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A Generalized Variational Principle
Philip D. Loewen and Xianfu Wang

Abstract. We prove a strong variant of the Borwein-Preiss variational principle, and show that on As-
plund spaces, Stegall’s variational principle follows from it via a generalized Smulyan test. Applications
are discussed.

1 Introduction

The Borwein-Preiss smooth variational principle [1] is an important tool in infinite
dimensional nonsmooth analysis. Its statement, given a Banach space X, reads as
follows.

Theorem 1.1 Given f : X → (−∞,+∞] lower semicontinuous, x0 ∈ X, ε > 0,
λ > 0, and p ≥ 1, suppose

f (x0) < ε + inf
X

f .

Then there exist a sequence µn ≥ 0, with
∑∞

n=1 µn = 1, and a point v in X, expressible
as the (norm-) limit of some sequence (vn), such that

f (x) +
ε

λp
�p(x) ≥ f (v) +

ε

λp
�p(v) ∀x ∈ X,(1.1)

where�p(x) :=
∑∞

n=1 µn‖x− vn‖p. Moreover, ‖x0 − v‖ < λ, and f (v) ≤ ε + infX f .
If, in addition, X has a β-smooth norm and p > 1, then ∂β f (v) ∩ (ε/λ)pB∗ �= ∅.

In a subsequent development [4], Deville, Godefroy and Zizler improved Theo-
rem 1.1 by considering a certain Banach space Y of bounded continuous functions
g : X → R, and showing that the following subset of Y is residual:

{g ∈ Y : f + g attains a strong minimum somewhere in X}.

(See Definition 2.1.) However, their result gives no information about the location
of the strong minimizer, and offers no way to identify explicitly a perturbation g with
the desired property. In [12], [2], Li and Shi give a simpler proof of Theorem 1.1.
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Variational Principles 1175

In this paper, we adapt the Borwein-Preiss approach by adjusting the penalty
terms to control the diameter of the resulting sublevel sets, and thus obtain a varia-
tional principle for which strong minimality holds in the analogue of (1.1). This al-
lows us to present unified proofs of the variational principles of Ekeland [6],
Borwein-Preiss [1], and Deville-Godefroy-Zizler [4]. By combining these methods
with a generalized Smulyan test, we also give a simple proof of Stegall’s variational
principle [15], [7] on Asplund spaces. We then apply these variational principles to
characterize Banach spaces and study subdifferentiability.

Notation Throughout X denotes a Banach space with closed unit ball B, dual X∗,
and closed dual ball B∗. We write Br(x) := {y ∈ X : ‖y − x‖ < r} and Br[x] for the
closure of Br(x). For a set S ⊂ X and f : X → (−∞,+∞] we let

IS(x) :=

{
0, if x ∈ S,

+∞, if x /∈ S,
fS(x) :=

{
f (x), if x ∈ S,

+∞, if x /∈ S.

We abbreviate lower semicontinuous by lsc. Our symbol for a typical bornology on
X is β.

Subgradients When f : X → R ∪ {+∞} is lsc and f (x) is finite, the set ∂β f (x)
consists of all those x∗ ∈ X∗ for which

lim inf
t↓0

[
inf
h∈S

f (x + th)− f (x)− 〈x∗, th〉

t

]
≥ 0, ∀S ∈ β.

We say f is β-subdifferentiable at x exactly when ∂β f (x) �= ∅; each x∗ ∈ ∂β f (x) is
called a β-subderivative of f at x. To say f is β-differentiable at x, with β-derivative
∇ f (x), means that x∗ = ∇ f (x) is a point of X∗ such that

lim
t↓0

sup
h∈S

∣∣∣∣ f (x + th)− f (x)− 〈x∗, h〉

t

∣∣∣∣ = 0, ∀S ∈ β.(1.2)

The Dini subdifferential, corresponding to the bornology of all compact subsets of X,
can be characterized as

∂− f (x) := {x∗ : 〈x∗, v〉 ≤ f−(x; v) for every v ∈ X},

where f−(x; v) := lim inft↓0,h→v t−1[ f (x + th)− f (x)]. The approximate subdifferen-
tial of f at x is defined by

∂a f (x) :=
⋂
L∈F

lim sup
u→ f x

∂− fu+L(u),

where F denotes the collection of all finite dimensional subspaces of X and lim sup
denotes the collection of weak∗ limits of converging subnets. It follows from the
definition that ∂a f (x) is weak∗-closed and that ∂a f (x) = lim supu→ f x ∂a f (u) [11,
Prop. 2.3].
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2 A Strong Variant of the Borwein-Preiss Variational Principle

Definition 2.1 For the function f : X → R ∪ {+∞}, a point x0 ∈ X is a strong
minimizer if f (x0) = infX f and every sequence (xn) along which f (xn) → infX f
obeys ‖xn − x0‖ → 0.

A strong minimizer is a strict minimizer, that is, f (x) > f (x0) for every x �= x0,
but the converse is false. (Take X = R, x0 = 0, f (x) = x2ex.) For general f , we write

Σε( f ) =
{

x ∈ X : f (x) ≤ ε + inf
X

f
}
, { f ≤ α} = {x ∈ X : f (x) ≤ α} .(2.1)

Evidently Σε( f ) �= ∅ whenever ε > 0. It is easy to show that f attains a strong
minimum on X if and only if

inf
{

diam
(
Σε( f )

)
: ε > 0

}
= 0,(2.2)

where ‘diam’ denotes the norm-diameter of the indicated set. In particular, a neces-
sary and sufficient condition for f to have no strong minima on X is

∃α > 0 : ∀ε > 0, diam
(
Σε( f )

)
> α.(2.3)

Our main result builds a perturbation by shifting and scaling a given continuous
function ρ : X → [0,+∞), on which our only hypotheses are

ρ(0) = 0 and η := sup {‖x‖ : ρ(x) < 1} < +∞.(2.4)

(The choice ρ(x) = ‖x‖p has the required properties, with η = 1, for any p > 0.)
The penalty functions built from ρ have the form

ρ∞(x) :=
∞∑

n=0

ρn(x − vn), where ρn(x) := µnρ
(

(n + 1)x
)
,(2.5)

for scalars µn ∈ (0, 1) and vectors vn ∈ X to be specified below.

