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ABSTRACT. Quadrature soluti ons for tempera ture fields in the central regions of ice 
sheets where fl ow is by interna l deform ation are presented and compared with numerical 
computations a nd the European Ice Shee t Modelling Initiative (EISMINT ) Benchmark 
standards. The solution appears to be more accurate than the EISMINT Benchmark stan­
da rds for thermomechanically uncoupled temperature distributions. The ability offinite­
difference a nd pseudo-spectra l me thod s to reproduce thi s solution is considered. 

Errors in the EISMINT Benchmark a re la rger than expec ted. Th e possibility tha t 
they could a rise from inaccura te eva luation of the vertical velocity is considered , a nd 
found to be unlikely. Formulae for computing the vertical velocity inJenssen's u coordi­
n ate are complicated and may lead to programming errors. A simple form of the heat­
transport equ a tion in the u coordinate [or now by sliding and interna l deformation is de­
ri ved and presented , and it is shown how thi s form is parti cula rly suitable for finite­
element computations. It is a lso shown that only two quadratu res a r e necessary to com­
pute the ve rtical and horizontal heat transport and the ice flux. 

1. INTRODUCTION 

The recent E uropean Ice Sheet Modelling Initi ative 
(EISMINT) Benchmark series of ice-sheet modelling inter­
comparisons has provided an invaluable set of tests for com­
paring and valida ting ice-sheet models in ranges of p a rameter 
space where no analytical solutions ex ist (Huybrechts and 
others, 1996). vVhil e the analytical solution for temperature 
has long been known (Robin, 1955) in regions where horizon­
tal now can be neglected in the heat equation and where ver­
tical velocity is proportional to elevation as in a plug fl ow, it 
has not been generally appreciated that acc urate solutions 
only requiring a quadrature ex ist fo r flow by interna l deform­
ation, [or both linear and non-linear rheologies, a lthough 
much o[ the relevant theory already exists (Zotikov, 1986). As 
with the Robin so lution, onc need s to solve a second-order 
bounda ry value problem, and a first integra l is readily 
obtained analytically. T he solution can then be obta ined by a 
quadrature, which plays the same role as the error function in 
the Robin solutio n. 

If the ice-shee t thickness and upper surface vertical 
velocity are known, then this quadrature solution can be 
applied, which h as the consequence that the EISMINT 
Benchma rk Level I temperature calculati ons, which are not 
coupl ed to the ice-shee t rheo logy, can be compared with this 
solution in areas where horizonta l flows are neglig ible (e.g. 
the cemra l areas of ice sheets). R es ults from these a reas have 
been repo rted (Huybreehts and others, 1996) and are com­
pared here with the analytica l so lution. This br ings us to the 
main point of this paper: the mean EISMINT Benchmark 
resul ts are not p a rticularly acc ura te, and if one were to seek 
to validate one's model by obta ining the mean EISMINT 
Benchmark value, this would be possible only by using 
rather inaccurate fini te-difference (FD ) approximations. 
T he solution presented in this pa per is more accura te and it 
is also shown that second-order schemes with ten FD grid 
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intervals can reproduce this solution to the expected I % ac­
curacy, as compa red with the 5% accuracy of the mean 
value of the EISMIN T Benchmark exp eriment. 

Two other sources of error are investigated: the numeri­
cal integration required to compute the vertical velocit y, a nd 
programming error. Firstly, it seems tha t the error in the 
EISMINT Benchmark L evel I is too la rge to be explicabl e 
by integrati on error associated with the computation of the 
vertical velocity. Secondly, when directly transformed into 
the terra in-following coordinate Uenssen's (1977) u coordi­
nate) usually used in g laciology, the heat-transport equation 
becomes extremel y complicated in the sense that it conta ins 
a la rge number of terms. H owever, many of these terms can 
be sh own to cancel, a nd a much simpler form of the heat 
equation thereby derived . This form, a development of work 
by M acAyeal (1997) a nd Hulbe (1998), lends itself natura ll y 
to consistent definiti on of flux and vertical heat transport, 
and a lso means lhat the computati on of the heat transport 
and ice continuity requires only two quadratures. 

