= bk(1+ z)λ−1
∑

S∈([n]k )

zS(1+ z)1−S.

Notice that
∑

S∈([n]k )
zS(1+ z)1−S = (n

k
)
Poln (xk(1+ x)n−k), which is real stable by

Proposition 2.3. �
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Applying Theorem 4.11 now shows us the way towards the rest of the proof. Denoting λ :=
(b, ..., b) and α := (mn , ...,

m
n ), we now have

am−kμk(G)=
∑

S∈([n]k )

∂SxpM(1)

≥ αα(λ − α)λ−α

λλ
Capα (pM) Cap(α,∅) ( Symbλ (T))

=
(
(mn )

m
n (b− m

n )
b−m

n

bb

)n

am Capα ( Symbλ (T))

= (ma)m(nb−m)nb−m

(nb)nb
Capα ( Symbλ (T)).

So the last computation we need to make is that of Capα ( Symbλ (T)). Fortunately since
Symbλ (T) is symmetric and α = (mn , ...,

m
n ), we can apply the symmetric diagonalisation property

to simplify this computation. Using our previous computation of Symbλ (T), this gives:

Cap(mn ,...,mn ) ( Symbλ (T))=Capm
(
bk
(
n
k

)
zk(1+ z)nb−k

)

= bk
(
n
k

)
Capm (zk(1+ z)nb−k).

The remaining capacity computation then follows from homogenisation and Lemma 2.16:

Capm (zk(1+ z)nb−k)= inf
z>0

zk(1+ z)nb−k

zm

=Capm−k ((1+ z)nb−k)

=
(
nb− k
m− k

)m−k ( nb− k
nb−m

)nb−m
.

Putting all of these computations together and recallingma= nb gives:

μk(G)≥ ak−m (ma)m(nb−m)nb−m

(nb)nb
bk
(
n
k

)(
nb− k
m− k

)m−k ( nb− k
nb−m

)nb−m

=
(
n
k

)
ak−mbk

(ma)m(nb− k)nb−k

(nb)nb(m− k)m−k

=
(
n
k

)
(ab)k

mm(ma− k)ma−k

(ma)ma(m− k)m−k .

This is precisely the desired inequality.

3.3 Differential operators in general
We now give general capacity preservation bounds for stability preservers, which are differential
operators. This was done in [1] for differential operators which preserve real stability on input
polynomials of all degrees. Here, we restrict to those operators which only preserve real stability
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for polynomials of some fixed bounded degree. That said, consider the following bilinear operator:

(p�λ q)(x) :=
∑

0≤μ≤λ

(∂μ
x p)(x)(∂

λ−μ
x q)(0).

It is straightforward to see that by fixing q, one can construct any constant coefficient differential
operator on R

λ[x1, ..., xn]. And it turns out that if q is real stable, then ( ·�λq)(x) is a real stability
preserver.

It turns out that more is true, however. The operator �λ can actually be applied to polyno-
mials in R

(λ,λ)[x1, ..., xn, y1, ..., yn] by considering this polynomial space as a tensor product of
polynomial spaces. More concretely, we specify how this operator acts on the monomial basis:

�λ : xμyν �→ xμ �λ xν .

We can then compute the symbol of this operator:

Symb [�λ ]= (1+ xz)λ �λ (1+ xw)λ = (z +w+ zwx)λ = (zw)λ(x+ z−1 +w−1)λ.

Note that Symb [�λ ](z,w,−x) is real stable, and so�λ preserves real stability by Theorem 2.5.
With this, we compute the capacity for λ = δ1 = (1, 0, ..., 0):

Cap(α,β ,γ ) (z + t + ztx)= inf
x,z,t>0

z + t + ztx
xαzβ tγ

= inf
x,z,t>0

t−1 + z−1 + x
xαzβ−1tγ−1

= inf
x,z,t>0

t + z + x
xαz1−β t1−γ

.

Note that (α, β , γ ) is in the Newton polytope of (z + t + ztx) iff α = β + γ − 1. By Lemma 2.16,
we have

Cap(α,β ,γ ) (z + t + ztx)= 1
αα(1− β)1−β(1− γ )1−γ

.

