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ABSTRACT. Global warming is causing an apparent rapid retreat of many glaciers worldwide. In
addition to mass-balance investigation, the determination and monitoring of total glacial ice volume and
ice-thickness distribution are important parameters for understanding the interactions between climate
and the complex glacier system. Because of spatially irregular and sparse datasets, scaling of volume and
ice-thickness distribution is often a challenging problem. This study focuses on two small (<2 km2)
temperate glaciers in the Hohe Tauern (Eastern Alps) region of central Austria. The period 2003–04 saw
the first use of ground-penetrating radar (GPR) to determine the total ice volume and ice-thickness
distribution of the two glaciers. A centre frequency of 20MHz was used in point measuring mode.
Despite variable data quality, bedrock reflections up to depths of >100m were identified in the data.
The acquired GPR data are irregularly distributed and the spatial density is too low to calculate
reasonable bedrock topography with standard interpolation approaches. Thus one main focus of this
study was to develop an appropriate interpolation technique. Eventually, kriging technique and a glacial
mechanically based interpolation parameter were used. Mean calculated ice thicknesses for the two
investigated glaciers are 40–50m, with a maximum of 150–165m. No direct validation data are
available, so different considerations support the computed bedrock topography.

1. INTRODUCTION
Total ice-volume monitoring is important for the observation
of climatic change and its consequences such as global sea-
level rise (Jevrejeva and others, 2008). To estimate the total
volume of stored water worldwide, UNESCO initiated the
International Hydrological Decade (1965–74). In this con-
text, systematic geophysical investigations on Austrian
glaciers were started. In the years 1966–80, the total ice
volumes of 15 glaciers were calculated based on ice depths
derived from two-dimensional (2-D) seismic surveys (Aric
and Brückl, 2001).

First experiences with the radar technique on temperate
alpine glaciers were gained in 1980/81 (Haeberli and others,
1983). Progress in digital electronics, data acquisition and
processing techniques led to the use of higher frequencies
and consequently to higher resolution (Blindow and
Thyssen, 1986; Moran and others, 2000). Ground-pene-
trating radar (GPR) proved its suitability for glaciological
use, and basic GPR applications also required less extensive
fieldwork and data processing than other geophysical field
techniques. Consequently, GPR gained in popularity and the
number of investigated alpine glaciers increased (Span and
others, 2005). The economic and logistic constraints on
surveys of remote glaciers meant that data density was often
sparse and irregular, so it was seldom possible to calculate
plausible results for ice-thickness distribution and total ice
volume with standard interpolation techniques. As this is a
common problem in less accessible regions, Warner and
Budd (2000) introduced an approach to derive ice thickness
and bedrock topography in data gap regions over Antarctica.
This approach uses surface elevation data, ice-accumulation
distributions via balance fluxes and basic assumptions about
the dynamics of ice flow. Only a few Austrian glaciers are

sufficiently well investigated to offer this data diversity. In
this study, we present an interpolation approach for poorly
data-covered regions using surface topography and GPR
data to determine subglacial topography, ice-thickness
distribution and total ice volume. Besides closing data gaps,
the presented interpolation approach produces plausible
ice-thickness distributions that can be used in glacier
models. Numerical glacier modelling helps to clarify
relevant physical processes underlying glacial response to
climate change (Greuell, 1992). Progress in modelling
glacier dynamics, which has led from one-dimensional
flowline models (Greuell, 1992; Wallinga and Van de Wal,
1998) to models describing the three-dimensional (3-D) field
of glacier flow (Hubbard and others, 1998; Gudmundsson,
1999), still crucially relies on accurate results of ice-
thickness distribution.

