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Abstract

The prenatal period represents a critical time for brain growth and development. These rapid neurological advances render the fetus sus-
ceptible to various influences with life-long implications for mental health. Maternal distress signals are a dominant early life influence,
contributing to birth outcomes and risk for offspring psychopathology. This prospective longitudinal study evaluated the association
between prenatal maternal distress and infant white matter microstructure. Participants included a racially and socioeconomically diverse
sample of 85 mother-infant dyads. Prenatal distress was assessed at 17 and 29 weeks’ gestational age (GA). Infant structural data were col-
lected via diffusion tensor imaging (DTI) at 42-45 weeks’ postconceptional age. Findings demonstrated that higher prenatal maternal dis-
tress at 29 weeks’ GA was associated with increased fractional anisotropy, b=.283, t(64)=2.319, p=.024, and with increased axial
diffusivity, b=.254, t(64) =2.067, p =.043, within the right anterior cingulate white matter tract. No other significant associations were

found with prenatal distress exposure and tract fractional anisotropy or axial diffusivity at 29 weeks’ GA, or earlier in gestation.
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The developmental origins of health and disease (DOHaD) or the
fetal origins of adult disease (FOAD) models posit that environ-
mental exposures early in development, and particularly during
intrauterine life, have lasting implications for health and disease
across the life span (Barker, 1990, 1994, 1994, 1995; Gluckman &
Hanson, 2004). There is compelling support for the DOHaD/
FOAD hypotheses in terms of adult physical health and mental
health (Hanson & Gluckman, 2014). A large epidemiological liter-
ature provides support for the FOAD hypothesis by demonstrating
that small size at birth is associated with increased risk for many
pathologies throughout the life span, including heart disease, obe-
sity, diabetes (Barker, Eriksson, Forsén, & Osmond, 2002;
Jornayvaz et al, 2016), and psychiatric illness (Class, Rickert,
Larsson, Lichtenstein, & D’Onofrio, 2014; Semhovd, Hansen,
Brok, Esbjern, & Greisen, 2012; Thompson, Syddall, Rodin,
Osmond, & Barker, 2001). Small size at birth is also linked to neu-
rological development (DiPietro et al., 2010). Small size at birth is
not likely to be the cause of subsequent disease outcomes, but
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rather being born small reflects various prenatal perturbations.
Prospective research therefore is needed to characterize the prenatal
environment and investigate how it shapes developmental trajecto-
ries (Howland, Sandman, Davis, & Glynn, 2020). Building on the
findings that intrauterine experiences shape mental health out-
comes (O’Donnell & Meaney, 2017), research suggests that prenatal
exposures can also have transformative neurobiological effects on
fetal brain circuit maturation.

The prenatal period is a time of rapid growth and the beginning
of neurologic development for the fetal brain (Huttenlocher &
Dabholkar, 1997; Stiles & Jernigan, 2010). The extraordinary rate
of brain maturation in utero means that both salutary and delete-
rious environmental signals have the potential to alter the trajec-
tory of brain development. During the transformation from a
zygote to a human newborn in the 9 months of full-term gesta-
tion, cell division and differentiation is both rapid and highly
coordinated (Huttenlocher & Dabholkar, 1997; Stiles &
Jernigan, 2010). White matter microstructure is fundamental to
transmission of neural communication, and undergoes pro-
nounced development during the prenatal period (Knickmeyer
et al., 2008). White matter tracts begin emerging within the
fetal brain between 13 and 19 gestational weeks, with evidence
that major white matter tracts (e.g., the corpus callosum, superior
and inferior fasciculi, and cingulum) are present by birth
(Gilmore, Knickmeyer, & Gao, 2018).
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Maternal psychological distress during the prenatal period is
one important environmental signal that shapes developmental
trajectories in the offspring. Rates of psychological distress includ-
ing elevated symptoms of anxiety and depression are seen in up to
25% of pregnant women (Muzik & Borovska, 2010) with rates
even higher among socioeconomically at-risk populations (Katz,
Crean, Cerulli, & Poleshuck, 2018; Koleva, Stuart, O’Hara, &
Bowman-Reif, 2011). The high prevalence of prenatal psychopa-
thology is of critical public health importance, as it indicates
impairment not only in maternal psychological wellbeing, but
also has robust long-term consequences for child mental health
(Capron et al, 2015; Davis & Narayan, 2020; O’Donnell,
Glover, Barker, & O’Connor, 2014; Plant, Pariante, Sharp, &
Pawlby, 2015). Prenatal maternal distress is associated with a
range of neurodevelopmental outcomes, including behavioral
problems, difficult temperament, negative emotionality, and inter-
nalizing problems (Davis & Sandman, 2012; Park et al., 2014; Van
den Bergh, Calster, Smits, Huffel, & Lagae, 2008). Importantly, pre-
natal maternal symptoms of distress predict later infant and child
psychopathology and risk mechanisms even when maternal symp-
toms of distress are subclinical and below diagnostic categorical
thresholds (Glynn, Howland, & Fox, 2018; O’Connor, Monk, &
Fitelson, 2014; Sandman, Buss, Head, & Davis, 2015). These find-
ings highlight the importance of investigating the intergenerational
consequences of maternal distress from a transdiagnostic perspective
as supported by the National Institute of Mental Health’s research
domain criteria (RDoC) initiative (Gao et al., 2021; Insel et al.,
2010).