We now generalise this to general λ, supposing α = β + γ − λ:

Cap(α,β ,γ )((z + t + ztx)λ)

=
n∏
j=1

(
(αj/λj)αj/λj(1− βj/λj)1−βj/λj(1− γj/λj)1−γj/λj

)−λj

=
n∏
j=1

(αj/λj)−αj(1− βj/λj)βj−λj(1− γj/λj)γj−λj

= α−α(λ − β)β−λ(λ − γ )γ−λλα−β−γ+2λ

= λλ

αα(λ − β)λ−β(λ − γ )λ−γ
.

Applying Theorem 4.11, we get:

Capα (p�λ q)≥ ββγ γ (λ − β)λ−β(λ − γ )λ−γ · λλ

λλλλ · αα(λ − β)λ−β(λ − γ )λ−γ
·Capβ (p) Capγ (q)

= ββγ γ

ααλλ
Capβ (p) Capγ (q).
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Again, this is all under the assumption that α = β + γ − λ. (We will be outside the Newton poly-
tope otherwise, and so the result in that case will be trivial.)We state the result of this discussion as
follows. Note that it can be seen as a sort of multiplicative reverse triangle inequality for capacity
of differential operators.

Corollary 3.9. Let p and q be two real stable polynomials of degree λ with positive coefficients. We
have

(αα Capα (p�λ q))≥ 1
λλ

· (ββ Capβ (p)) · (γ γ Capγ (q)).

With this, we have given tight capacity bounds for all differential operators on polynomials
of at most some fixed bounded degree. Note that root bounds of this form are given in [26] by
Marcus, Spielman, and Srivastava, and these bounds are related to those obtained in their proof
of the Kadison–Singer conjecture in [27]. It is an open and interesting question whether or not
capacity can be utilised to bound the roots of polynomials.

4. The main inequalities
We now discuss our main results and the inequalities we use to obtain them. These inequalities
are bounds on certain inner products applied to polynomials. The most basic of these is the main
result from [1], which applies to multiaffine polynomials. We extend their methods to obtain
bounds on polynomials of all degrees. Finally, a limiting argument implies bounds for the LP+
class. This last bound can also be found in [1], but the proof we give here is simpler and makes
clearer the connection between these inequalities and the Borcea–Brändén characterisation.

4.1 Inner product bounds, bounded degree
For polynomials of some fixed bounded degree, we consider the following inner product.

Definition 4.1. For fixed λ ∈Z
n+ and p, q ∈R

λ[x1, ..., xn], define:

〈p, q〉λ :=
∑

0≤μ≤λ

(
λ

μ

)−1
pμqμ.

As mentioned above, Anari and Oveis Gharan prove a bound on the above inner product for
multiaffine polynomials in [1], and we state their result here without proof. We note though that
the proof is essentially a consequence of the strong Rayleigh inequalities for real stable polyno-
mials, which we now state. These fundamental inequalities (due to Brändén) should be seen as
log-concavity conditions, and this intuition extends to all the inner product bounds we state here.
And this intuition is not without evidence: the connection of capacity to the Alexandrov–Fenchel
inequalities (see [19]), as well as to matroids and log-concave polynomials (see [21] and more
recently [2]), has been previously noted.

Proposition 4.2 (Strong Rayleigh inequalities [9]). For any real stable p ∈R
(1n) and any i, j ∈

[n], we have the following inequality pointwise on all of Rn:

(∂xip) · (∂xjp)≥ p · (∂xi∂xjp).

We now state the Anari–Oveis Gharan bound for multiaffine polynomials. They also prove a
weaker bound on polynomials of any degree, but we will discuss this later.
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Theorem 4.3 (Anari–Oveis Gharan). Let p, q ∈R
(1n)
+ [x1, ..., xn] be real stable. Then for any α ∈

R
n+ we have

〈p, q〉(1n) ≥ αα(1− α)1−α Capα (p) Capα (q).

In this paper, we generalise this to polynomials of degree λ as follows. Note that this result is
strictly stronger than the bound obtained in [1] for the non-multiaffine case.

Theorem 4.4. Let p, q ∈R
λ+[x1, ..., xn] be real stable. Then for any α ∈R

n+ we have

〈p, q〉λ ≥ αα(λ − α)λ−α

λλ
Capα (p) Capα (q).

The proof of this is essentially due to the fact that both 〈·, ·〉λ and capacity interact nicely with
polarisation. We have already explicated the connection between capacity and polarisation (see
Proposition 2.15), and we now demonstrate how these inner products fit in.