Theorem 2.2 Given f : X → (−∞,+∞] lsc, x0 ∈ X, and ε > 0, suppose

f (x0) < ε + inf
X

f .

Then for any continuous ρ obeying (2.4), and any decreasing sequence (µn) in (0, 1)
with

∑
µn < +∞, there exist a (norm-) convergent sequence vn in X and a function

ρ∞ of the form (2.5) such that v = limn vn satisfies

(i) ρ(x0 − v) < 1,
(ii) f (v) + ερ∞(v) ≤ f (x0), and
(iii) v is a strong minimizer for f + ερ∞.
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In particular,

f (v) + ερ∞(v) < f (x) + ερ∞(x) ∀x ∈ X \ {v} .(2.6)

Proof Let v0 = x0, f0 = f . For integers n ≥ 0, use induction to choose vn+1 and
define fn+1, Dn as follows:

fn+1(x) := fn(x) + ερn(x − vn),(2.7)

fn+1(vn+1) ≤
µn+1

2
fn(vn) +

(
1−
µn+1

2

)
inf
X

fn+1 ≤ fn(vn),(2.8)

Dn :=
{

x : fn+1(x) ≤ fn+1(vn+1) +
µnε

2

}
.(2.9)

To justify (2.8), note that infX fn+1 ≤ fn+1(vn) = fn(vn). If this inequality is strict, the
existence of vn+1 follows from the definition of the infimum; if equality holds instead,
the choice vn+1 = vn will serve.

Notice that fn+1 ≥ fn and that fn+1 is lsc. Hence Dn is closed; also Dn �= ∅,
because vn+1 ∈ Dn. Since 0 < µn+1 < 1, (2.8) implies

fn+1(vn+1)− inf
X

fn+1 ≤
µn+1

2
[ fn(vn)− inf

X
fn+1] ≤ fn(vn)− inf

X
fn.(2.10)

Note that f0(v0)− infX f0 = f (x0)− infX f < ε by hypothesis.

Claim 1 Dn ⊂ Dn−1 for all n ≥ 1. Indeed, pick x ∈ Dn. Then µn−1 > µn and (2.8)
imply

fn(x) ≤ fn+1(x) ≤ fn+1(vn+1) +
µnε

2
≤ fn(vn) +

µn−1ε

2
,

so x ∈ Dn−1.

Claim 2 diam(Dn) → 0 as n → ∞. Indeed, since fn−1 ≤ fn, case n − 1 of (2.8)
implies

fn(vn)− inf
X

fn ≤
µn

2

(
fn−1(vn−1)− inf

X
fn

)
≤
µn

2

(
fn−1(vn−1)− inf

X
fn−1

)
<
µnε

2
.

(2.11)

(The last inequality follows from (2.10).) For every x ∈ Dn, the definitions of Dn and
fn+1 give

εµnρ
(

(n + 1)(x − vn)
)
≤ fn+1(vn+1)− fn(x) +

µnε

2
≤ fn+1(vn+1)− inf

X
fn +
µnε

2
.

(2.12)

Now fn+1(vn+1) ≤ fn(vn) from (2.8), so (2.11) gives an upper bound of µnε for the
right side of (2.12). This implies ρ

(
(n + 1)(x − vn)

)
< 1 for all n ≥ 0, so by (2.4),

(n + 1)‖x − vn‖ ≤ η.(2.13)
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It follows that diam(Dn) ≤ 2η/(n + 1).
Claim 2 implies that

⋂∞
n=0 Dn contains exactly one point. Call this point v, and

note that vn → v as n → ∞. Taking n = 0 in the phrase before (2.13) gives
ρ(v − x0) < 1.

Claim 3 f (v) + ερ∞(v) ≤ fn(vn) for every n. Indeed, since fn+1 ≥ fn while
fn+1(vn+1) ≤ fn(vn) for all n, the sequence of nonempty closed sets

D̃n := {x : fn+1(x) ≤ fn+1(vn+1)}

is nested and obeys D̃n ⊂ Dn for all n. Thus
⋂∞

n=1 D̃n = {v}. In particular, by (2.8),

fk(v) ≤ fk(vk) ≤ fn(vn) ≤ f (x0) ∀k > n.

As k→∞ we get f (v) + ερ∞(v) ≤ fn(vn) ≤ f (x0).

Claim 4 v is a strong minimizer for f̃ := f +ερ∞. Indeed, if f̃ (x) ≤ infX f̃ +µnε/2,
then by the last line of Claim 3,

fn+1(x) ≤ f̃ (x) ≤ f̃ (v) +
µnε

2
≤ fn+1(vn+1) +

µnε

2
.

Hence Σµnε/2( f̃ ) ⊂ Dn. Claim 2 implies

lim
n→∞

diam
(
Σµnε/2( f̃ )

)
= 0,

whence v is a strong minimizer of f̃ = f + ερ∞.

A Strong Banach Space Variant of Ekeland’s Theorem Applying Theorem 2.2 with

ρ(x) =
‖x‖

λ
, µn =

1

2n+1(n + 1)
,

produces a sequence (vn) for which (2.6) can be rearranged as follows: for any x �= v,

f (v) < f (x) + ε[ρ∞(x)− ρ∞(v)]

= f (x) +
ε

λ

∞∑
n=0

1

2n+1
(‖x − vn‖ − ‖v − vn‖)

≤ f (x) +
ε

λ
‖x − v‖ .