Accumulating evidence across experimental studies in rodents
and observational studies in humans have demonstrated that
postnatal stress exposure, particularly when experienced during
early life, is associated with variability in the structure and func-
tion of frontolimbic and temporal circuitry (for review see Chen &
Baram, 2016; McLaughlin, Weissman, & Bitran, 2019). These
neural circuits are important for affective processing, including
the evaluation of social stimuli and emotion regulation
(Dannlowski et al., 2012; Hartley & Phelps, 2010). In experimen-
tal research with rodents and nonhuman primates, prenatal stress
exposure causes changes in the basic neuroarchitecture of the
amygdala, with evidence of stress-related increases in dendritic
arborization in rodents (Mitra, Jadhav, McEwen, Vyas, &
Chattarji, 2005) and alterations in neuronal cytoskeleton and syn-
apse formation following glucocorticoid exposure in the fetal
baboon (Antonow-Schlorke, Schwab, Li, & Nathanielsz, 2003).
Human studies have focused primarily on prenatal influences
on volume and thickness (Davis et al., 2020; Moog et al., 2018;
Rifkin-Graboi et al., 2013; Sandman et al., 2015).

There are few studies in humans linking prenatal maternal dis-
tress to white matter integrity (for review see Demers, Aran,
Glynn, & Davis, 2021). Microstructural integrity of white matter
tracts can be assessed noninvasively through DTI, providing an
important methodology to study maturation of neural circuits
and to probe white matter changes over the life span. Common
DTI metrics include fractional anisotropy (the fraction of diffu-
sion that is directionally dependent, i.e., anisotropic), mean diffu-
sivity (the total water mobility), axial diffusivity (the diffusivity
along the main fiber orientation), and radial diffusivity (the diffu-
sivity perpendicular to the main fiber). Changes in diffusion can
arise from a variety of biological events, including alterations in
axonal fiber integrity, membrane proliferation, axon density,
organization, and myelination. As fractional anisotropy is sensi-
tive to this variety of microstructural changes in the white matter,
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it can be difficult to interpret biologically. In contrast, studies have
shown that changes in axial diffusivity largely reflect perturbation
to axonal fiber organization and density, while decreases in radial
diffusivity primarily indicate increases in axonal myelination
(Winklewski et al., 2018) (see Table 1 for DTI metric definitions).
Higher fractional anisotropy is generally thought to indicate
enhanced white matter integrity (Soares, Marques, Alves, &
Sousa, 2013). A recent longitudinal study of normative early
childhood brain circuit maturation has reported widespread
increases in fractional anisotropy, as well as decreases in radial
diffusivity and axial diffusivity, between birth and 1 year of age
for the major white matter tracts (Stephens et al., 2020).

A relatively small literature demonstrates links between prena-
tal maternal distress and persisting alterations in neural circuit
development assessed with measures of white matter microstruc-
ture into childhood (Hay et al., 2020; Sarkar et al.,, 2014) and
young adulthood (Mareckovd, Klasnja, Andryskova, Brazdil, &
Paus, 2019). Although these studies suggest that distress during
pregnancy is associated with lasting influences on white matter
integrity, the ability to reach clear conclusions is limited by the
fact that the imaging outcomes are collected later in childhood
at a time when the postnatal environment has had a significant
impact. In an effort to isolate the unique effects of the distress
during the prenatal period, several studies have investigated
whether associations remain even when controlling for postnatal
distress (El Marroun et al., 2018; Lebel et al., 2016; Wen et al,,
2017). Assessments of white matter integrity shortly after birth
allow for a more rigorous test of the hypothesis that prenatal
maternal distress affects brain circuit development before postna-
tal factors, including parental care (Glynn & Baram, 2019), can
exert an influence (see Figure 1 for conceptual model).

Several longitudinal studies have considered associations
between prenatal distress exposure and development of white
matter architecture in neonates. Within this small extant litera-
ture, there is emerging evidence that exposure to environmental
signals in utero may influence the trajectory of white matter
development as early as infancy. However, the literature to date
is relatively limited, and existing studies have used inconsistent
methodological approaches, both in terms of the assessment of
prenatal distress and the brain regions investigated. Many of the
studies assessing the role of prenatal distress on infant white mat-
ter integrity have focused specifically on amygdala—prefrontal cir-
cuits, given the importance of this circuitry in emotion regulation,
and have found mixed results (Humphreys, Camacho, Roth, &
Estes, 2020; Posner et al., 2016; Rifkin-Graboi et al., 2013). One
study demonstrated associations between categorically high and
low symptoms of prenatal depression exposure and decreased
structural connectivity of the amygdala—ventromedial prefrontal
cortex circuit in newborns (Posner et al., 2016). Rifkin-Graboi
et al. (2013) found evidence of decreased white matter integrity
within the bilateral amygdala; this effect was only obtained
when prenatal depressive symptoms were categorized into high
versus low-normal groups; no significant associations were
obtained when analyses were conducted with depressive symp-
toms assessed dimensionally. There is recent evidence that prena-
tal distress also may be associated with increases in white matter
structural integrity of the amygdala—prefrontal tract. In a recent
pilot study of 33 infants scanned approximately 5 weeks after
birth, Humphreys et al. (2020) found that prenatal stress was asso-
ciated with increased structural connectivity between the amyg-
dala and the medial prefrontal cortex. This finding held when
covarying for preconception stress, highlighting the unique
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Table 1. Diffusion tensor imaging (DTI) metric definitions

Diffusion metric Definition

Fractional anisotropy A scalar value between zero and one that

(FA) describes the degree of anisotropy of the
diffusion process. A value of zero indicates
isotropic diffusion (i.e. equal diffusion in all
directions).

3 /(A1 =MD)> + (A, — MD)’ + (\;—MD)*
2 A +A3+A3

A1+Ar+A3)
3

Mean diffusivity (MD) Total water mobility: ¢

Axial diffusivity (AD) Diffusivity along the main fiber: 1,

Radial diffusivity (RD) Diffusivity perpendicular to the main fiber

orientation: Yzt4a)

importance of the prenatal period independent from the effects of
cumulative life stress across the mother’s life span.