Lemma 4.5. Given p, q ∈R
λ[x1, ..., xn], we have

〈p, q〉λ = 〈
Polλ (p), Polλ (q)

〉(1λ) .

Proof. We compute this equality on a basis in the univariate case. The result then follows since
Polλ is a composition of polarisations on each variable of p. For 0≤ k≤m we have

〈
Polm (xk), Polm (xk)

〉(1m) =(
m
k

)−2 ∑
S∈([m]

k )

〈xS, xS〉(1m)

=
(
m
k

)−1
= 〈xk, xk〉m. �

The proof of Theorem 4.4 then essentially follows from this algebraic identity.

Proof of Theorem 4.4. Suppose that p, q ∈R
λ+[x1, ..., xn] are real stable polynomials. Then

Polλ (p) and Polλ (q) are real stable multiaffine polynomials by Proposition 2.3. We now use
the multiaffine bound to prove the result for any α ∈R

n+. For simplicity, let β := Polλ (α), where
Polλ (α) is originally defined in Section 2.3. We have

〈p, q〉λ = 〈
Polλ (p), Polλ (q)

〉(1λ) ≥ ββ(1− β)1−β Capβ ( Polλ (p)) Capβ ( Polλ (q)).

By Proposition 2.15, we have that Capβ ( Polλ (p))=Capα (p). So to complete the proof, we
compute:

ββ(1− β)1−β =
n∏

k=1

λk∏
j=1

(
αk
λk

)αk/λk (
1− αk

λk

)1−αk/λk

=
n∏

k=1

(
αk
λk

)αk (λk − αk
λk

)λk−αk
.

This is precisely αα(λ−α)λ−α

λλ , which is what was claimed.
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4.2 Inner product bounds, unbounded degree
For general polynomials and power series in the LP+ class, we consider the following inner
product.

Definition 4.6. For p, q ∈R[x1, ..., xn] or power series in x1, ..., xn, define:

〈p, q〉∞ :=
∑
0≤μ

μ!pμqμ.

Note that this may not be well defined for some power series.

Consider the following power series in x1, ..., xn, where cμ ≥ 0:

f (x1, ..., xn)=
∑
0≤μ

1
μ! cμx

μ.

Next consider the following weighted truncations of f :

fλ(x) :=
∑

0≤μ≤λ

(
λ

μ

)
cμxμ.

If f ∈LP+[x1, ..., xn], then fλ is real stable for all λ and fλ(x/λ)→ f (x) uniformly on compact sets
in C

n (see Theorem 5.1 in [5]). The idea then is to limit capacity bounds for polynomials of some
bounded degree to capacity bounds for general polynomials and functions in the LP+ class.

To do this, we need some kind of continuity result for capacity. Note that Fact 2.13 implies
Capα (p) is not continuous in α at the boundary of the Newton polytope of p. However, it turns
out Capα (p) is continuous in p, for the topology of uniform convergence on compact sets. This is
discussed in Section 5 more thoroughly, and we now state the main result from that section.

Corollary 5.8. Let pn be polynomials with non-negative coefficients and p analytic such that pn →
p uniformly on compact sets. For α ∈Newt (p), we have

lim
n→∞ Capα pn =Capα p.

We now demonstrate the link between the bounded and unbounded degree inner products,
and we will use this to obtain bounds on the latter via limiting.

Lemma 4.7. Let f and fλ be defined as above. For any p ∈R+[x1, ..., xn] we have

lim
λ→∞〈fλ, p〉λ = 〈f , p〉∞.

Proof. Letting cμ denote the weighted coefficients of f and fλ as above, we compute:

lim
λ→∞〈fλ, p〉λ = lim

λ→∞
∑

0≤μ≤λ

cμpμ =
∑
0≤μ

cμpμ = 〈f , p〉∞.

Notice that the limit here is guaranteed to exist, since p has finite support. �

With this, we can bootstrap our capacity bound on 〈·, ·〉λ to get a bound on 〈·, ·〉∞. Notice here
that we achieve the same bound as Anari and Oveis Gharan in [1], albeit with a simpler proof.

https://doi.org/10.1017/S0963548321000122 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000122


974 L. Gurvits and J. Leake

Theorem 4.8. (Anari–Oveis Gharan). Fix f ∈LP+[x1, ..., xn] and any real stable p ∈
R+[x1, ..., xn]. Then for any α ∈R

n+ we have

〈f , p〉∞ ≥ ααe−α Capα (f ) Capα (p).