2. THEORY 

The steady-state diffusion advection equa ti on [or a n ice 
sheet near its centre, where hori zonta l advection and dissi­
pa tion can be neglected , is given by 

(1) 

where {3 = K/ Ha, H is the thickness of the ice, a is the acc u­
mu lation rate, K is the thermal diffusivity of ice, e is the tem­
perature, ( = z/ H , z is the elevation above the bed, and w is 
the ver tical velocity w normalised by the accumulation ra te 
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such that w( ( = 1) = - 1 (see Equation (A23)). This relati on 
has a first integra l (Zotikov, 1986, section 4.1) 

8(J 8(Jb 
8( = 8( exp [1V(() / ,8], (2) 

(( 
W(() == ia w((' ) d(', (3) 

where supersc ript b stands (o r cva lua tion at th c base. \ Ve can 
thus write the form al solution 

e - eo = ~; 1( exp [1V((') / ,8l d('. ( 4) 

In thr thermall y uncoupled casc, w is simply a function of ( 
a nd the computa tion of th is so l ution is therefore just a quad­
rature, i. e. a numerica l integration involving (only and not 
(J. The uppcr surface boundary condition can be inserted by 
evaluating the quadratul'e a t the upper surface ( = 1 and 
eliminati ng e'l . Fo r plug [low, wh ere the hor izon tal " eloeit y 
is independe nt of ( , w(() = -(, a nd we read il y o bta in 

e - (Jo = ~; 1( exp [-((')2 / 2,8] d(' 

=~; ffcrf((/~). 
(5) 

which is the R obin solution. 
For [low by internal deform a tion, we proceed as follows. 

\,Ve need to demonstrate th a t we h a\'e suffi cient information 
('ra m the EISl\iUNT Benchm a rk ice-sheet geom e tri es and 
forcing funct io ns to sok e the temperature equa ti on where 
hori zonta l velocities a re neglig ibl e. A crucia l point to under­
stand is that sm a ll hori zonta l \'elocities do no t impl y small 
horizonta l gradi ents of hori zonta l velocit y, wh ich must be 
large enoug h to balance the acc umulation . 

It is shown in the Append ix (Equation (A22)) that the 
vert ica l \'elocity w near the centre oran ice shee t is g iven by 

w = aw(() = - \7 11 ' q ((), (6) 

where 

q(() = H re ud(' 
io (7) 

is the integral ho ri zontal [lux o f ice (or the imen 'a l 0 to (and 
u is the hori zo nta l \·elocity. \Ve term th is the partia l [lux, to 
d ist ingui sh it from the qu antity q"(() = H j;; u d(' , ge ner­
a ll y known in g lac iology as the nux. The hori zonta l diver­
gence operato r \711' is taken a long 'urfaees 0 (' constant (. 
Im plicitl y, the veloei t y, partial [lux and [lux are a ll functions 
of a horizonta l \ 'ector coord in ate p, over wh ich the diver­
gence is ta ken , but wc do not show this ex plicit ly in the fol­
lowing der ivation, where we a re interested in the vertical 
va ri at ion of u a nd q. 

Since 

wc ca n a lso writ e 

\7 B . q " = a 

w(() = _ \7 11 • q (() . 
\7 11' q" 

(8) 

(9) 

We noli' need to e\'a luate the part ia l nuxv lI . q((), and in par­
ticul a r \Ve need to be able to show that if we kn ow \7 H . qS lI'e 
can thereby compute VII' q ((). This is poss ible under the 
shall ow-ice approx imation (Huller, 1983). Firstly, wc need to 
show how to compute u nea r th e ice-sheet cemre in order to 
compute its hori zomal di\'ergence, which is not sm all, e\'en 
though u is sm a ll. For thermally uncoupled now we use the 
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G len rheology together with the sha llow-ice approxim ati on 
to obtain th e shear rela ti on 

8u = ~ 8u = _ 2A(pg)"(H _ z)"l \7 H I"- 1 \7 H 
8z H 8( -

= c (l -()", (10) 

where 

c == -2A(pg)" H "I \7HI,, - IVH, (11) 

A is a rate factor, p is the density of ice, 9 is the accelerati on 
due to gra\' ity a nd we a rc u ing the red uced consti tuti\ 'e re­
la tionship 

(12) 

(13) 

\Vith these ass umptions wc have, 111 common with th e 
EISMINT Benchmark Le\'el I, specificall y excludcd the 
divide of an ice sheet, where there is a different mechanical 
zone (Raymond, 1983). 