One limitation of these studies is the focus on amygdala-
prefrontal circuitry without consideration of other circuits within
the neonatal brain. Emerging evidence from studies using a whole
brain approach suggests that prenatal distress also may influence
the development of circuits implicated in affective (temporolimbic
tracts) and sensory (occipitotemporal tracts) processing. For
example, voxel-wise whole brain analyses comparing neonates
of mothers reporting categorically high versus low prenatal anxi-
ety identified decreases in fractional anisotropy in regions corre-
sponding to the right insula and dorsolateral prefrontal cortex,
inferior—frontal occipital fasciculus, uncinate fasciculus, posterior
cingulate, and parahippocampus (Rifkin-Graboi et al., 2015).
Similarly, another study employing voxel-wise analyses found
that elevations of a composite of prenatal anxiety and depressive
symptoms was associated with increased radial and axial diffusiv-
ity within the corona radiata, external capsule, and dorsolateral
prefrontal cortex. Despite finding differences in white matter dif-
fusivity, no significant differences were found with fractional
anisotropy, suggesting that different metrics of white matter
integrity have varying sensitivities to maternal distress (Dean
et al.,, 2018). In an opposing finding, a recent study in 6-month-
old infants demonstrated that prenatal maternal distress was
associated with lower radial diffusivity and elevated fractional
anisotropy within the corpus callosum, which in turn predicted
later behavioral problems at 18 months (Borchers, Dennis,
King, Humphreys, & Gotlib, 2020).

The current study fills a significant gap in the literature by
investigating the integrity of affective (i.e., temporolimbic) and
sensory processing (i.e., occipitotemporal) circuits in addition to
frontolimbic circuitry. Based on experimental and human studies
of early life stress exposure, we aimed to investigate associations
between prenatal distress and structural integrity within circuits
involved in emotional regulation (i.e., uncinate fasciculus and cin-
gulum), affective processing (i.e., fornix), and sensory processing
(i.e., inferior fronto-occipital fasciculus). This study used a
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prospective and longitudinal design with a racially and ethnically
diverse sample of mother-infant dyads recruited early in preg-
nancy to investigate the association between prenatal maternal
distress and infant white matter development. The state-trait anx-
iety inventory (STAI), a measure that is consistent with putative
measures and constructs within the negative valence system of
the RDoC framework (Cuthbert & Insel, 2013), was used to assess
prenatal maternal stress. The RDoC initiative emphasizes evaluat-
ing and validating dimensional constructs, integrating psychoso-
cial and biological factors, and may therefore be an important
framework to use in the investigation of intergenerational mech-
anisms of risk. Neonatal diffusion-weighted images were collected
and analyzed using a robust atlas building approach (Verde et al,,
2014), which allows for the extraction of diffusion tensor metrics
along respective white matter tracts of interest. This method facil-
itates both subject outlier detection and the specification of local-
ized regions along a given tract for targeted hypothesis testing.

Materials and Method
Study overview

Pregnant women were assessed at 17 and 29 gestational weeks to
measure prenatal maternal distress. Neonatal white matter micro-
structure was assessed during natural sleep via DTI at 42-45
weeks’ postconceptional age (~2-5 weeks after birth).

Study participants

Participants included 85 mother-infant dyads who were drawn
from a longitudinal investigation of the impact of maternal men-
tal health during pregnancy on offspring developmental outcomes
(the Care Project) (Davis, Hankin, Swales, & Hoffman, 2018) and
whose assessment was completed prior to the start of the
COVID-19 pandemic being declared a state of emergency
(March 10, 2020). Recruitment was primarily from obstetrics clin-
ics at two major medical centers in Denver, Colorado. All study
procedures were approved by the Institutional Board for the
Protection of Human Subjects at the University of Denver and
the University of Colorado Anschutz medical campus, and all
mothers provided written informed consent for themselves and
their infant.

Inclusion criteria for mothers’ enrollment in the study were (a)
maternal age between 18 and 45 years, (b) singleton pregnancy, (c)
gestational age (GA) less than 25 weeks, and (d) proficiency in
English. Exclusion criteria included (a) current illicit drug or meth-
adone use, (b) major health conditions requiring invasive treat-
ments (e.g., dialysis, blood transfusions, chemotherapy), (c)
current or past symptoms of psychosis or mania based on the
structured clinical interview (SCID) for the Diagnostic and statisti-
cal manual of mental disorders, fifth edition, and (d) current par-
ticipation in cognitive behavioral therapy or interpersonal therapy.

Additional exclusion criteria for the current study included (a)
preterm birth <34 gestational weeks (n=0), (b) major fetal or
chromosomal anomalies (n=1) and neonatal complications
requiring a neonatal intensive care unit stay (e.g., mechanical ven-
tilation; n=0), and (c) any infant magnetic resonance imaging
(MRI) contraindications (n=2) (e.g., metal implant). Of the
infants who attended the MRI scan, three were unable to be
scanned (e.g., infant did not fall asleep during the scanning win-
dow), two DTI scans were not acquired because the infant woke
up in the scanner, and three scans failed initial quality control
procedures. Following additional quality control procedures for
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DTI image processing (see section on materials and methods for
further details), 13 of the 85 subjects were removed for the bed
nucleus of the stria terminalis amygdala (BNST)-amygdala tract
and three were excluded for the right anterior cingulate tract.