Proof. As above, we write:

f (x)=
∑
0≤μ

1
μ! cμx

μ, fλ(x)=
∑

0≤μ≤λ

(
λ

μ

)
cμxμ.

By the previous lemma, we have

〈f , p〉∞ = lim
λ→∞〈fλ, p〉λ

≥ lim
λ→∞

[
αα(λ − α)λ−α

λλ
Capα (fλ) Capα (p)

]

= αα Capα (p) · lim
λ→∞

[
(λ − α)λ−α

λλ
· inf
x>0

fλ(x/λ)
(x/λ)α

]

= αα Capα (p) · lim
λ→∞

[
(λ − α)λ−α

λλ−α
·Capα (fλ(x/λ))

]
.

Notice that limλ→∞ Capα (fλ(x/λ))=Capα (f ) by Corollary 5.8. So we just need to compute the
limit of the scaling factor:

lim
λ→∞

(
λ − α

λ

)λ−α

= lim
λ→∞

n∏
k=1

(
1− αk

λk

)λk−αk
=

n∏
k=1

e−αk = e−α .

This completes the proof. �

Corollary 4.9. Fix f , g ∈LP+[x1, ..., xn]. For any α ∈R
n+ we have

〈f , g〉∞ ≥ ααe−α Capα (f ) Capα (g).

Proof. Apply the previous theorem and Corollary 5.8 to a sequence of real stable polynomials
gk → g. �

4.3 From inner products to linear operators
The main purpose of this section, aside from proving the main technical result of the paper, is to
demonstrate the power of a certain interpretation of the symbol of a linear operator. We will show
that a simple observation regarding the symbol (which is explicated in more detail in [25]) will
immediately enable us to transfer inner product bounds to bounds on linear operators. We now
state this observation, which could be considered as a more algebraic definition of the symbol.

Lemma 4.10. Let 〈·, ·〉 be either 〈·, ·〉λ or 〈·, ·〉∞, and let Symb be either Symbλ or Symb∞, respec-
tively. Let T be a linear operator on polynomials of appropriate degree, and let p, q ∈R+[x1, ..., xn]
be polynomials of appropriate degree. Then we have the following, where the inner product acts on
the z variables:

T[p](x)= 〈Symb [T](z, x), p(z)〉.
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Proof. This is straightforward as the scalars present in the expressions of 〈·, ·〉 and Symb were
chosen such that they cancel out in the above expression. We compute this on the monomial basis
in the 〈·, ·〉λ case, and the 〈·, ·〉∞ case follows from a similar argument. For any μ ≤ λ and ν, let
Tμ→ν be the linear operator on polynomials of degree λ given byTμ→ν[xμ]= xν andTμ→ν[xκ ]=
0 for any other monomial xκ . Recalling the bounded-degree definition of the symbol (Definition
2.4), we have

Symbλ (Tμ→ν)=
(

λ

μ

)
zμxν .

For any monomial zκ with κ ≤ λ, this implies the following for any fixed x:

〈Symbλ [Tμ→ν](z, x), zκ〉λ =
(

λ

μ

)
xν · 〈zμ, zκ〉λ

=
(

λ

μ

)
xν ·

(
λ

μ

)−1
δκ=μ

= Tμ→ν[xκ ]. �

As we will see very shortly, this will make for quick proofs of the main results given the inner
product bounds we have already achieved. Before doing this though, let us discuss some of the lin-
ear operator bounds that Anari and Oveis Gharan achieved in [1]. Note the following differential
operator form of 〈·, ·〉∞:

〈p, q〉∞ = q(∂x)q(x)
∣∣
x=0 .

Anari and Oveis Gharan then use use their inner product bound to essentially give capac-
ity preservation results for certain differential operators. Similarly, for multiaffine polynomials
〈p, q〉(1n) = q(∂x)q(x)

∣∣
x=0, which gives a better bound in the multiaffine case. We now vastly

generalise this idea, with a rather short proof.

Theorem 4.11. Let T :Rλ+[x1, ..., xn]→R
γ
+[x1, ..., xm] be a linear operator such that Symbλ (T) is

real stable in z for every x ∈R
m+. Then for any real stable p ∈R

λ+[x1, ..., xn], any α ∈R
n+, and any

β ∈R
m+ we have

Capβ (T(p))
Capα (p)

≥ αα(λ − α)λ−α

λλ
Cap(α,β) ( Symbλ (T)).