2. STUDY SITE
The two investigated glaciers are situated on the mountain
Hoher Sonnblick (47803016’’N, 12857025’’ E; 3106m a.s.l.)
in the Hohe Tauern region of the Eastern Alps in central
Austria. The north-facing Goldbergkees has an area of
1.43 km2 with an elevation range from 2380 to 3060m; the
south-facing Kleinfleisskees has an area of 0.87 km2 with an
elevation range from 2740 to 3060m (Auer and others,
2002). Both are temperate glaciers and belong to the
geomorphologic group of alpine valley glaciers. The
Sonnblick climate observatory, which is situated on the
summit (Fig. 1), has been in operation since 1886. Mass
balance has been determined annually for Goldbergkees
since 1988 and for Kleinfleisskees since 1998, and the
average annual ice loss for both glaciers has been about
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0.6m (ZAMG internal glacier database, 2008). Mass bal-
ance is determined by the standard glaciological method
(Paterson, 1994). As a result of climatic conditions in recent
decades, firn coverage of the two glaciers is decreasing
(Auer and others, 2002). For the last 7 years the mean
accumulation-area ratio (AAR; Bahr, 1997) is about 0.35
(ZAMG internal glacier database, 2008).

Since the 1970s, Goldbergkees has been divided into two
parts (Gok 1 and Gok 2). The upper part (Gok 1) is
connected via the ice divide ‘Fleisscharte’ with Kleinfleiss-
kees (Flk). Because Gok 1 is connected to Flk and Gok 2 is
now a separate glacier, we define two areas for processing
purposes. Flk and Gok 1 comprise the first processing part
(PP1), with an area of 1.26 km2 and elevations ranging from
2740 to 3060m. Gok 2 is the second processing part (PP2),
with an area of 1.04 km2 and elevations ranging from 2380
to 2780m (Fig. 1).

The most recent digital terrain model (DTM) for the
investigated area is based on an aerial survey in autumn
1998 with a horizontal resolution of 10m�10m (Auer and
others, 2002). This DTM 1998 was used to as a reference for
elevations, ice thickness and topography of the glacier bed.
Using differential global positioning system (DGPS) meas-
urements of autumn 2005, we estimated mean elevation
differences for the two glaciers in the period autumn 1998 to
autumn 2005. Elevation differences for autumn 2004 were
calculated using a linear approach. PP1 showed a mean
elevation difference of –2m and PP2 a mean elevation
difference of –5m.

3. DATA ACQUISITION AND 2-D PROCESSING
Weather conditions, inaccessibility, crevasses and the free
water content of temperate glaciers restricted the time
available for field surveys. The optimum compromise was

the early springtime, the period of maximum accumulation.
Mean measured snow depth is 3.5m for PP1, and 4m for
PP2. With respect to the different GPR propagation vel-
ocities of snow (�0.22mns–1; Frolov and Macheret, 1999)
and ice (vice ¼ 0.167mns–1; Hubbard and Glasser, 2005),
total mean elevation differences for the two processing parts
were calculated. Regarding the DTM 1998 and the snow
cover of early spring 2004, the total mean elevation
differences result in elevation corrections of +1m for PP1,
and –2m for PP2.

The Subsurface Interface Radar (SIR)-2 system (Geophys-
ical Survey Systems Inc. (GSSI)) was used for data acquisition.
The antenna used was the unshielded multi-low-frequency
(MLF) 3200 (GSSI). Through variable dipole lengths, centre
frequencies of 15, 20, 35, 40 and 80MHz can be achieved.
For this study, a centre frequency of 20MHz was used. An
electromagnetic pulse of 20MHz propagates with a wave-
length � of 8.4m in ice (vice ¼ 0.167mns–1); the maximum
vertical resolution is about �2.1m (= �� /4). The horizontal
resolution is a function of depth z and � and is defined by the
first Fresnel zone.

Generally, the best possible resolution in a GPR survey is
achieved with a point separation of �/4 and an antenna
separation of �/2 (Hubbard and Glasser, 2005). Using
optimum field survey geometry and adequate 3-D wavefield
migration, Welch and others (1998) showed for a synthetic
bedrock reflection dataset a theoretical maximum obtain-
able horizontal resolution of �/2��/2 for the bedrock
geometry, thus independent of depth z.