Mothers in the study were 21-41 years old (M =31.37, SD =
5.14) at delivery (see Table 2 for sample characteristics).
Median annual household income was $70,000, and 31% of par-
ticipants were living at or near federal classification of poverty
(less than 200% income-to-needs ratio [INR]). Infants (51%
female) were 39 weeks’ gestation at birth on average and scanned
at 43 weeks postconceptional age (range 41.6-49.4). Fifty-nine
percent of participants were non-Hispanic white and 22% were
Hispanic/Latina, with the remainder of the sample identifying
as Black, Asian, or Multi-ethnic.

Maternal distress symptoms

Pregnant women’s levels of distress were assessed via the 20-item
state anxiety subscale of the STAI (Spielberger, 1983) at 17 and 29
weeks’ gestation. Factor analyses of the STAI indicate that items
comprise a higher-order negative affectivity factor, and this factor
structure suggests that the STAI is best conceptualized as a mea-
sure of general distress (Bados, Gomez-Benito, & Balaguer, 2010;
Bieling, Antony, & Swinson, 1998). Participants indicate how they
have felt over the past week, including today. Items include: “I am
tense” and “I am worried”. All items were rated on a 4-point
Likert scale, with higher scores indicating greater distress. The
STAI has been extensively used to measure distress during preg-
nancy (e.g, Davis & Sandman, 2010; Fischbein et al., 2019).
Within the current sample, internal consistency was excellent
(00=.96 at 17 weeks and o =.96 at 29 weeks).

Sociodemographic characteristics

Maternal birth date, socioeconomic status, cohabitation with
child’s father, marital status, educational attainment, and race
and ethnicity were collected via maternal interview. A family
INR was calculated by dividing the total reported household
income by the poverty threshold corresponding to the number
of persons living in the household at the time of study entry, spec-
ified by the U.S. Census Bureau (2020).

Pregnancy and birth outcomes

Prenatal obstetric complications, birth outcomes, infant biological
sex at birth, birth weight, and 5-min Apgar score were abstracted
from the medical record. In addition, birth weight percentile,
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Figure 1. Model of intergenerational transmission of risk. The prena-
tal period is a time when the fetal brain is highly susceptible to the
effects of prenatal maternal depression and other signals of mater-
nal psychological and physiological distress. However, the influence
of prenatal depression exposure on neonatal neural circuit matura-
tion remains poorly understood. Alterations in the neurodevelop-
ment of white matter microstructure is one potential etiological
mechanism through which prenatal stress influences child
outcomes.

which accounts for gestational age at birth (GAB) and infant bio-
logical sex, was determined. Estimated date of delivery was deter-
mined by early ultrasound measures and date of last menstrual
period based on the American College of Obstetricians and
Gynecologists guidelines and used to calculate GAB and postcon-
ceptional age at scan (Committee on Obstetric Practice, the
American Institute of Ultrasound in Medicine, and the Society
for Maternal-Fetal Medicine, 2017). An obstetric complications
score was calculated, indicating the presence or absence of
pregnancy-related complications, including prenatal infection,
pregnancy-included hypertension, gestational diabetes, oligohy-
dramnios, polyhydramnios, preterm labor, vaginal bleeding, pla-
centa previa, or anemia (Hobel, 1982). Seventy-one percent of
the women had none or one of the obstetric complications on
this index. Fetal exposures to illicit drugs, marijuana, cigarettes,
and alcohol were assessed via maternal interview and presence
of positive infant toxicology screens at birth.

Magnetic resonance imaging acquisition
Infants were scanned unsedated during natural sleep. Noise from
the scanner was reduced by the use of malleable ear plugs and
neonatal ear covers. Headphones played white noise during
image acquisition. A Siemens Skyra 3 T MRI system equipped
with a 20-channel head coil at the Brain Imaging Center at the
University of Colorado Anschutz medical campus was used.
Diffusion tensor images were obtained using a simultaneous
multislice sequence (repetition time, TR =6,100 ms, echo time,
TE =60, field of view, FOV =220, matrix size =128 x 128; 50
axial slices with 2.0 mm thickness; phase-encoding [PE]
direction = anterior-posterior, AP). Diffusion MRI data were
acquired with three diffusion weightings (b-values) (b =300,
800, 2,000 s/mm?), with 10, 30, and 64 unique gradient directions
per respective shell (104 gradient directions total). In addition,
18 interspersed b =0 s/mm?” images were acquired as a baseline.
The total acquisition time was 7 min (multiband acceleration 3,
TE/TR 92/3,600 ms).

Image processing

A study-specific quality control protocol was applied to all raw
diffusion-weighted imaging (DWI) data using DTIPrep (www.
nitrc.org/projects/dtiprep), which includes slice-wise and
gradient-wise artifact detection, as well as eddy current and
motion correction. For all analyses, the b =300 and b = 800 shells
(40 gradients total) were used to calculate the diffusion tensor
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Table 2. Demographic and medical characteristics of the sample

Variable M (SD) or %

Maternal characteristics

Age at delivery 31.37 (5.14)

Obstetric complications 1.13 (1.27)

Annual household income ($) 78,873 (56,704)

Household income-to-needs ratio (INR) 4.30 (3.72)
Cohabitating with partner 88.4%
Married 73.3%
Education (highest degree earned)
Less than high school 2.3%
High school 31.5%
College degree 43%
Graduate degree 23.2%
Race and ethnicity
American Indian 5.8%
Asian 4.7%
Black 11.6%
Latina 22.1%
Non-Latina White 59.3%
Other 2.4%
Infant characteristics
Postconceptional age at scan (weeks) 43.74 (1.38)
Biological sex at birth (% female) 51.2%
Race and ethnicity
American Indian 7%
Asian 4.7%
Black 14%
Latino/a 24.4%
Non-Latino/a White 55.8%
Other 4.7%
Birth outcome
Gestational age at birth (weeks) 39.04 (1.37)