Further, this bound is tight for fixed T, α, and β.

Proof. In the proof, let 〈·, ·〉 := 〈·, ·〉λ and Symb := Symbλ. By the previous lemma, we have the
following for any fixed x0 ∈R

n+ (here, the inner product acts on the z variables):

T(p)(x0)= 〈Symb (T)(z, x0), p(z)〉.
Theorem 4.4 then implies:

T(p)(x0)= 〈Symb (T)(z, x0), p(z)〉
≥ αα(λ − α)λ−α

λλ
Capα (p) ·Capα ( Symb (T)(·, x0)).

Dividing by xβ
0 on both sides and taking inf gives:

inf
x0>0

T(p)(x0)
xβ
0

≥ αα(λ − α)λ−α

λλ
Capα (p) · inf

x0>0
inf
z>0

Symb (T)(z, x0)
zαxβ

0
.
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This is the desired result. Tightness then follows from considering input polynomials of the form
p(x)=∏

k (1+ xkyk) for fixed y ∈R
n+, and then taking inf over y. �

As stated in the introduction, this is our main technical result, and we have already discussed
some of its applications in Section 3. We give a similar result for linear operators on polynomials
of any degree.

Theorem 4.12. Let T :R+[x1, ..., xn]→R+[x1, ..., xm] be a linear operator such that Symb∞ (T) is
in LP+[z1, ..., zn] for every x ∈R

m+. Then for any p ∈R+[x1, ..., xn], any α ∈R
n+, and any β ∈R

m+
we have

Capβ (T(p))
Capα (p)

≥ e−ααα Cap(α,β) ( Symb∞ (T)).

Further, this bound is tight for fixed T, α, and β.

Proof. The proof given above for Theorem 4.11 can be essentially copied verbatim. �

We now combine these results with the Borcea–Brändén characterisation results (Theorems
2.5 and 2.8) to give concrete corollaries which directly relate to stability preservers.

Corollary 4.13. Suppose T :Rλ+[x1, ..., xn]→R
γ
+[x1, ..., xm] is a linear operator of rank greater

than 2, such that T preserves real stability. Then Theorem 4.11 applies to T.

Proof. Since the image of T is of dimension greater than 2, Theorem 2.5 implies one of two
possibilities:

(1) Symbλ [T] is real stable.
(2) Symbλ [T](z1, ..., zn,−x1, ...,−xn) is real stable.

In either case, we have that Symbλ [T] is real stable in z for every fixed x ∈R
m+ (see Proposition

2.1). Therefore Theorem 4.11 applies. �

Corollary 4.14. Suppose T :R+[x1, ..., xm]→R+[x1, ..., xm] is a linear operator of rank greater
than 2, such that T preserves real stability. Then Theorem 4.12 applies to T.

Proof. The same proof works using Theorem 2.8 instead. �

5. Continuity of capacity
In this section, we discuss the continuity of capacity as a function of the the input polynomial
p. The main result of this section allows us to limit inner product bounds from 〈·, ·〉λ to 〈·, ·〉∞,
which is exactly how we proved Theorem 4.8.

Given a (positive) discrete measure μ on R
n, we define its generating function as

pμ(x) :=
∑

κ∈supp (μ)
μ(κ)xκ .

(Note that we have only restricted supp (μ) to be in R
n, and so pμ may not be a polynomial.) We

further define the log-generating function of μ as

Pμ(x) := log (pμ( exp (x)))= log
∑

κ∈supp (μ)
μ(κ) exp (x · κ).
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More generally for such a function p(x), we will write:

p(x) :=
∑
κ

pκxκ ,

P(x) := log (p( exp (x)))= log
∑
κ

pκ exp (x · κ).

We care about discrete measures (with not necessarily finite support) whose generating functions
are convergent and continuous on R

n+. This is equivalent to the log-generating function being
continuous on R

n. Note that an important example of such a measure is one which has finite
support entirely in Z

n+. The generating functions of such measures are polynomials.
From now on we will write supp (p)= supp (P) to denote the support of μ (as above) and

Newt (p)=Newt (P) to denote the polytope generated by its support. We first give a few basic
results.

Fact 2.13. For p a continuous generating function, the following are equivalent:

(1) α ∈Newt (p).
(2) Capα p(x)> 0.
(3) P(x)− α · x is bounded below.