(2.14)

Thus (2.6) reduces to the central inequality of Ekeland’s Theorem [6]. Moreover, for
any sequence (xn) satisfying

f (xn) +
ε

λ
‖xn − v‖ → f (v),
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inequality (2.14) implies that f (xn) + ερ∞(xn)→ f (v) + ερ∞(v). Theorem 2.2 then
shows that xn → v, so v is actually a strong minimizer for f + (ε/λ)‖ · −v‖. This
leads to a corollary that (in the Banach space context) extends a result of Georgiev
[10, Thm 1.6]:

Corollary 2.3 Given f : X → R ∪ {+∞} lsc, x0 ∈ X, and ε > 0, suppose

f (x0) < ε + inf
X

f .

Then for any λ > 0, some point v ∈ Bλ(x0) is a strong minimizer for the function
x �→ f (x) + (ε/λ)‖x − v‖.

The Smooth Variational Principle of Borwein and Preiss To recover Theorem 1.1
from Theorem 2.2, take p > 1,

ρ(x) =
‖x‖p

λp
, and µn =

1

2n+1(n + 1)
.

Then there is a sequence (vn) converging to some v where ρ(v − x0) < 1, i.e.,
‖v − x0‖ < λ, and such that the function f + ερ∞ has a strong minimum at v.
Here the penalty has the form ρ∞(x) = λ−p∆p(x), where

∆p(x) :=
∞∑

n=0

(n + 1)p−1

2n+1
‖x − vn‖

p
,

so (2.6) implies (1.1). Thus Theorem 2.2 generalizes Theorem 1.1 by adding strong
minimality to the properties asserted for v.

Theorem 2.2 has differentiability consequences similar to those in Theorem 1.1.
Indeed, if X has a β-smooth norm, then the penalty function ρ∞ is β-smooth also
(see [1, Prop. 2.4 (a)]), and (2.13) implies

∇ρ∞(v) =
∞∑

k=0

(k + 1)p−1

2k+1

p

λ

∥∥∥∥v − vk

λ

∥∥∥∥p−1

∇‖v − vk‖ ,

‖∇ρ∞(v)‖ ≤
∞∑

k=0

(k + 1)p−1

2k+1

p

λ

1

(k + 1)p−1
=

p

λ
.

Thus (2.6) implies that ∂β f (v) contains an element of norm not exceeding εp/λ.

Deploying Smooth Bumps A bump on a Banach space X is, by definition, a bounded
real-valued function b such that supp(b) = {x ∈ X : b(x) �= 0} is a bounded non-
empty set. Some Banach spaces admit smooth bumps but not smooth renorms (see
[13, Section 4]), so the existence of a smooth bump is a milder hypothesis than the
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smoothness condition in Theorem 1.1. Given a continuous bump b on X, a pertur-
bation kernel ρ suitable for use in Theorem 2.2 can be built as follows:

ρ := φ ◦ b̃, where b̃(x) = αb
(
β(x − x0)

)
, x ∈ X.(2.15)

Here α, β, and x0 are chosen to arrange b̃(0) = 1 and b̃(x) = 0 when ‖x‖ ≥ 1,
and φ : R → [0, 1] is a C∞ function with bounded derivative such that φ(t) = 0 if
t ≥ 1 and φ(t) = 1 if t ≤ 0. Notice that ρ obeys (2.4) with η = 1, and indeed,
that ρ(w) < 1 implies ‖w‖ < 1. Based on this construction, we can derive a local
version of the Deville-Godefroy-Zizler variational principle [13, Thm. 4.10] from
Theorem 2.2:

Theorem 2.4 Given f : X → R ∪ {+∞} lsc, x0 ∈ X, and ε ∈ (0, 1), suppose

f (x0) < ε + inf
X

f .

If the Banach space X admits a bump which is globally Lipschitz and β-differentiable,
then there exist v ∈ X and a β-differentiable g such that

(1) f + g has a strong minimum at v,
(2) ‖g‖∞ < ε and ‖∇g‖∞ < ε,
(3) ‖x0 − v‖ < ε and f (v) ≤ f (x0).

Proof Using the bump b described in the statement, build ρ as in (2.15); then let
ρ̃(x) := ρ(x/ε). The β-smoothness of b implies that ρ̃ is β-smooth also, so we can
apply Theorem 2.2 using ρ̃ and

µk =
ε

2k+1(k + 1) max {‖ρ‖∞ , ‖∇ρ‖∞ , 1}
.

Then conclusion (1) holds for g = ερ̃∞, given in detail by

g(x) = ε
∞∑

k=0

ε

2k+1(k + 1) max {‖ρ‖∞ , ‖∇ρ‖∞ , 1}
ρ

(
(k + 1)(x − vk)

ε

)
.

As b is globally Lipschitz, g is β-differentiable. The norm and gradient estimates in
(2) follow immediately, and since g ≥ 0 everywhere, we have f (x0) ≥ f (v) + g(v) ≥
f (v). The remaining assertion in (3) follows from ρ̃(x0 − v) < 1.

3 The Nonlocal DGZ Variational Principle

In [4, Lemma I.2.5], Deville, Godefroy, and Zizler consider a Banach space Y of
bounded continuous real-valued functions on X with the following properties:

(Y.1) ‖g‖Y ≥ ‖g‖∞ for each g ∈ Y .
(Y.2) Whenever g ∈ Y and x ∈ X, one has τxg ∈ Y and ‖τxg‖Y = ‖g‖Y , where

τxg : X → R is given by τxg(v) = g(x + v).
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(Y.3) Whenever g ∈ Y and α ∈ R, the function x �→ g(αx) lies in Y .
(Y.4) Y contains a bump function b.

Motivated by the proof of Stegall’s variational principle given by Bourgain [13,
pp. 89–90], our purpose in this section is to give an iterative proof of the nonlocal
Deville-Godefroy-Zizler variational principle without reference Baire category. The
required perturbation function is essentially an infinite sum of negative bumps. Note
that an appeal to Theorem 2.2 requires us to modify the given bump to produce a
nonnegative-valued ρ. Here we use the bump directly in the iteration.

Lemma 3.1 If f : X → R ∪ {+∞} is bounded below and g : X → R, then for any
α > 0 we haveΣβ( f + g) ⊂ Σα( f ) whenever ‖g‖∞ < α/2 and 0 < β < α− 2‖g‖∞.