For this GPR survey a common-offset geometry with point
measuring mode (point separation 2m) was used. The
transmitter and receiver devices were mounted parallel to
each other and perpendicular to the profile direction on a
fibreglass sledge with an antenna separation of 3m. This is a
compromise for all possible centre frequencies of the MLF

Fig. 1. The study site, in the Eastern Alps of central Austria. The black square marks the Sonnblick climate observatory, situated on the
summit of Hoher Sonnblick mountain (3106ma.s.l.). The dashed line identifies the ice divide ‘Fleisscharte’ connecting the two parts of PP1
(Flk and Gok 1). The greyscale represents the picked bedrock reflection time data for PP1 and PP2. In this study, the term ‘bedrock reflection
time’ denotes the one-way travel time of the GPR pulse reflected at the ice/bedrock boundary.
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3200 antenna, but previous studies showed good data
quality with this set-up. Depending on the terrain, co-
ordinates were determined every 50–200m with a conven-
tional hand-held GPS. The accuracy of the horizontal
coordinates was �5–10m. Because of the large error of
the vertical coordinate, the elevations were taken from the
DTM 1998. To minimize bedrock reflections not originating
in the vertical profile plane, the majority of the profiles were
positioned normal to the glacier flow direction. The total
length of all profiles is about 15 km. Standard processing
(background removal, bandpass filtering, automatic gain
control) was applied to the data.

Generally, we gathered GPR data of three interpretation
classes (IC 1–3). GPR data of IC 1 feature clearly visible,
continuous bedrock reflections (Fig. 2a). The absolute
picking error for IC 1 is estimated with ��/4. IC 2 data
feature elements of bedrock reflections interrupted by
strongly diffractive parts masking the bedrock. Watts and
England (1976) showed that englacial water voids are most
likely diffraction sources in temperate ice. Through diffrac-
tion hyperbola analysis, we found a mean GPR propagation
velocity of 0.16mns–1�5%. To estimate minimum bedrock
depths for strongly diffractive parts, the deepest diffraction
hyperbolas with a curvature corresponding to the propa-
gation velocity of 0.16mns–1�5% were picked (Fig. 2b).
Taking possible cycle skip into account, the absolute
picking error for IC 2 is �(�/4 +�). IC 3 data were not
further processed.

Distribution of picked IC 1 and IC 2 data is shown in
Figure 3. Deeper bedrock reflections (>100m) were
identified in IC 1 as well as IC 2 data. Since no bias of the
two interpretation classes was found in subsequent proces-
sing steps, the data seem to be well distributed (Fig. 3).

All data were 3-D migrated (see below). Only in a few
cases was 2-D migration of individual profiles carried out to

increase spatial resolution in order to better identify bedrock
reflections. However, arrivals of identified bedrock reflec-
tions were always picked in the unmigrated time domain.

4. INTERPOLATION
Spatial data distribution of the picked bedrock reflection
dataset is irregular and sparse (Fig. 1). GPR datasets of
small, remote glaciers often have these attributes. Inter-
polation is therefore an essential processing step. One main
focus of this study was to develop an appropriate inter-
polation strategy, the aim being to produce a plausible,
continuous bedrock reflection time field based on the
obtained GPR data to apply 3-D migration. The GPR dataset
consists of 1799 picked bedrock reflection times for PP1,
and 2033 picked bedrock reflection times for PP2 (Fig. 1).
In this paper, the term ‘bedrock reflection time’ denotes the
one-way travel time of the GPR pulse reflected at the ice/
bedrock boundary.

The kriging technique copes well with irregular data
distribution and has been shown to work well in areas
similar to ours (Herzfeld and others, 1993; Bamber and
others, 2001), so it can meet this interpolation challenge. It
is a geostatistical local estimation technique that provides
the best linear unbiased estimate of the unknown char-
acteristic being studied (Isaaks and Srivastava, 1989). The
basis for kriging interpolation is the variogram, which
characterizes the spatial variability of the studied character-
istic. Sill and range are two of the three important
variogram parameters defining geostatistical spatial correl-
ation. The third is known as nugget, and takes into account
the average error in each data point. Kriging also allows
estimation of an error for each interpolated value. This error
indicates the degree of confidence for the applied kriging
interpolation.