Birth weight percentile 44.93 (25.98)

5-min Apgar score 8.80 (.48)
Congenital disorder 7%
Neonatal intensive care unit stay 5.95%
Prenatally exposed to illicit drugs 0%
Prenatally exposed to marijuana 3.5%
Prenatally exposed to alcohol 2.3%
Prenatally exposed to cigarettes 1.2%

images using the weighted least-squares algorithm (Salvador et al.,
2005). Lower b-values were employed for calculation of the diffu-
sion tensor given the decreased signal-to-noise and the increased
non-Gaussian contribution to the diffusion signal at higher

https://doi.org/10.1017/5S0954579421000742 Published online by Cambridge University Press

C. H. Demers et al.

b-value acquisitions (Jones & Basser, 2004). As an additional
quality control step, interactive tractography was performed in
Slicer (http://www.slicer.org) and visually assessed for artifacts
undetectable by voxel-wise inspection, such as any consistently
observed directional biases. Skull and nonbrain tissue were
masked using the brain extraction tool (BET) (Smith, 2002) on
the geometric mean of the DWI image, followed by manual cor-
rection, if necessary.

Two motion scores were calculated per subject: (a) The num-
ber of DWI gradients removed by the DTI Prep preprocessing
pipeline, and (b) the number of DWI gradients with significant
levels of corrected motion, defined as any gradient with a cor-
rected rotation exceeding 1 degree or a translation exceeding
1 mm. These two scores were summed to create the single motion
artifact covariate used in the association analyses.

Using the UNC—Utah National Alliance for Medical Image
Computing DTI framework (Verde et al., 2014), a study-specific
DTI atlas was created from the sample data. Nonlinear, diffeo-
morphic pair-wise registration was performed to map individual
subject DTIs into atlas space, and registration accuracy was visu-
ally inspected in DTI-AtlasBuilder to determine if the computed
transforms were appropriate. Major fiber tracts were determined
semi-automatically in this atlas space (Ngattai Lam et al., 2018).
Resulting deformation fields were then used to map the atlas
fibers into individual subject space, where diffusion tensor met-
rics were extracted at evenly spaced points (arc lengths) along
each fiber tract. These metrics included, fractional anisotropy
(FA, a measure of the directional coherence for the fiber tracts),
mean diffusivity (MD, the average magnitude of molecular dis-
placement by diffusion), axial diffusivity (AD, the length of
the longest axis of diffusion tensor), and radial diffusivity (RD,
the average length of two remaining axes of the diffusion ten-
sor). As an additional quality control step, individuals were
excluded from further association analyses for a given tract if
their fractional anisotropy profile was weakly correlated with
the population tract average profile (correlation <0.70). A low
correlation typically flags poor alignment of the subject’s DTI
to the atlas across the respective fiber regions. For each subject,
the profile of the respective diffusion tensor metric was then
averaged along the respective fiber to yield robust tract metric
averages for the association analyses.

Of note, the bed nucleus of the stria terminalis amygdala
(BNST) and the cingulate gyrus both have a lower signal-to-noise
ratio within the developing neonate brain compared to the other
fiber tracts examined in this study. Regions along these two tracts
exhibit fractional anisotropy values approaching the noise floor,
leading to increased variability among subjects. To address this
issue, a tract region of interest along each tract was selected for
the average computation based on fractional anisotropy signal
and tract anatomy (Supplementary Appendix Figure 1). As the
signal-to-noise ratio of these two tracts remains lower than for
the other tracts of interest, even after tract region selection, a
lower correlation threshold of <0.50 was used to exclude those
subjects that exhibit poor alignment with the atlas. Three subjects
with a correlation threshold lower than 0.50 were removed for the
BNST-amygdala tract and 13 were excluded for the right anterior
cingulate tract.

Statistical analyses

Partial correlations were used to examine associations between
self-reported distress at 17 and 29 weeks’” GA and white matter
integrity in 13 tracts correcting for motion artifact level,
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postconceptional age and biological sex at birth. The following
tracts were investigated: bilateral BNST-amygdala, cingulate ante-
rior portion, cingulate-hippocampal, fornix, inferior occipital fas-
ciculus, uncinate and corpus callosum (see Figure 2). For tracts
associated with prenatal maternal distress, hierarchical linear
regressions were then conducted to evaluate robustness of find-
ings after including obstetric and sociodemographic covariates.
Based on prior research demonstrating associations with either
the predictor or outcome, we included the following covariates
in these regression analyses: postconceptional age at scan, infant
biological sex, INR, birth weight percentile, GAB, obstetric com-
plications, and motion artifact level (Davis et al.,, 2011; Jha et al.,
2016; Kim et al., 2016a; Thompson et al., 2019). Postconceptional
age, biological sex, and motion artifact level were analyzed within
the first block of the model; the remaining covariates were entered
into the second block. Three subjects were missing self-report
data for INR and STAI at 29 weeks’ GA. Little’s (1988) missing
completely at random (MCAR) test was nonsignificant, x> (76)
=88.63, p=.152, suggesting that data were missing completely
at random. Missing data were imputed using expectation maximi-
zation procedures in SPSS version 26.

For tracts that showed significant associations with distress
symptoms, follow-up analyses were then conducted with mean
diftusivity, radial diffusivity, and axial diffusivity to further inves-
tigate the nature of the white matter microstructure associations.
Sensitivity analyses using identical statistical analyses were con-
ducted excluding infants of mothers with regular substance
(n=4) or psychotropic medication (n = 8) use during pregnancy.