Proof Under the stated conditions, every y ∈ Σβ( f + g) obeys

f (y) = ( f + g)(y)− g(y) ≤ inf
X

( f + g) + β + ‖g‖∞

≤ inf
X

f + β + 2‖g‖∞ < inf
X

f + α.

The above observation shows we can get decreasing families of sublevel sets pro-
vided we perturb the function f slightly.

Theorem 3.2 Let X be a Banach space. Let Y be a Banach space of bounded continuous
real-valued functions on X satisfying conditions (Y.1)–(Y.4) above. Let f : X → R ∪
{+∞} be lsc and bounded below, with f (x) < +∞ for some x ∈ X. Then for every
ε > 0 there exists g ∈ Y such that ‖g‖Y < ε and f + g attains a strong minimum on X.

Proof We claim that for every δ > 0, there exist arbitrarily small α > 0 for which
some ρ ∈ Y obeys both

‖ρ‖Y < δ and diam
(
Σα( f + ρ)

)
< 2δ.

To show this, assume without loss of generality that the given bump b satisfies b(0) >
0, b(y) = 0 for ‖y‖ ≥ δ, and ‖b‖Y < δ. (Use the scaling in (2.15) if necessary.)
Choose xδ ∈ X such that f (xδ) < b(0)+infX f , and define ρ(y) := −b(y−xδ). Then

( f + ρ)(xδ) = f (xδ)− b(0) < inf
X

f ,

‖y − xδ‖ ≥ δ =⇒ ( f + ρ)(y) = f (y) ≥ inf
X

f .

Thus, every α < infX f + b(0)− f (xδ) obeys Σα( f + ρ) ⊂ Bδ(xδ), as required.
To construct g, we assume without loss of generality that 0 < ε < 1. By the claim

above, with δ1 = ε/2, there exist α1 ∈ (0, 1) and ρ1 ∈ Y such that

‖ρ1‖Y < δ1, diam
(
Σα1 ( f + ρ1)

)
< 2δ1.
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The claim also applies to f + ρ1: taking δ2 = α1ε/22, we obtain α2 ∈ (0, α1) and
ρ2 ∈ Y such that

‖ρ2‖Y < δ2, diam
(
Σα2 ( f + ρ1 + ρ2)

)
< 2δ2.

Continuing by induction (with α0 = 1), we obtain sequences δn > 0, αn ∈ (0, 1),
and ρn ∈ Y such that

δn =
αn−1ε

2n
, αn < αn−1 ‖ρn‖Y < δn, diam

(
Σαn ( f + ρ1 + · · · + ρn)

)
< 2δn.

Then we define g =
∑∞

n=1 ρn. This function lies in Y because

‖g∞‖Y ≤
∞∑

n=1

‖ρn‖Y <

∞∑
n=1

αn−1

2n
ε < ε.

To show that f + g attains a strong minimum on X, it suffices to show

diam
(
Σβ( f + g)

)
→ 0 as β → 0+.

To do this, fix any n and split f + g = f +
∑n

i=1 ρi +
∑∞

i=n+1 ρi . Since

∥∥∥ ∞∑
i=n+1

ρi

∥∥∥
Y
≤

∞∑
i=n+1

αi−1

2i
ε ≤
αn

2n
ε <
αn

2
,

Lemma 3.1 implies thatΣβ( f + g) ⊂ Σαn ( f +ρ1 + · · ·+ρn) holds whenever 0 < β <
αn − 2‖

∑∞
i=n+1 ρi‖∞, that is,

diam
(
Σβ( f + g)

)
≤ diam

(
Σαn ( f + ρ1 + · · · + ρn)

)
≤ 2δn.

Since δn → 0 as n→∞, this completes the proof.

The proof does not require the sequence of sets Sn = Σαn ( f + ρ1 + · · · + ρn) to
be nested, but this additional property can be arranged by choosing smaller αn in the
construction.

4 Generalized Smulyan Test and Stegall Minimization Principle

In this section, we consider Stegall’s variational principle with linear perturbations.
Our proof of Stegall’s variational principle (Theorem 4.2), cast in the dual of an As-
plund space, simplifies the one given by Fabian and Zizler [7]. It relies on a charac-
teristic property of the dual of any Banach space with the Radon-Nikodym Property
(RNP), in constrast to Stegall’s original proof of Theorem 4.4 using properties of
RNP sets [15].

The following ‘generalized Smulyan test’ describes the relationship between
Fréchet differentiability and the strong extremum.
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Lemma 4.1

(i) Let f : X → R ∪ {+∞} be lsc and bounded below. Define g : X∗ → R via

g(x∗) := inf
y∈S
{ f (y) + 〈x∗, y〉},

where S ⊂ X is nonempty, closed, bounded, and convex. Then g is Fréchet differen-
tiable at x∗, with g ′(x∗) = x, if and only if f + x∗ + IS attains a strong minimum
at x.

(ii) Let f : X∗ → R ∪ {+∞} be (norm-) lsc and bounded below. Define g : X → R by

g(x) := inf
y∗∈S
{ f (y∗) + 〈y∗, x〉},

where S ⊂ X∗ is nonempty, norm-closed, bounded and convex. Then g is Fréchet
differentiable at x, with g ′(x) = x∗, if and only if f + x + IS attains a strong
minimum at x∗.

Proof Both statements are proved similarly; we provide details only for (ii). Since g
is concave, its Fréchet derivative g ′(x) exists if and only if

lim inf
‖h‖→0

g(x + h) + g(x − h)− 2g(x)

‖h‖
= 0.

(See, e.g., [13, Prop. 1.23].)
(⇒) Suppose g is Fréchet differentiable at x. Extending the notation in (2.1), let

us write
Σ∗α( f + x + IS) = {y∗ ∈ S : f (y∗) + 〈y∗, x〉 ≤ α + g(x)} .