Lemma 5.1. Any continuous log-generating function Q(x) is convex in R
n.

Proof. Hölder’s inequality. �

Note that proving statements for p is essentially the same as proving for P, as suggested in the
following lemma.

Lemma 5.2. Let p, pn be continuous generating functions. Then pn → p uniformly on compact sets
of Rn+ iff Pn → P uniformly on compact sets of Rn.

Proof. Equivalence of pn → p and exp (Pn)→ exp (P) follows form the fact that exp :Rn+ →R
n

is a homeomorphism (and so gives a bijection of compact sets). The fact that exp and log are
(uniformly) continuous on every compact set in their domains then completes the proof. �

We now get the first half of the desired equality, which is the easier half.

Lemma 5.3. With p, pn continuous generating functions and pn → p uniformly on compact sets, we
have

lim
n→∞ inf pn ≤ inf p.

Proof. Let (xm)⊂R
n+ be a sequence such that p(xm)→ inf p. For each m we have that pn(xm)

is eventually near to p(xm). So for any fixed ε > 0, we have the following for m=m(ε) and n≥
N(ε,m):

inf pn ≤ pn(xm)≤ p(xm)+ ε ≤ inf p+ 2ε.
The result follows by sending ε → 0. �

We now set out to prove the second half of the desired equality, the difficulty for which arises
whenever α is on the boundary of Newt (p).
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Lemma 5.4. Suppose 0 is in the interior of Newt (p). Then inf P is attained precisely on some
compact convex subset K of Rn.

Proof. By a previous lemma, inf P is finite. Suppose xn is an unbounded sequence (with mono-
tonically increasing norm) such that P(xn) limits to inf P. By compactness of the n-dimensional
sphere, we can assume by restricting to a subsequence that xn‖xn‖ limits to some u. Pick ε > 0 small
enough such that εu ∈Newt (p), and consider P(x)− εu · x. We then have

lim
n→∞ P(xn)− εu · xn = lim

n→∞ P(xn)− ε‖xn‖
(
u · xn

‖xn‖
)

= −∞.

However, since εu ∈Newt (p) we have that P(x)− εu · x is bounded below, a contradiction. So,
every sequence limiting to inf P is bounded, and therefore inf P is attained on a bounded set. By
convexity of P, this set is convex. �

The next few results then finish the proof of continuity of Capα ( · ) under certain support
conditions.

Proposition 5.5. Let p and pn be continuous generating functions such that pn → p, with 0 in the
interior of Newt (p). Then

lim
n→∞ inf pn = inf p.

Proof. Given the above lemma, we only have the≥ direction left to prove. Since 0 is in the interior
of Newt (p), there is some compact convex K ⊂R

n such that P(x)= inf P iff x ∈K. Further, this
implies that for any compact set K ′ whose interior contains K, there exists c0 > 0 such that P(x)>
inf P + c0 on the boundary of K ′. For any fixed positive ε < c0

2 and large enough n, we then have

|Pn − P| < ε <
c0
2
in K ′ =⇒ |Pn − inf P| < ε <

c0
2
in K,

Pn > inf P + (c0 − ε)> inf P + c0
2
on the boundary of K ′.

Convexity of Pn then implies Pn(x)> inf P + c0
2 outside of K ′. Therefore for any ε and large

enough n:
inf Pn = inf

x∈K′ Pn ≥ inf P − ε.

Letting ε → 0 gives the result. �

We now set out to prove a similar statement whenever 0 is on the boundary on Newt (p). This
ends up needing a bit more restriction.

Lemma 5.6. Suppose 0 is on the boundary on Newt (P). Then there exists A ∈ SOn(R) such that:
Newt (A · P)⊂ {κ : κn ≥ 0},
inf (A · P)|xn=−∞ = inf P.

Proof. Since 0 is on the boundary of the convex set Newt (P), a separating hyperplane gives a unit
vector c such that (c|μ)≥ 0 for all μ ∈Newt (P). Let A ∈ SOn(R) be such that Ac= en. We first
have

infA · P = inf P(A−1x)= inf P.
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Since Newt (A · P)=A ·Newt (P) and (en|Aμ)= (c|μ)≥ 0 for every μ ∈Newt (P), we have that
Newt (A · P)⊂ {κ : κn ≥ 0}. Therefore,

inf (A · P)|xn=−∞ = infA · P = inf P.