Results

The STAI scores at 17 and 29 weeks’ GA were 36.0 (SD=12.9)
and 33.9 (SD=11.6), respectively. The STAI scores at the two
time points were correlated (r=.675, p = <.001). Lower INR was
associated with higher STAI at both 17 (r=—-0.266, p =.014) and
29 weeks’” GA (r=-0.230, p =.034). Maternal STAI at 29 weeks’
GA was positively associated with postconceptional age at scan
(r=.217, p=.046); maternal STAI was not associated with any
other birth outcome or demographic characteristic.

White matter microstructure

Higher prenatal maternal STAI scores at 29 weeks’ GA were asso-
ciated with increased fractional anisotropy within the right ante-
rior cingulate tract (r=.313, p=.009), correcting for biological
sex, motion artifact level, and postconceptional age. No other sig-
nificant associations were found with prenatal distress exposure
and tract fractional anisotropy at 29 weeks GA, or earlier in
gestation (see Table 3). This association between maternal distress
at 29 weeks’ GA and higher fractional anisotropy in the right
anterior cingulate remained after considering GAB, BW percen-
tile, and INR in the regression, b=.283, t (64) =2.319, p=.024
(Figure 3a).

Three follow-up regression analyses were then conducted with
metrics of mean, radial, and axial diffusivity to further investigate
the nature of the white matter microstructure associations within
the right anterior cingulate tract. Higher prenatal maternal STAI
at 29 weeks’ GA was associated with increased axial diffusivity
within the right anterior cingulate, b = .254, t (64) = 2.067 p =.043
(Figure 3b). No other significant associations were found with
mean diffusivity, b =.101, t (64) =.818, p = 417, or radial diffusiv-
ity, b=—-.023, t (64) =—.184, p =.855, within the right anterior
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cingulate. Sensitivity analyses demonstrated that removal of the
infants of mothers with prenatal substance use (n=4) and
medication exposure (n=8) showed similar effect sizes for both
fractional anisotropy and axial diffusivity. Partial correlations
with biological sex, motion artifact level, and postconceptional
age demonstrated a similar effect in the association between
distress at 29 weeks’ GA and right cingulate fractional anisotropy
(r=.290, p=.023) and axial diffusivity (r=.393, p =.002).

Discussion

The DOHaD/FOAD hypothesis highlights the importance of fetal
experiences for shaping developmental trajectories with long-term
consequences for health and well-being. Few studies, however,
have prospectively examined the influence of prenatal exposures on
neural circuit development. The current study evaluated the asso-
ciation between the STAI, an RDoC-informed indicator of prena-
tal maternal distress within the negative valence system and white
matter integrity in neonates. Findings demonstrated that prenatal
maternal distress during the third trimester was associated with
alterations in neonatal white matter microstructure such that
higher prenatal maternal distress at 29 weeks’ GA was associated
with higher fractional anisotropy and axial diffusivity within
the right anterior cingulate tract. Associations remained after con-
sidering biological sex at birth, postconceptional age, GAB, birth
weight percentile, INR, and motion. Maternal distress was not
associated with variability in the white matter microstructure of
the other tracts under investigation, nor was maternal distress ear-
lier in gestation. These findings provide evidence that variability
in developing white matter microstructure may be an important
ontogenetic vulnerability, although support for this hypothesis
was limited to the right anterior cingulate tract.

Experimental work with rodents provides compelling evidence
that prenatal exposure to stress shapes neural circuit development,
particularly within circuits associated with threat-reactivity (for
review see Bock, Rether, Groger, Xie, & Braun, 2014; Chen &
Baram, 2016; van Bodegom, Homberg, & Henckens, 2017); how-
ever, the human literature is small and fairly inconsistent both
in methods and findings. Within the emerging literature, three
studies have focused specifically on amygdala-prefrontal circuitry
and found evidence of both decreased (Posner et al., 2016;
Rifkin-Graboi et al., 2013) and increased white matter integrity
(Humpbhreys et al., 2020). Of note, the studies finding a negative
association between prenatal stress and white matter integrity
used a categorical approach in defining prenatal distress, whereas
a more recent study assessing distress dimensionally found evi-
dence of increased white matter structural integrity (Humphreys
et al., 2020).

Building on emerging research from whole brain analyses
(Dean et al., 2018; Graham et al., 2020; Rifkin-Graboi et al.,
2015), our study sought to examine the role of prenatal distress
exposure on circuits more broadly involved in processes of emo-
tion regulation (temporolimbic) and perception (occipitotem-
poro) beyond a limited focus on amygdala—prefrontal circuitry.
We found that prenatal distress in the third trimester of gestation
was associated with increased fractional anisotropy and axial dif-
fusivity within the right anterior cingulate tract. The cingulate
plays an important role in appraisal, generation and regulation
of emotion, with evidence that the anterior subregion is particu-
larly involved in regulating emotional responses (Etkin, Egner, &
Kalisch, 2011). This region may be susceptible to prenatal influ-
ences, as the development of the anterior cingulate has been
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Figure 2. Diffusion tensor metrics are calculated along select white matter tracts. (a) White matter fiber tracts analyzed in the current study. Top: red = uncinate
(UNC); yellow = genu of corpus callosum (genu); light blue = inferior fronto-occipital fasciculus (IFOF). Bottom: purple = bed nucleus of the stria terminalis amygdala
(BNST); blue =fornix (FNX); green =cingulum hippocampal part (CGH); orange = cingulum gyrus part (CGC) (i.e., anterior cingulum). (b) Sagittal (left) and axial
(right) view of the fractional anisotropy (FA) (top) and axial diffusivity (AD) (bottom) calculated for a single subject.