Fig. 2. Standard processed radargrams with topography of interpretation classes 1 (IC 1) (a) and 2 (IC 2) (b). (a) features a clearly visible,
continuous reflector. Starting on the left, (b) shows a disappearing, dipping reflector. In the last 200m of the profile the reflector reappears. In
between, the numerous diffraction hyperbolas give information about the minimum ice thickness and the mean GPR propagation velocity in
temperate glacier ice (v ¼ 0.16mns–1� 5%). 2-D migration was unsuitable for this profile. Location of the two presented profiles is
sketched in Figure 3.
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Variogram analysis of the picked bedrock reflection times
exhibited a trend, so the universal kriging technique (Isaaks
and Srivastava, 1989) was chosen. Further variogram
analyses showed high spatial variance and consequently
low spatial correlation for the picked times. The geostat-
istical characteristics raise doubts about the suitability of
bedrock reflection time as an interpolation value.

Here we define an alternative interpolation value based
on the assumption of constant shear stress at the ice/bedrock
intersection. The shear stress at the ice/bedrock boundary is
denoted as basal shear stress �b. �b of a glacier is defined as
(Paterson, 1994)

�b ¼ �gh sin�, ð1Þ
where � is the ice density (900 kgm–3), g the acceleration
due to gravity (9.81m s–2), h the ice thickness in metres and
� the surface slope in radians. Brückl (1970) concluded that
the constant �b assumption is most suitable for ice-thickness
interpolation. If �b is constant, the product of h and sin� is
also constant. Since the surface slopes of the two investi-
gated glaciers are small, we can neglect the sine. If we make
a further assumption,

h � vicet0, ð2Þ
where t0 is the bedrock reflection time, then the product of t0
and the corresponding surface slope � is the alternative
interpolation value �:

� ¼ t0�: ð3Þ
Kuhn and Hermann (1990) summarized that �b can be
likened to a material constant and commonly range from
about 50 to 150 kPa for glaciers (Nye, 1952a,b). Table 1
shows assumed constant �b values for several alpine glaciers.
These values were used to obtain continuous ice-thickness
maps (Equation (8)) for modelling the dynamics of the

glaciers. The variability of �b values is obvious, especially
since Greuell (1992) and Schlosser (1997) investigated the
same glacier and a basal shear stress range of more than
�10 kPa does not produce similar ice thicknesses (Banks and
Pelletier, 2008).

Based on historical data from Rhonegletscher, Switzer-
land, Haeberli and Schweizer (1988) calculated a basal
shear stress distribution and concluded that stresses must
generally be higher in steep parts than in flat parts. Hence,
the constant �b assumption is problematic (Schmeits and
Oerlemans, 1997).

Considering these results, a more realistic approach is to
find the minimum spatial variance of �b and consequently
for the interpolation value � in an optimization process. The
crucial optimization parameter is the horizontal averaging
distance for the surface slope �. The optimum horizontal
averaging distance for the surface slope � is achieved if the
spatial variance of the interpolation value � is a minimum.
The optimum horizontal averaging distance itself is not
quantified in this study.

Bindschadler (1982) determined a horizontal averaging
distance of 8–16 times the ice thickness. Small alpine
glaciers show high spatial variability of ice depths. As
mentioned above, the maximum ice depth of each of the
two glaciers is >100m. Assuming a 100m ice thickness, a
horizontal averaging distance of at least 800–1600m would
be necessary, which seems too much for such small glaciers.
This is further considered in section 7.