(For each α > 0, this set is norm-closed, and nonempty.) To prove existence
of a strong minimizer, it suffices to show that δn = diam(Sn) → 0, where Sn =
Σ∗1/n2 ( f + x + IS). Since Sn ⊇ Sn+1 in general, the conclusion is automatic if some
δn = 0, so we may assume δn > 0 for all n. Thus we may choose x∗n , y

∗
n ∈ Sn, and

then a corresponding zn ∈ X, ‖zn‖ = 1, such that

‖y∗n − x∗n‖ >
δn
2
, 〈y∗n − x∗n , zn〉 >

δn
2
.

Now by the definition of g and our choice of x∗n , y∗n ,

g(x + zn/n) + g(x − zn/n)− 2g(x) ≤ [ f (x∗n ) + 〈x∗n , x + zn/n〉 − g(x)]

+ [ f (y∗n ) + 〈y∗n , x − zn/n〉 − g(x)]

≤
1

n2
+ 〈x∗n − y∗n , zn/n〉 +

1

n2
.

Rearranging this gives

δn < 2 〈y∗n − x∗n , zn〉 ≤ −2
g(x + zn/n) + g(x − zn/n)− 2g(x)

1/n
+

4

n
.
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The Fréchet differentiability of g implies that the right side tends to 0, as required.
To identify g ′(x), write x∗ for the (unique) strong minimizer of f + x + IS. Note

that g(x) = f (x∗) + 〈x∗, x〉, so

0 = lim
‖h‖→0

g(x + h)− g(x)− 〈g ′(x), h〉

‖h‖

≤ lim inf
‖h‖→0

f (x∗) + 〈x∗, x + h〉 − f (x∗)− 〈x∗, x〉 − 〈g ′(x), h〉

‖h‖

= lim inf
‖h‖→0

〈x∗ − g ′(x), h〉

‖h‖
= −‖x∗ − g ′(x)‖.

(4.1)

This shows x∗ = g ′(x).
(⇐) Conversely, assume f + x + IS attains a strong minimum somewhere. To

show that g is Fréchet differentiable at x, fix an arbitrary sequence hn ∈ X \ {0} with
‖hn‖ → 0. Choose x∗n , y

∗
n ∈ S such that

f (x∗n ) + 〈x∗n , x + hn〉 < g(x + hn) + ‖hn‖/n,

f (y∗n ) + 〈y∗n , x − hn〉 < g(x − hn) + ‖hn‖/n.

Rearrangement gives

g(x) ≤ f (x∗n ) + 〈x, x∗n〉 < g(x + hn)− 〈hn, x
∗
n〉 + ‖hn‖/n, and

g(x) ≤ f (y∗n ) + 〈x, y∗n〉 < g(x − hn) + 〈hn, y
∗
n〉 + ‖hn‖/n.

Hence both f (x∗n ) + 〈x∗n , xn〉 → g(x), and f (y∗n ) + 〈y∗n , x〉 → g(x), i.e., both (x∗n )
and (y∗n ) are minimizing sequences for f + x + IS. Since this function has a strong
minimum, we must have ‖y∗n − x∗n‖ → 0. On the other hand, the inequalities above
imply

g(x + hn) + g(x − hn)− 2g(x) > [ f (x∗n ) + 〈x∗n , x + hn〉 − ‖hn‖ /n− g(x)]

+ [ f (y∗n ) + 〈y∗n , x − hn〉 − ‖hn‖ /n− g(x)]

≥ 〈x∗n − y∗n , hn〉 − 2 ‖hn‖ /n

≥ −‖hn‖ (‖x∗n − y∗n‖ + 2/n).

Dividing by hn and sending n→∞ shows that

lim inf
n→∞

g(x + hn) + g(x − hn)− 2g(x)

‖hn‖
≥ 0.

Since the sequence (hn) is arbitrary, g is Fréchet differentiable at x. The identification
of g ′(x) proceeds as in (4.1).
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Smulyan’s classical test for the Fréchet differentiability of norms and Phelps’s test
for the Fréchet differentiability of Minkowski gauges [13, p. 85] both follow from
the case f = 0 of Lemma 4.1. One may express Lemma 4.1 in terms of Fenchel
conjugates, but for our applications the stated form is more convenient.

Theorem 4.2 Let X be an Asplund space, and let f : X∗ → R ∪ {+∞} be norm-lsc
on X∗. Let S ⊆ X∗ be nonempty, norm-closed, bounded, and convex. If f is bounded
below on S, then the set

G := {x ∈ X : f + x attains a strong minimum on S},

is residual in (X, ‖ · ‖).

Proof Consider the concave function g : X → R given by

g(x) := inf
x∗∈S
{ f (x∗) + 〈x, x∗〉}.

Since S is bounded and nonempty, g is concave and Lipschitz on X. Since X is As-
plund, the set G of all Fréchet differentiability points for g is residual in (X, ‖ · ‖).
Thus the conclusion follows from Lemma 4.1(ii).

Preiss and Zajicek [14] showed every continuous convex function on a separable
Asplund space is Fréchet differentiable everywhere except for a σ-porous set. Thus
on separable Asplund space the set X \ G is σ-porous. When X is finite dimensional,
Rademacher’s theorem ensures that the set X \ G is Lebesgue null.

Corollary 4.3 (Fabian [7]) Let X be an Asplund space. Let f : X∗ → R ∪ {∞} be
lsc, with

inf
X∗

f > −∞ and lim inf
‖x∗‖→∞

f (x∗)

‖x∗‖
> 0.(4.2)

Then for every ε > 0 there exists x0 ∈ X with ‖x0‖ < ε such that f + x0 attains a strong
minimum on X∗.

Proof We follow the idea of Phelps [13, p. 92]. From (4.2), for some a, b > 0 we
have f (x∗) > a‖x∗‖ whenever ‖x∗‖ > b, so

f (x∗) > a‖x∗‖ + min{0, inf
X∗

f − ab} ∀x∗ ∈ X∗.