~olV, using Equation (10) and the definition of the part ia l 
nux (Equati on (7)) wc ca n compute 

( (' 

q (() = H 2 c ( ( (1 - (")" de" d(' 
ia io 

2 [(1-( )"+2+(n+2)( - 1] 

= Hc (n+2)(n+1) . (14) 

which means tha t a t the upper surface ( = I , 

., n ( H2) 1 \7l1.q =V II' e ( ?)=a. n + _ 
(15) 

Wc can use Equat io ns (6) and (1+) to write 

2 [(1-()"+2+(n + 2)(-1] 
aw(() + VH ·(cH) (?)( ) =0, n + _ 77 + 1 

a nd since from Equation (15) we know th at 

\7H ' (cH2) = (n + 2)a. 

we ca n substitut e thi s into Equation (16) to arri\'e at 

(16) 

(17) 

[(1 - (),, +2+(n + 2)( - 1] 
w(() = - (n+ 1) . (18) 

This functiona l d ep endence has been dcri\'cd pre\'io usly 
(R aymond, 1983). As a check it can be seen eas ily that thi s 
gives the correc t answer w(() = -( for plug-like shea r now 
(n -7 (0). These steps have el imina ted o ur need to know the 
rate faeLOr; g i\ 'C n a geolTlctry obtained from the EISi\lINT 
Benchmark ex periments, the acculTl ul ati on rate a nd the 
geo therm al heat g rad ient, II'C have a ll the info rm a tion 
needed to solve the heat eq uati on (I) . 

In order to compute the so lution (o r the temperature 
ri-om the forma l solution (Equation (4)), \\'C nccd to inte­
g ra te w(() , and obtain 

1 - (1 - ()"+:l ((n / 2 + 1) - 1 
W(()=-(n+3)(TI+1) - ( (77+ 1) . (19) 

This can be substituted into thc fo rm a l solution (Equation 
(4-)) and the vertical \'c1ocity computed by a quadrature. 

In the applica tions be I 011', Ri em an n SUIllS (a second­
o rder mC:' thod ) have bccn used. \ Ve d ivide the interva l 
[O' (ml into m - 1 gr ids, not necessa ril y o(' eq ual size, with 
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nodal points numbered i = (1, m ). Then, the quadra ture is 
defined by 

1('" exp(W {(' } I fJ) d(' 

rn 

;:::j L exp(W{ Ci- l /2 } /O)((; - CH), (20) 
i=2 

(21 ) 

Since we a re dealing with summations, numerical problems 
a rising from finite word lengths a re less ac ute than in differ­
ence soluti ons, meaning that fine grids, leading to very 
accurate evalua tions, are in principle possible. In contra t, 
in difference solutions of the original equations, overl y fine 
grids lead to the subtraction of ver y similar values of the tem­
perature, a nd a concomitant loss of acc uracy as a result of 
finite word lengths. In the applications below we specify m 
= 1001, which implies a relative error of 10 6 for a second­
order method. 

3. THE EISMINT BENCHMARK TEMPERATURE 
CALCULATION 

The properti es of the advection- diffusion equation for 
internal deformation are well known and we simply present 
some examples of the solutions. We take the EISMINT Bench­
mark Level I parameters n = 3, a = 0.3 m a I a nd consider 
the thickn ess computed by the fixed-margin type-I "3d" models 
(Huybrechts a nd others, 1996, table 2), where the m ean thick­
ness is H = 3419.9 m. The geothermal heat nux is 0.042 W m-2 

and the therm al conductivity of ice is 2.IWm- IK I, which 
gives a basal temperature gradient of 0.02 K m- I. The upper 
surface temperature is - 34.15 K. Figure I presents solutions 
for n E {1 , 3, 5, 10, 30,00}; the last case corresponds to the 
case where the shear layer is infinitesimally thick, indistin­
gui shable from a plug now, and the temperature is thus de­
scribed by the Robin solution. 