Variogram analysis yielded the optimum interpolation
values

�opt, i ¼ t0, i�opt, i

i ¼ 1, :::, n
ð4Þ

for PP1 (n ¼ 1799; Fig. 4) and PP2 (n ¼ 2033). t0, i are the

Fig. 3. Distribution of picked bedrock reflection times of IC 1 and IC 2. Greyscale plot presents the calculated kriging error. Maximum
kriging error was found at maximum interpolated bedrock reflection times. Mean kriging error for PP1 and PP2 was about �60 ns, which is
consistent with �9.6m. For the kriging-error depth conversion, a determined propagation velocity of 0.16mns–1 was applied. Since no bias
of the two interpretation classes was found, the data seem to be well distributed.
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picked bedrock reflection times, and �opt,i denotes the
corresponding optimum averaged surface slopes. The
optimum interpolation values �opt,i for PP1 and PP2 are
characterized by low spatial variance, hence high spatial
correlation. Optimum interpolation values �opt,i are now
interpolated using the universal kriging technique to obtain
a continuous field �opt for PP1 and PP2. A spherical
variogram model was applied for universal kriging. In the
case of PP1, a range of 300m and a sill of 420 rad2̇ ns2̇ were
used as variogram model parameters. Similar values were
used for PP2.

Finally, the interpolated continuous bedrock reflection
time field �opt for PP1 and PP2 was obtained by dividing the
interpolated field Iopt by the corresponding continuous
optimum averaged surface slope field Aopt:

Topt ¼
Iopt
Aopt

: ð5Þ

The Topt,PP1 kriging error shows a maximum of 213 ns
(�34m) situated at interpolated maximum bedrock reflec-
tion times, and a mean kriging error of 56 ns (�9m). The
maximum kriging error of Topt,PP2, also situated at the
interpolated maximum bedrock reflection times, is 225 ns
(�36m). The mean kriging error of Topt,PP2 is 69 ns (�11m;
Fig. 3). For the kriging-error depth conversion, a determined
propagation velocity of 0.16mns–1 was applied.

How the estimated picking error of IC 1 and IC 2
influences the mean kriging error was considered using
the variogram parameter nugget. The nugget tests showed
no significant change in the mean kriging error of PP1
and PP2.

The same interpolation steps were performed for �mean,i to
produce Tmean of PP1 (Fig. 4) and PP2. Interpolation value
�mean,i is the product of picked bedrock reflection times t0, i
and mean surface slope �mean. Interpolation values �mean,i

can also be considered as picked bedrock reflection times
t0, i scaled by constant value �mean. Geostatistical character-
istics of �mean,i, irrespective of the constant scaling factor
�mean, are the same as for t0, i. Thus kriging errors of Tmean or
interpolated t0, i values are the same. Apart from resulting in
implausible bedrock reflection time fields Tmean,PP1 and
Tmean,PP2, a mean kriging error of 70 ns (�11m) for PP1, and
156ns (�25m) for PP2, was calculated. Maximum kriging
errors were of similar magnitude to those before (Topt,PP1,
Topt,PP2).

Regarding plausible data distribution of Topt,PP1 and
Topt,PP2, and corresponding relatively small mean kriging
errors, �opt,i prove to be appropriate interpolation values.
Topt,PP1 and Topt,PP2 are now ready for migration.

5. 3-D MIGRATION
The simple time-to-depth conversion,

d ¼ t0vmedium, ð6Þ
where d is the reflector depth, t0 the bedrock reflection time
and vmedium the propagation velocity of the medium, is only
valid for horizontal or deep reflectors. In the case of alpine
valley glaciers, one can expect a U-shaped glacier bed.
Therefore, the correct imaging of the bed requires migration
techniques (Blindow and Thyssen, 1986; Fountain and Jaco-
bel, 1997;Welch and others, 1998; Moran and others, 2000).

Migration moves dipping reflections to their true sub-
surface position and collapses diffraction hyperbolas, thus
increasing spatial resolution and yielding a more accurate
image of the subsurface (Yilmaz, 2001). To carry out
migration, the velocity distribution of the subsurface must
be known. Considering the disappearing firn coverage of the
two investigated glaciers, we made a simplifying constant-
propagation-velocity assumption. Following results of dif-
fraction hyperbola analyses (Fig. 2b), a mean GPR velocity
of 0.16mns–1� 5% was determined for the two investigated
temperate glaciers.

2-D migration techniques assume that all reflections
originate in the vertical profile plane. Considering the
complex 3-D subsurface of an alpine valley glacier, these
assumptions are far from reality. For a 3-D wavefield
migration, optimum survey geometry is necessary (Welch
and others, 1998; Moran and others, 2000). In this study it
was not possible to produce such a dense network, due to
economic and time constraints. Thus an alternative 3-D
migration based on ray theory was applied.