Thus by adding a constant to f if necessary, we may assume f (x∗) > a‖x∗‖ for every
x∗ ∈ X∗. When ‖x‖ < a/2, we have

f (x∗) + 〈x, x∗〉 > a‖x∗‖ −
a

2
‖x∗‖ =

a

2
‖x∗‖.(4.3)
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Let r = 2( f (0) + 1)/a, S = rB∗, and fS = f + IS. Then Theorem 4.2 provides a point
x0 ∈ X such that ‖x0‖ < min{ε, a/2} and fS + x0 attains a strong minimum at some
x∗0 ∈ X∗. We only need to show x∗0 is a strong minimizer of f + x0 on X∗. Indeed, if
some x∗ ∈ X∗ obeys

f (x∗) + 〈x0, x
∗〉 ≤ f (x∗0 ) + 〈x0, x

∗
0 〉 ≤ f (0),

then our choice of ‖x0‖ < a/2 implies via (4.3) that ‖x∗‖ < 2 f (0)/a < r, so x∗ ∈ S.
The strong minimality of x∗0 for fS + x0 forces x∗ = x∗0 . Similarly, if x∗n ∈ X∗ and
( f + x0)(x∗n )→ ( f + x0)(x∗0 ), then eventually ( f + x0)(x∗n ) ≤ f (0) + 1. By (4.3), this
will force ‖x∗n‖ ≤

(
f (0) + 1

)
2/a for all n sufficiently large. Hence x∗n ∈ S for all such

n, and ‖x∗n − x∗0‖ → 0.

Note that Corollary 4.3 retains the full force of Theorem 4.2. Indeed, if the hy-
potheses of Theorem 4.2 are in place, choose r > 0 so large that rB∗ ⊇ S and let
m = infX∗ f . Then apply Corollary 4.3 to g := f + IS, noting that

g(x∗) ≥ ‖x∗‖ − r + m for every x∗ ∈ X∗.

This provides a single strong minimizer; to see how this conclusion extends to pro-
vide generic information, see the proof of Corollary 4.6 below.

A Banach space X is said to have Radon-Nikodym property (RNP) if every non-
empty bounded subset A of X is dentable, that is, for every ε > 0 there exists x∗ ∈ X∗

and α > 0 such that the “slice”

S(x∗,A, α) := {x ∈ A : 〈x∗, x〉 > sup
A
〈x∗, x〉 − α}

has diameter less than ε.

Theorem 4.4 Suppose that X has the RNP, f : X → R∪{+∞} is lsc on X, and S ⊂ X
is nonempty, closed, bounded and convex. If infS f is finite, then the set

{x∗ ∈ X∗ : f + x∗ has a strong minimum on S}

is residual in (X∗, ‖ · ‖).

Proof Consider the concave function g : X∗ → R given by

g(x∗) := inf
x∈S
{ f (x) + 〈x∗, x〉}.

Since S is bounded, −g is Lipschitz, convex, and weak∗ lsc on X∗. Collier [3] has
shown that every weak∗ lsc convex function on X∗ is Fréchet differentiable on a dense
Gδ subset of its domain. (That is, “X∗ is weak∗ Asplund.”) Hence the conclusion
follows from Lemma 4.1(i).
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Countable intersections of residual sets are residual, so the following consequence
is immediate.

Corollary 4.5 Let X and S be as in Theorem 4.4. Suppose ( fn) is a sequence of ex-
tended-valued lsc functions on X such that infS fn is finite for each n. Then for every
ε > 0 there exists x∗ ∈ X∗ such that ‖x∗‖ < ε and each fn + x∗ attains a strong
minimum at some xn in S.

Corollary 4.6 (Fabian) Suppose X has the RNP. Let f : X → R ∪ {+∞} be lsc and
satisfy

f (x) > c‖x‖ + b ∀x ∈ X(4.4)

for some c > 0 and b ∈ R. Then the set

U = {x∗ ∈ B∗c (0) : f + x∗ attains a strong minimum on X} ,

is residual in the Baire space
(

B∗c (0), ‖ · ‖
)

.

Proof Just as Corollary 4.3 follows from Theorem 4.2, Theorem 4.4 implies that[
For any ε > 0 there exists x∗ ∈ X∗ such that ‖x∗‖ < ε

and f + x∗ attains a strong minumum on X.
(4.5)

Now let

Un =

{
y∗ ∈ B∗c (0) : diam

(
Σα( f + y∗)

)
<

1

n
for some α > 0

}
.

As U =
⋂∞

n=1 Un, it suffices to show that:

(i) Each Un is open. Assume y∗ ∈ Un. Then for some α > 0, we have

diam
(
Σα( f + y∗)

)
<

1

n
.

Choose 0 < β < (c − ‖y∗‖)/2. Whenever ‖x∗ − y∗‖ < β, by (4.4) for every
y ∈ X we have

( f + x∗)(y) >
c − ‖y∗‖

2
‖y‖ + b.

We may choose r > 0 such that the latter is larger than f (0) + 1, for all ‖y‖ ≥ r.
Thus,

inf
X

( f + x∗) = inf
rB

( f + x∗), for all ‖x∗ − y∗‖ < β.
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We show that x∗ ∈ Un if ‖x∗ − y∗‖ < β1 with β1 < min{β, α/(2r)}. Indeed,
for 0 < ν < min{1, α − 2rβ1} we have Σν( f + x∗) ⊂ rB. If x ∈ Σν( f + x∗),
then

( f + y∗)(x) = ( f + x∗)(x) + (y∗ − x∗)(x)

≤ inf
X

( f + x∗) + ν + r‖(y∗ − x∗)‖ = inf
rB

( f + x∗) + ν + rβ1

≤ inf
rB

( f + y∗) + 2rβ1 + ν = inf
X

( f + y∗) + 2rβ1 + ν

< inf
X

( f + y∗) + α.

Thus, Σν( f + x∗) ⊂ Σα( f + y∗), and so diam
(
Σν( f + x∗)

)
< 1/n.