Table 3. Partial correlations of prenatal distress and tract fractional anisotropy
(FA) controlling for biological sex at birth, postconceptional age, and motion

Tract 17 weeks GA STAI 29 weeks GA STAI

BNST-amygdala

Left .009 —.057
Right —.095 —.006
Cingulum

Left cingulate —.025 .164
Right cingulate .093 .313*
Left hippocampal .044 .060
Right hippocampal .035 —.005
Corpus callosum

Genu —.090 —-.070
Fornix

Left .044 .063
Right —.017 .002
Inferior frontal occipital longitudinal fasciculus

Left —.006 .038
Right .004 .017
Uncinate fasciculus

Left .047 —.004
Right —.015 —.011

Note: STAI = state-trait anxiety inventory; FA = fractional anisotropy; PCA = postconceptional
age at scan; GA = gestational age.
*p < .05, **p < .01, **p < .001 uncorrected p values.

https://doi.org/10.1017/5S0954579421000742 Published online by Cambridge University Press

linked to early life stress (Ansell, Rando, Tuit, Guarnaccia, &
Sinha, 2012; Cohen et al, 2006). In neonates, one previous
whole brain study (Rifkin-Graboi et al., 2015) identified white
matter changes associated with prenatal maternal anxiety within
the posterior cingulate, although results showed the opposite rela-
tion whereby elevated anxiety was associated with decreased frac-
tional anisotropy. Further, prenatal maternal distress is associated
with lower fractional anisotropy and higher diffusivity within the
cingulate tract in 8-year-olds suggesting neurodevelopmental
alterations in white matter integrity may persist into childhood
(El Marroun et al., 2018).

The implications of increased fractional anisotropy and axial
diffusivity following prenatal distress are unclear. As fractional
anisotropy typically increases across development, higher frac-
tional anisotropy is thought to reflect improved anatomical con-
nectivity and more advanced maturation (Dubois et al.,, 2014;
Soares et al., 2013). Prenatal stress is associated with acceleration
of fetal maturation in preparation for survival outside the womb;
for example, stressed fetuses tend to have greater lung maturity
when born preterm (Glynn, Schetter, Hobel, & Sandman, 2008;
Schetter, 2009) and there is evidence that elevated levels of the
stress hormone late in gestation are associated with benefits to
brain development and cognitive function (Davis & Sandman,
2010; Davis, Head, Buss, & Sandman, 2017). It is plausible that
the observed association with higher fractional anisotropy reflects
accelerated maturation of this brain region. However, the
observed association of prenatal stress with higher axial diffu-
sivity is contrary to the hypothesis of accelerated maturation
given evidence that diffusivity normatively decreases over
development (Geng et al,, 2012). There is some support for
the acceleration hypothesis from studies of postnatal adversity
(Colich et al., 2017; Gee et al., 2013), although several others
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Figure 3. STAI at 29 weeks’ GA and right anterior cingulate tract. Maternal distress is associated with increased (a) fractional anisotropy (FA) and (b) increased axial
diffusivity (AD). Residuals plotted after accounting for biological sex at birth, postconceptional age, and motion.

have found evidence for delays or more immature pattern of
connectivity following early adversity (Cisler et al., 2013;
Silvers et al., 2016). Future research with replication and longi-
tudinal follow-up is needed to determine whether the observa-
tion that prenatal adversity is associated with increased
fractional anisotropy reflects accelerated maturation of neural
circuits.

The biological mechanisms underlying the association between
prenatal maternal distress and neural circuit maturation remain
unknown. Dysregulation of the hypothalamic—pituitary—adrenal
axis and immune system signaling are two promising pathways
through which exposure to prenatal distress may influence
white matter integrity. Fetal neural circuits are sensitive to stress
hormone exposure. Experimental research in rodents
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demonstrates that exposure of immature neurons to corticotropin
releasing hormone has a dose-response relation on dendritic
branching and neuronal growth (Curran, Sandman, Davis,
Glynn, & Baram, 2017). Similarly, prenatal synthetic glucocorti-
coid treatment has been shown to have an impact on neuronal
cell proliferation and neurogenesis within the fetal mouse brain
(Noorlander et al., 2014). Prefrontal and limbic regions (including
the rostral anterior cingulate) are particularly affected by excess
glucocorticoids because of the abundance of glucocorticoid recep-
tors in these brain regions (Rodrigues, LeDoux, & Sapolsky,
2009). Fetal exposure to glucocorticoids has been associated
with neonatal white matter microstructure and structural connec-
tivity (Stoye et al., 2020), as well as persisting alterations into pre-
adolescence in functional connectivity (Graham et al., 2019; Kim
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et al., 2016b) and brain structure (Buss et al., 2012; Davis et al.,
2017), including within the anterior cingulate (Davis, Sandman,
Buss, Wing, & Head, 2013). Further, pro-inflammatory cytokines
are another promising mechanistic pathway. For example, ele-
vated levels of cytokine IL-6, one of the most studied
pro-inflammatory cytokines, is associated with reduced integrity
of the uncinate fasciculus, a main frontolimbic fiber tract
(Rasmussen et al., 2019). In addition, prenatal maternal
interleukin-6 concentration has also been linked with amygdala
volume and amygdala connectivity regions involved in sensory
processing, salience detection, and learning and memory
(Graham et al., 2018).