The Eikonal equation

�T
�x

� �2

þ �T
�y

� �2

þ �T
�z

� �2

¼ 1
v2 ð7Þ

is a ray-theoretical approximation of the scalar wave
equation (Yilmaz, 2001). While the solution of the scalar
wave equation describes a wavefield P(x,y,z,t) at one point
(x,y,z) at time t, the Eikonal equation describes the travel
time T(x,y,z) for one ray in a medium with a propagation

Table 1. Assumed constant �b values for several alpine glaciers, to
calculate ice thicknesses using Equation (8)

Location �b Source

kPa

Hintereisferner, Austria 100 Schlosser (1997)
Hintereisferner, Austria 140 Greuell (1992)
Unterer Grindelwaldgletscher,
Switzerland

150 Schmeits and Oerlemans
(1997)

Rhonegletscher, Switzerland 210 Wallinga and Van de Wal
(1998)

Fig. 4. Three characteristic variograms of interpolation values
�mean,i, �i and �opt,i for area PP1 (n ¼ 1799). �mean,i is calculated by
the product of picked bedrock reflection times t0,i and the mean
surface slope �mean of PP1. The variograms illustrate the optimiza-
tion progress of averaging horizontal surface slopes. The variogram
of �opt,i values features low variance and high spatial correlation.
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velocity v. T(x,y,z) = constant represents a wave front at time
t. A wave propagates from one wave front to the next on the
ray paths described by the Eikonal equation such that ray
paths are normal to the propagating wave front.

The ray approximation is valid if the wavelength � is small
compared to the size of velocity anomalies in the investi-
gated medium. Considering the boundary conditions of this
20MHz GPR survey

constant mean GPR propagation velocity equal to
0.16mns–1�5%

� ¼ 8m

maximum ice thickness > 100m

the Eikonal equation is a valid approximation of the scalar
wave equation, and the ray approximation is well suited for
this GPR survey.

Based on the Eikonal equation, a 3-D migration routine
was written in Matlab programming language. To obtain the
bedrock elevations (m a.s.l.) the interpolated continuous
bedrock reflection time fields for PP1 and PP2 were 3-D
migrated and converted to depth (Fig. 5).

6. FINAL CONSTRUCTION OF THE BEDROCK
In constructing the final bedrock map, we took into account
the recent geomorphological history of the immediate
surroundings of an alpine glacier. Apart from small-scale
glacier advances (e.g. 1930), Austrian glaciers have been
retreating continuously since the end of the Little Ice Age
(�1850) (Gross, 1987; Lambrecht and Kuhn, 2007). The
footprint of glacial erosion differs completely from all other
exogenous processes. Given that even in areas that have
been ice-free for 10 000 years, it is possible to identify
glacial footprints, one can envision how long the other
exogenous processes take to redesign the landscape. The
immediate current surroundings of a glacier are therefore

themselves part of the former glacier bedrock, so no sharp
geomorphologic contrast is to be expected.

The DTM calculated from the aerial survey in 1998
delivers good data resolution of 10m�10m of the study site
(Auer and others, 2002). To accomplish a realistic smooth
intersection between the DTM data and the calculated
bedrock of the two glaciers, we used a geomorphologic
interpolation approach. As a first step we defined the
footprinted area of each glacier, cut out the glaciers and
trimmed the marginal region of the calculated bedrock. After
merging of the masked footprinted area with the trimmed
calculated bedrock (Fig. 6), the data gap between them was
filled using robust nearest-neighbour interpolation (Fig. 7).

7. RESULTS AND DISCUSSION
The calculated total ice volume for PP1 (Flk and Gok 1) is
0.053� 0.011 km3. The calculated maximum ice thickness
in the flat central part of Kleinfleisskees (Flk) is 153�34m,
and the mean ice thickness is 42� 9m. For PP2 (Gok 2) the
calculations give a total ice volume of 0.050�0.011 km3.
The calculated maximum ice thickness in the upper part of
PP2 is 162�36m, and the mean ice thickness is 48�11m.
Prior to this study, maximum ice thickness had been
expected to be about 70m, so these were surprising results.