Note that (A · P)|xn=−∞ denotes the continuous log-generating function given by the terms κ of
the support of A · P for which κn = 0. This is justified, as Newt (A · P)⊂ {κ : κn ≥ 0} implies that
A · P decreases as xn decreases (and we care about inf). �

Theorem 5.7. Let p and pm be continuous generating functions such that pm → p, with 0 ∈
Newt (p). Suppose further that eventually Newt (pm)⊆Newt (p). Then

lim
m→∞ inf pm = inf p.

Proof. Given the above proposition, we only need to prove this in the case where 0
is on the boundary of Newt (p). In that case, the previous lemma gives an A ∈ SOn(R)
such that Newt (A · P)⊂ {κ : κn ≥ 0} and inf (A · P)|xn=−∞ = inf P. Since Pm → P implies A ·
Pm →A · P, we now relax to proving limm→∞ infA · Pm = infA · P. By assumption, eventu-
ally Newt (Pm)⊆Newt (P) which implies Newt (A · Pm)⊆Newt (A · P)⊂ {κ : κn ≥ 0}. So, even-
tually Newt ( (A · Pm)|xn=−∞ )⊆Newt ( (A · P)|xn=−∞ ) and infA · Pm = inf (A · Pm)|xn=−∞. By
induction on the number of variables, we then have

lim
m→∞ infA · Pm = lim

m→∞ inf (A · Pm)|xn=−∞ = inf (A · P)|xn=−∞ = infA · P.

For the base case, pm and p are scalars and the result is trivial. �

Corollary 5.8. Let pn be polynomials with non-negative coefficients and p analytic such that pn →
p, with α ∈Newt (p). Then

lim
n→∞ Capα pn =Capα p.

Proof. As in the previous proposition, we only have the ≥ direction to prove. Let qn be defined
as the sum of the terms of pn, which appear in the support of p. Since the pn are polynomials with
non-negative coefficients, we have that qn → p. By the previous theorem, we then have

lim
n→∞ Capα pn ≥ lim

n→∞ Capα qn =Capα p. �

Note that the fact that qn → p holds after restricting to the support of p relies on the fact that
pn and qn are polynomials with positive coefficients. This is the main barrier to generalising this
corollary to all continuous generating functions.

6. Concluding remarks
We have given here tight bounds on capacity-preserving operators related to real stable polyno-
mials. These results are essentially corollaries of inner product bounds, extended from bounds of
Anari and Oveis Gharan, all eventually based on the strong Rayleigh inequalities. That said, there
are a number of pieces of this that may be able to be altered or generalised, and this raises new
questions.

The first is that of the inner product: are there other inner products for which we can obtain
bounds? The main conjecture in this direction is that of Gurvits in [21].
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Conjecture 6.1 (Gurvits). Let p, q ∈R+[x1, ..., xn] be homogeneous real stable polynomials of total
degree d. Then

∑
‖μ‖1=d

(
d
μ

)−1
pμqμ ≥ αα

dd
Capα (p) Capα (q).

The main difference here is that we use multinomial coefficients rather than products of bino-
mial coefficients. Note that the symbol operator associated to this inner product is given by
T[(z · x)d] (dot product of z and x). It is not immediately clear how this inner product relates to
real stable polynomials, as the link to stability preservers is less clear than in the Borcea–Brändén
case.

The next is the class of polynomials: are there more general classes of polynomials for which
weaker capacity bounds can be achieved? One such bound is achieved for strongly log-concave
polynomials (originally studied by Gurvits in [21]) in [2], and this class contains basis generating
polynomials of matroids. (Note that the authors call these polynomials completely log-concave,
and they are also called Lorentzian in [8].) This bound relies on a weakened version of the strong
Rayleigh inequalities, where a factor of 2 is introduced. It is unclear what applications such a
bound has beyond those of [2].

The last is a question about the further applicability of the main results of this paper. In
particular, all of the operators studied here are differential operators. Are there applications of
non-differential operators? Also, are there ways to get a handle on the location of the roots of a
polynomial via capacity? This second question is of particular interest, as it may lead to a more
unified and a direct approach to various root bounding results. For example, the root bounds of
[26] are at the heart of the proof of the Kadison–Singer conjecture in [27]. Can capacity be used
to achieve those bounds?
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