The EIS MINT Benchma rk Level I tempera tures are 
presented in what is termed a "homologous tempera ture" 
eE , which in Robin (1955) is defined as 

(22) 

35001o----,---,----.---;=::c=====c:::===:=::;l 
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Fig. 1. Illustrating analytical solutions to the ice-sheet tem ­
perature equationJor various n indicated. "Robin" nifers to 
the plug flow solution due to Robin (1955). 
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where, corresponds to the EISMINT Benchmark fJ a nd 
, H represents th e melting-point depression caused by a n 
overburden pressure corresponding to ice thickness H. In 
those experiments, , was set to be 8.7 X 1O- 4K m I, which is 
the appropriate value for air-saturated ice (Paterson, 1994, 
p. 212). The homologous temperature is more commonl y 
dcfined a 

(23) 

where eAl is the melting point at standa rd temperature a nd 
pressure, and the definiti on used in the EISMINT Bench­
m a rk Level! is only a pproximately consistent with thi s defi­
nition when eH ;:::j 1, i. e. near the melting point. Indeed , the 
EISMINT Benchm a rk definiti on can lead to negative a bso­
lute temperature, a nd if onc wants to avoid this problem a nd 
also defin e the homologous temperature in K, a consistent 
definition is 

e
F 

= (eA! -,H)e 
eAl 

= (eeM - e, H) = e _ e, H 
e

Al 
e

Al 
. 

(24) 

It is not clear tha t a ll the modellers were using the same 
definiti on of the hom ologous tempera ture, which a t a tem­
pera ture of around 264 K would lead to an error of 0.11 K. 
The results of these va rious correc tions applied to the a na­
ly tical solution are shown in Table I. The a nalytica l solution 
is acc urate to at least two decimal places. One should com­
pare the column headed EISMINT Benchmark to the ana­
lytica l solution headed corrected ana ly tic I as these should 
have had the same corrections applied. 

There is clearly some deviation between EISMINT 
Benchmark Level! a nd the analytical solutions. The accu­
racy achievable is a function of the g rid interval used in the 
vertical, something not reported in the EISMINT Bench­
mark Level I experiments. The accuracy achievable is illus­
trated here using two FD methods and one pseudo-sp ectra l 
method (Fornberg, 1996) which solve Equation (1). The FD 
methods have (i) a fi rs t-order upwinded difference opera tor 
a nd (ii ) a second-order central difference operator fo r the 
advective term, a nd second-order operators for the diffusive 
terms. The pseudo-spec tral method uses the weight-gene rat-

Table 1. Basal temperatures for EISMIN T Benchmark 
Level 1. Results are expressed in K - 273.15, which is roughly 
equivalent to QC 

OE, EISA11. VT OE,conecled 
Benchmark anarytic 1 

Fl 8.84 ± 1.04 - 7.72 
F 2 9.04±O.67 - 8.12 
Ml 13.43 ±0.75 - 12.62 

12 - 13.29 ± 0.48 - 12.+2 

0, uncorrected 
alla(vtic 

- 10.7 
11.03 

- 15.23 
- 14.99 

OF , correct ed 
analytic 2 

- 7.84 
- 8.24 
12.77 
12.56 

JVoles: Fand M refer to fi xed and moving margin experi ments, number to 
m odcltypes. Second column is the results from the EISMINT Benchm ark 
experiments, corrected for pressu re·mel ting (OEl. T hi rd colum n is the 
ana lytica l basal tem perature corrected as spec ifi ed in the the El SMlNT 
Benchmark Level 1 defi n itions (Oe). Fourth column is the unco rrec ted 
ana lytical result for the basa l temperature (1:1 ). Fi ft h column is the a na­
lytical basa l temperatu re corrected using the consistent defini t ion of 
homologous temperature (OF ). 
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ing a lgorithm desc ribed by Fornberg a nd uses "Chebyshev 
clustering", i.e. a g rid density specified by a Chebys hev fun c­
tion. It has spectra l acc uracy. Eleven points were used in 
each case. 