Mean and maximum ice thickness had been adjusted by
calculated elevation differences for DTM 1998 and snow
cover of spring 2004. The results of testing different nugget
values, according to the two picking errors of IC 1 and IC 2
data (see section 4), implied that the interpolation proces-
sing step is the main error source. The mean kriging errors
were applied as total errors of mean and maximum ice
thickness; total error of volume was derived by error
propagation. The error of total ice volume (��20%) is
relatively large, but since interpolation is the main error
source, accuracy can only be improved by densification of
data coverage. Nevertheless, kriging interpolation of the

Fig. 5. Interpolated continuous bedrock reflection time fields for PP1 and PP2. Universal kriging was used for interpolation based on a
spherical variogram model.
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optimum alternative interpolation values �opt,i delivered
reasonable data distribution. Generally, calculated max-
imum ice thicknesses are found in the flat parts of the two
glaciers, and calculated minimum ice thicknesses in the
steeper parts. Furthermore, minimum ice thicknesses correl-
ate with the occurrence of crevasse zones, as derived from
aerial survey photos, and increased reflectivity in GPR data.

Here we compare simple estimates for ice thickness and
total glacier ice volume with our calculated data. Based on
the constant basal shear stress assumption for steady-state
glaciers and the approximation that ice is a perfectly plastic
material, with a yield stress of 100 kPa (Paterson, 1994;
Schlosser, 1997), ice thickness can be estimated using

H ¼ �0
f �g sinAopt

, ð8Þ

where H is the resulting ice-thickness field, �0 the yield stress
(100 kPa), f a shape factor which accounts for drag on the
valley side-walls and glacier bed (Nye, 1965), � the ice
density (900 kgm–3), g the acceleration due to gravity
(9.81m s–2̇) and Aopt the corresponding optimum averaged
surface slope field. Ice thicknesses calculated using this
approach were compared with those produced in this study.
Regression analyses were carried out and showed high
correlation for PP1 (R2̇ ¼ 0.84) and much lower correlation
for PP2 (R2̇ ¼ 0.49). This lower correlation is explained by
the much more complex subglacial geometry that makes the
constant basal shear stress assumption problematic.

Since there are volume–area scaling relations, one can
calculate total glacier ice volume using a power law,

V ¼ S�, ð9Þ
where V denotes total ice volume in km3, S the surface of the
glacier in km2̇ and � the volume–area scaling exponent. Bahr
and others (1997) predict a volume–area scaling exponent �
of 1.375 for valley glaciers. Calculating total ice volumes for
the two processing parts gives 1.37 km3 for PP1 and 1.06 km3

for PP2, values far different from the calculated total ice

volumes. These results suggest that common volume–area
scaling methods are unsuitable for small (<2 km2̇), retreating
alpine valley glaciers. The relationships between character-
istic quantities are typically given by power laws (Schmidt
and Housen, 1995). Besides volume–area scaling, Bahr
(1997) statistically derived other power laws relating glacier
characteristics, but, like the volume–area scaling relation, the
derived relationships were unsatisfactory in our case.
Statistically determined characteristic values for alpine gla-
ciers from Bahr (1997) are very different to characteristic
values for the two investigated glaciers. The fact that the study
objects are small and retreating alpine glaciers, and the lack
of a glacier tonguemigrating into a U-shaped valley, could be
explanations of this inconsistency.