(ii) Each Un is dense. For any y∗ ∈ B∗c (0), we have

( f + y∗)(x) ≥ c‖x‖ + b− ‖y∗‖ ‖x‖ = (c − ‖y∗‖)‖x‖ + b.

By (4.5), for every ε > 0 there exists x∗ ∈ X∗ such that ‖x∗‖ < min{ε,
c − ‖y∗‖} and f + y∗ + x∗ attains a strong minimum on X. This implies
y∗ + x∗ ∈ Un, as required.

5 The Coercive Case

A function f : X → R ∪ {+∞} is called coercive when

lim inf
‖x‖→+∞

(
f (x)/‖x‖

)
= +∞.

Proposition 5.1 Let f : X → R ∪ {+∞} be lsc and coercive. Then

(i) When X is an arbitrary Banach space, the set
⋃

x∈X ∂c f (x) is norm-dense in X∗.
(ii) When X has a β-smooth renorm, the set

⋃
x∈X ∂

β f (x) is norm-dense in X∗.
(iii) When X has the RNP, the set {x∗ ∈ X∗ : f + x∗ attains a strong minimum on X}

is residual in (X∗, ‖ · ‖).

Proof (i) Fix y∗ ∈ X∗ and ε > 0. As f is coercive, the function f − y∗ has a finite
infimum. Ekeland’s variational principle produces x ∈ X such that f − y∗ + ε‖ ·−x‖
attains a global minimum at x. Thus there exists x∗ ∈ ∂c f (x) such that ‖x∗−y∗‖ ≤ ε.
Since ε is arbitrary, this proves (i).

(ii) The proof is similar, but we apply the Borwein-Preiss variational principle.
(iii) Since f is coercive, for every c > 0 there exists b such that f (x) > c‖x‖ + b

for every x ∈ X. By Fabian’s variational principle (Corollary 4.6),

U := {x∗ ∈ X∗ : f + x∗ attains a strong minimum on X},

is residual in the Baire space
(

B∗c (0), ‖ · ‖
)

for every c > 0. Hence U is residual in
(X∗, ‖ · ‖).
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When S is a bounded set, f = IS is coercive, and Proposition 5.1 unifies several
well-known results.

Theorem 5.2 (Bishop-Phelps [13]) Let S ⊂ X be nonempty, closed, bounded, and
convex. Then the support functionals of C are norm dense in X∗.

Theorem 5.3 (Phelps’s Lemma [13]) Suppose X has the RNP, and let S ⊂ X be non-
empty, closed, bounded, and convex. Then the strongly supporting functionals of S are
residual in (X∗, ‖ · ‖).

Together with the Generalized Smulyan Test (Lemma 4.1), the results of this sec-
tion support the following (known) characterization of reflexivity [9]. The statement
and proof use the standard notation

σC (x∗) = sup {〈x∗, x〉 : x ∈ C} , x∗ ∈ E∗,

C◦ = {x∗ ∈ E∗ : σC (x∗) ≤ 1}

for various sets C and Banach spaces E.

Corollary 5.4 If X contains a subset S that is closed, bounded, and convex, with 0 ∈
int S, and such that σS is Fréchet differentiable on X∗ \ {0}, then X is reflexive.

Proof According to the Bishop-Phelps theorem, the set

D := {x∗∗ ∈ X∗∗ : σS◦(x∗∗) = 〈x∗∗, x∗〉 for some x∗ ∈ S◦} ,

is norm dense in X∗∗. The hypothesis that 0 ∈ int S implies that 0 lies in the norm
interior of S◦, so σS◦(x∗∗) > 0 whenever x∗∗ �= 0. Thus for every x∗∗ ∈ D \ {0},
there exists a nonzero x∗ ∈ X∗ such that

1 =

〈
x∗∗

σS◦(x∗∗)
, x∗
〉
= σS◦◦(x∗) = σS(x∗).

The rightmost equation holds because S◦◦ = S
w∗

in X∗∗, so the restriction of σS◦◦

to X∗ coincides with σS. Now σS is Fréchet differentiable at x∗, by hypothesis, so
Lemma 4.1(i) (with f = 0) gives x∗∗/σS0 (x∗∗) ∈ S ⊆ X. Hence D ⊆ X, so X is
norm-dense in X∗∗, and the result follows.

6 Variational Characterizations of Banach Spaces

Sullivan [16] has shown that a metric space Y is complete if and only if for every
bounded below, lsc and somewhere finite function f on Y there exists a Lipschitz
function φ : Y → R with Lipschitz constant less than 1 such that f +φ attains a global
minimum on Y . Fabian and Mordukhovich [8] showed that the Banach space X has
a β-smooth renorm if and only if for every f : X → R ∪ {+∞} that is lsc, bounded
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below, and somewhere finite, there exists a β-smooth convex function φ : X → R
such that f + φ attains a global minimum somewhere on X.

Let S be a class of real-valued functions on a Banach space X. To say that X admits
an S-variational principle means that every function f : X → R ∪ {+∞} that is lsc,
bounded below, and somewhere finite satisfies the conditions

f ≥ s on X and f (v) = s(v)

for some s ∈ S and v ∈ dom f . For example, we will consider the class S of β-smooth
functions φ : X → R satisfying

φ(x1) < φ(x2)⇒ 〈∇φ(x1), x2 − x1〉 > 0.

Such a φ is called pseudoconcave. When the statement above holds for this S, we say
X admits a β-smooth pseudoconcave variational principle. The proof in [8] makes
it clear that the cited result of Fabian and Mordukhovich holds even if −φ is only
required to be pseudoconcave.

Theorem 6.1 (Fabian and Mordukhovich [8]) The following assertions concerning
X are equivalent:

(i) The concave β-smooth variational principle holds in X.
(ii) The pseudoconcave β-smooth variational principle holds in X.
(iii) X has an equivalent β-smooth norm.

We note that the validity of Stegall’s Variational Principle (Theorem 4.2) actually
characterizes Asplund spaces.