Strengths and Limitations

A significant strength of this study is the investigation of neuro-
developmental differences in white matter microstructure within
neonates prior to the intervening effects of the postnatal environ-
ment. Rigorous protocols were employed to acquire high-quality
data in infants without sedation during natural sleep (Gilmore
et al., 2007; Howell et al., 2019). These include alignment of the
scan time with the infant nap schedule, a quiet room to feed
and put the baby to sleep, swaddling and securing of the infant’s
head in a vacuum-fixation device to limit motion and allowing
sufficient time between scan acquisitions to repeat scans if needed.
Further, the majority of studies assess distress once during preg-
nancy and therefore cannot evaluate the importance of specific
timing effects relative to the normative trajectory of white matter
development. Consistent with evidence of the emergence of lim-
bic and associative fiber tracks between 12 and 22 weeks’ GA
(Dubois et al.,, 2014), we found associations with prenatal mater-
nal distress assessed at 29 weeks and not 17 weeks’ GA.
Supporting this timing effect, prior research has found direct
associations of prenatal maternal mood and fetal behavior from
27 to 28 weeks’ GA onwards (Van den Bergh, Mulder, Mennes, &
Glover, 2005), and a recent study showed that maternal self-
reported distress during the third, but not second trimester, was
associated with infant hippocampal connectivity (Scheinost,
Spann, McDonough, Peterson, & Monk, 2020). However, another
study examining associations between prenatal maternal depres-
sion and child brain structure found associations that were limited
to second trimester maternal stress (Lebel et al., 2016).
Myelination continues rapidly during infancy, with protracted
microstructural maturation in childhood (for review see Lebel,
Treit, & Beaulieu, 2019); therefore, additional longitudinal
research should be conducted to determine the role of prenatal
maternal stress exposure on the developmental trajectory of
white matter maturation.

There are several limitations to note. First, there is evidence
that the role of prenatal distress exposure on neurodevelopment
differs by sex (Clifton, 2010; Dean et al, 2018; Sandman,
Glynn, & Davis, 2013; Wen et al,, 2017). Because of the limited
sample size, we were underpowered to examine moderation by
infants’ biological sex. Second, given that this study investigated
naturally occurring variations in maternal distress, rather than
experimental manipulations, it is also difficult to disentangle the
effects of prenatal maternal distress exposure from other potential
contributing factors such as genetic influences (O’Donnell &
Meaney, 2017). There is evidence that white matter microstruc-
ture such as fractional anisotropy is heritable (Kochunov et al.,
2015), and that genetic risk may serve as an important moderator
between mothers’ depression and the neurodevelopment of
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offspring (Qiu et al., 2017). Findings for children conceived via
in vitro fertilization who are not genetically related to their moth-
ers replicate cross-fostering studies in rodents (Rice et al., 2010)
and demonstrate contributions of the prenatal environment to
child development independent of genetic effects (Lewis, Rice,
Harold, Collishaw, & Thapar, 2011; for review see Natsuaki
et al,, 2014). Third, we used the STAI as one self-report measure
intended to assess the RDoC-informed theoretical construct of
potential threat (“anxiety”), as a narrow dimension assessment
of a hypothesized construct located within the higher-order neg-
ative valence system. At the higher-order level, RDoC the negative
valence system captures and reflects higher-order negative affec-
tivity that cuts across traditional internalizing disorder categories
(e.g., depression, social anxiety, panic disorder, generalized anxi-
ety disorder) and may therefore be an important susceptibility
factor to use in the investigation of intergenerational transmission
of risk (Gao et al,, 2021). As with any measurement of a latent
construct, our results are limited by the extent to which the
STAI provides a valid indication of the hypothesized narrow-
based construct of anxiety (Cronbach & Meehl, 1955) as concep-
tualized within the RDoC system. Future work would benefit from
additional measures of this narrow-band construct of anxiety
(e.g., Anxiety Sensitivity scale; Behavioral Inhibition scale) as
well as expanded measurement of the higher-order negative
valence system (e.g., loss, acute threat) as these other narrow-
order dimensions within the negative valence system may show
different patterns of associations with infant white matter.
Fourth and finally, it is difficult to completely rule out the possi-
bility that alternative factors such as obstetric or neonatal compli-
cations, exposure to psychiatric medications (Jha et al., 2016), and
substance use contribute to study findings (Donald et al., 2015;
Gao et al., 2019; Walhovd, Watts, Amlien, & Woodward, 2012).
Sensitivity analyses, however, showed similar effects with removal
of participants with medication and substance use, and covarying
obstetric complications and birth outcomes did not impact study
findings.

Implications

Findings from the present study provide added support for the
DOHaD/FOAD hypothesis and the importance of the intrauter-
ine environment by demonstrating that exposure to prenatal
maternal distress is associated with some early alterations in por-
tions of neonatal neural circuit maturation. Highlighting their
predictive utility as a potential biomarker of vulnerability, there
is preliminary evidence that white matter microstructural changes
associated with prenatal distress are in turn associated with later
behavioral problems (Borchers et al., 2020), and internalizing
symptoms (Rifkin-Graboi et al., 2015). Future work should con-
tinue to investigate variability in white matter microstructure as
an early marker of ontogenetic risk. The majority of studies in
humans examining the programming influences of prenatal dis-
tress on infant neurodevelopment have been correlational in
nature, limiting causal inferences. Experimental manipulation of
prenatal depression is a promising avenue to resolve discrepancies
in the literature to date examining child ontogenetic vulnerability
to psychopathology. Therefore, our group is currently conducting
a randomized controlled trial (Davis et al., 2018) to test whether
treatment of maternal distress during pregnancy improves infant
outcomes that are linked with subsequent development of psycho-
pathology. Evaluation of the etiological mechanisms such as the
development of white matter microstructure underlying
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intergenerational risk for psychopathology may help to inform
targets for more effective intervention and prevention efforts.

Supplementary Material. The supplementary material for this article can
be found at https://doi.org/10.1017/50954579421000742
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