The crucial parameter of the horizontal averaging distance
for the surface slope to minimize the spatial variance of the
derived interpolation value leaves some open questions. For
an ice depth of 100m, Bindschadler (1982) recommended a
horizontal averaging distance of 800–1600m. This seems to
be far too high for the two investigated glaciers. If we take the
calculated mean ice thicknesses with respect to their error
margins, we obtain a recommended horizontal averaging
distance of 264–816m for PP1 and 296–944m for PP2. These
distances seem to fit better. To make a reliable statement
concerning the horizontal averaging distances of small alpine
valley glaciers, more data analysis and data of other
comparable glaciers are required. In future work, it would
be interesting to address this open question, and furthermore
to quantify the absolute error of calculated bedrock topog-
raphy also involving the 3-D migration processing step. A
synthetic data experiment might lead to a proper error
analysis. Finding possible reasons for the inconsistency of
power-law relationships for characteristic values of glaciers
will require data of more comparable small, retreating alpine
glaciers, to determine reliable exponents. A field resurvey to
collect ground truth for validation of calculated bedrock
maps, ideally by means of drilling or else through GPR or
seismic investigations, is also desirable.

Fig. 6.Masked DTM data merged with trimmed calculated bedrock elevations for PP1 and PP2. The geomorphologic interpolation approach
satisfies a reasonably smooth intersection between the immediate surrounding and the calculated data (see Fig. 7).
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8. CONCLUSION
The aim of this study was to produce bedrock topography,
ice-thickness maps and consequently total ice volume
based on GPR data, for two small (<2 km2̇), temperate
alpine glaciers. When dealing with spatially irregular and
sparse data distribution, standard interpolation approaches
failed. Thus the main focus of this study was to develop an
appropriate interpolation technique. Eventually, the kriging
technique and a glacial mechanically based interpolation
parameter were used, producing reasonable bedrock
topography in short CPU time. Geophysical investigations
of small, remote glaciers often have to deal with rough
terrain conditions and poor logistic support, due to
financial constraints. Hence irregular and sparse datasets
are frequent in this type of investigation area. The
interpolation approach developed in this study provides
an opportunity to yield objective, repeatable and compar-
able bedrock topographies based on further described
datasets. Generally, this interpolation approach can be
applied for all zero-offset data (GPR, seismics) and,
furthermore, for ice-thickness interpolation itself, using
the product of ice thickness h and the sine of surface
slope � as an alternative interpolation value.

Considering that standard volume–area scaling methods
are unsuitable for small-scale glaciers, total glacier ice
volumes calculated with the presented interpolation ap-
proach could be the basis for a proper alpine glacier
volume–area scaling method, for better estimating par-
ameters such as the extent of sea-level rise caused by alpine
glacier retreat.

Besides interpolation challenges presented by small
glaciers, the presented interpolation approach can also be
applied to larger glaciers flowing over complex bedrock
topography. Derived continuous bedrock and ice-thickness
maps can also be used to model glacier dynamics.
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region. Österreich. Beitr. Meteorol. Geophys. 28.

Bahr, D.B. 1997. Width and length scaling of glaciers. J. Glaciol.,
43(145), 557–562.

Bahr, D.B., M.F. Meier and S.D. Peckham. 1997. The physical basis
of glacier volume–area scaling. J. Geophys. Res., 102(B9),
20,355–20,362.

Bamber, J.L., R.L. Layberry and S.P. Gogineni. 2001. A new ice
thickness and bed dataset for the Greenland ice sheet.
1. Measurement, data reduction, and errors. J. Geophys. Res.,
106(D24), 33,773–33,780.

Banks, M.E. and J.D. Pelletier. 2008. Forward modeling of ice
topography on Mars to infer basal shear stress conditions.
J. Geophys. Res., 113(E1), E01001. (10.1029/2007JE002895.)

Bindschadler, R. 1982. A numerical model of temperate glacier
flow applied to the quiescent phase of a surge-type glacier.
J. Glaciol., 28(99), 239–265

Fig. 7. Contour plot showing the calculated bedrock merged with DTM data. Greyscale plot shows the ice thickness. The data holes in PP1
are caused by rocky islands inside the glacier border. PP1, especially the Kleinfleisskees (Flk), has a classic cirque shape, while PP2 shows a
more complex subglacial geometry.

Binder and others: Ice volume and ice-thickness distribution of two Alpine glaciers78

https://doi.org/10.3189/172756409789097522 Published online by Cambridge University Press

https://doi.org/10.3189/172756409789097522


Blindow,N. and F. Thyssen. 1986. Ice thickness and inner structure of
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