Theorem 6.2 The following assertions about a Banach space X are equivalent:

(i) X is Asplund.
(ii) Whenever f : X∗ → R ∪ {+∞} is norm-lsc and has a finite infimum over some

nonempty, closed, bounded, convex S ⊂ X∗, the set

{x ∈ X : f + x attains a strong minimum on S}

is residual in (X, ‖ · ‖).

Proof (i⇒ ii) This restates Theorem 4.2.
(ii⇒ i) Take f = 0. Then (ii) implies that every norm-closed, bounded convex

set S has weak∗ slices of arbitrary small diameter. This implies that X is Asplund, by
[13, Theorem 2.32].
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7 Maximality of Approximate Subdifferentials

Throughout this section, we assume that the Banach space X is separable. For any
subset A of X, we write C(A) for the collection of bounded continuous real-valued
functions defined on A, with the uniform norm. Our purpose is to show that (when
A is open) the collection of functions f in C(A) for which the approximate subdiffer-
ential equals X∗ at every point of A is large.

Recall that every separable Banach space has an equivalent Gâteaux-smooth norm,
so the smoothness hypothesis above ensures the applicability of the smooth varia-
tional principle.

Given φ : X → R ∪ {+∞}, we call x0 ∈ X a dimple point for φ if there exists
r > 0 such that φ(x0) < inf {φ(x) : ‖x − x0‖ = r}. In this case, given any ε > 0,
applying the smooth variational principle to the function φ+ IBr [x0], produces a point
v ∈ Br(x0) such that some v∗ ∈ ∂−φ(v) obeys ‖v∗‖ < ε.

A subset Z ⊂ X is said to be porous in X if there exists λ ∈ (0, 1] such that for any
x ∈ X and r > 0 there exists y ∈ X such that Bλr(y) ⊂ Br(x) \ Z. The set Z is called
σ-porous in X if it can be represented as a countable union of porous sets in X.

Lemma 7.1 For any open set A ⊆ X and any continuous f : A→ R, the set C(A) \T
is σ-porous, where

T := {g ∈ C(A) : the dimple points of f + g are dense in A} .

Proof Fix x ∈ A, n ∈ N , and consider the set

Gn,x :=
{

g : f + g has a dimple point in B1/n(x)
}
.

We will show that C(A) \ Gn,x is porous, with λ = 1/6 in the definition. Indeed, fix
any g ∈ C(A) and r > 0. As f + g is continuous we may choose xn ∈ B1/n(x) such
that

( f + g)(xn) < r/2 + inf
B1/n[x]

( f + g).

Then choose k large enough that the support of hn(y) := max {0, 1− 2k‖xn − y‖}
lies in B1/n(x). Let α = 5r/6 and define gn(y) := −αhn(y).

Claim 1 Br/6(g + gn) ⊂ Br(g).
This follows from the triangle inequality, since ‖gn‖ = α = 5r/6.

Claim 2 Br/6(g + gn) ⊂ Gn,x.
In fact, xn is a dimple point for every function of the form g + gn + φ, where

φ ∈ C(A) obeys ‖φ‖ < r/6. For we have

( f + g + gn + φ)(xn) = f (xn) + g(xn)− α + φ(xn)

< inf
B1/n[x]

( f + g) + r/2− 5r/6 + r/6 = inf
B1/n[x]

( f + g)− r/6,
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while every y with ‖y − xn‖ = (2k)−1 lies in B1/n(x) and satisfies gn(y) = 0, so

( f + g + gn + φ)(y) = f (y) + g(y) + φ(y) ≥ inf
B1/n[x]

( f + g)− r/6.

Taken together, these claims show that Br/6(g + gn) ⊆ Br(g) ∩ Gn,x. Since this
holds for arbitrary r > 0 and g ∈ C(A), the set C(A) \ Gn,x is porous.

To complete the proof, let {xi : i ∈ N} be a countable dense subset of A and define

G :=
⋂
i∈N

⋂
n∈N

Gn,xi .

For every g ∈ G, the function f + g has a dimple point in every open subset of A, so
T ⊇ G. Hence C(A) \ T ⊆ C(A) \ G. The latter set is σ-porous, by the arguments
above.

Theorem 7.2 For any open set A ⊂ X, the set C(A) \ T is σ-porous, where

T = {g ∈ C(A) : ∂ag(x) = X∗ ∀x ∈ A} .

Proof Suppose h ∈ C(A) has a dimple point at 0, so h(0) < inf‖x‖=r h(x). Then, as
noted above, the smooth variational principle implies that the open ball Br(0) con-
tains points v where ∂−h(v) contains elements of arbitrarily small norm. By translat-
ing this observation, we deduce that if z ∈ X is a limit of points where h has dimples,
then 0 ∈ ∂ah(z). We apply this observation below.

Now for every x∗ ∈ X∗, by Lemma 7.1, the set

{g ∈ C(A) : the dimple points of − x∗ + g are dense in A} ,

is large; it follows that the superset

Gx∗ := {g ∈ C(A) : x∗ ∈ ∂ag(x) ∀x ∈ A} ,

has a σ-porous complement. Now B∗ is weak∗-compact and metrizable, so there
exists a countable set {x∗i : i ∈ N}whose weak∗ closure is X∗. It follows that C(A)\G
has σ-porous complement, where

G =
⋂
i∈N

Gx∗i .

But G = T, since for every g ∈ G and x ∈ A, the subdifferential ∂ag(x) must be
weak∗ closed and contain {x∗i : i ∈ N}.

Under the hypotheses above, Deville and Revalski [5] showed that the set

{g ∈ C(A) : g has a strong minimum in A}

has a σ-porous complement. In conjunction with Lemma 7.1, this implies that the
set

{g ∈ C(A) : g attains a unique global minimum,
but has a dense set of dimple points in A},

has a σ-porous complement in C(A). In finite dimensional spaces, every such func-
tion has a local minimizer in every open subset of A, and exactly one global mini-
mizer.
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