The results are shown in Figure 2. As expected, the pseudo­
spectral method shows \·ery high accuracy, while the second­
order FD method shows fair accuracy and gives a good esti­
mate of the basal temperature. The fi rst-order method is not 
of high acc uracy. Closer inspection of the results shows that 
errors in the first-order FD solution a re about onc-tenth of 
the temperature ra nge (23 K), while for the second-order 
so lution they a re about one-hundredth; these errors a re con­
sistent with er ror estimates for the FD methods and the g rid 
spacing of 6 ( = 0.1. Note that the temperature solution does 
not require node clustering at the base, as the curvature and 
hig her derivatives a re low; Taylor-expansion error a na lysis 
for FD mC' thods shows that errors a rc proportional to the 
higher derivatives. Such clustering might be needed for 
accurate integra tions of the velocity a nd flu x near the base, 
when there is thermomechanical coupling. Errors for the 
pseudo-spectra l method arc < 0.01 K . Inaccuracies in the 
EISMINT Benchma rk res ults, where decreased basal tem­
peratures compared with the a na ly tical solution a re re­
ported, cannot be due to the use of fi rst-order method s, as 
these lead to warmer basal tempera tures (Fig. 2); thi s is pre­
dictable, as first-o rder solutions increase numerical diffu­
sion, which dec reases the significance of advection a nd 
increases basal tem peratures. 

3500 

3000 
+ + FD O(.1S) 
x x FD O((.1S)2) 
* • PS 

Analytical 
2500 

E 
',;' 2000 + 
.S 
0; + 
~ 1500 
u.l + 

1000 

500 

0 
-35 - 30 -25 -20 -15 -10 

Temperature (CC) 

Fig. 2. flLustrating solutions to the ice -sheet temperature equa­
tioll and the anatytical solution. FD O(6 () and FD 
O[(6 ()2] areJirst- and second-order FD methods, PS is a 
pseudo -spectral method and "Anatytical" is the lI1~th od de­
m·ibed in this papel: Nlarked points correspond to solution 
nodes; the FD methods are on eventy spaced grids, while pseu­
do -spectral nodes exhibit "Clzebyshev clllstering'~ Pselldo ­
sjJPctral and anal)ltical solutions are coincident 011 tlte plot 
alld differ by < 0.01 K 

4. COMPUTATION OF VERTICAL VELOCITY 

-5 

It is li kel y that some of the reported error in the EISMINT 
Benchmark experiments a ri ses from the numerical compu­
tation of the vertica l velocity, which in the present paper has 
been computed a na lyticall y. Numerical models genera ll y 

H indmanh: Numerical computation cif tempemture in all ice sheet 

use som e possibl y ra ther disguised form of the integra ted 
continuity relati onship 

aw(() + VB" q(() = 0, (25) 
( ( ' 

q = H 2c 11 (1 - ("r d( " d(' , (26) 

to dete rm i ne the vertical velocity, using numerical integ ra­
ti on to approximate the integral defining q. 

As was recognised by Hutter and others (1986), there is 
never a ny need to perform an expensive do uble quadra ture 
as mig ht be suggested by Equation (26), as integration by 
pa rts ca n be used to turn the ex pression fo r q into a single 
integ ra l. For completeness, we treat the case where A de­
pend s upon (, and defin e a new quantity 

Cl = - 2(pg)" HnIV H i"- IV H. (2 7) 

Then, from Equation (14), wc see that 

( ( ' 

q/ H 2
c I = 11 A(l - ("r d(" d(, 

= 1 ( (( - (') A(l - ('t d(' , (28) 

where, in a n obvious no ta ti on, wc have integrated by pa rts 
uSll1g 

u = 1( A( l - (')" d(' , V = (. (29) 

For the present case, whcre A is consta nt, wc obtain 

q = H2c l C 
(( - (')(1 - ( ' )" d(', (30) 

and wc infer 

or 

w = -(n + 2) r( (( - (')(1 - ('r' d(' . 
.10 

(3 1) 

( (' 

w = -(n + 2) r r (1 - ("r d( " d(' . (32) 
.10 .10 

To investigate quadra ture error, we approxim ate these inte­
gra ls by th e Riemann sum s, with the same di screti satio n 
used in E xpression (20). "~Ye obtain 

1/1 

w((m) = -(n + 2) L.::((1I1 - (;-1/2)(1 - (; - 1/2)"((; - (i - I) 
i=2 

(33) 

and 
on 

w((m) = - (n + 2) Lli- t/ 2 ((; - (i-d, (34) 
i=2 

i 

I; = L.::(1 - (j - I/2)" ((j - (j - I) . (35 ) 
j=2 

For ten g rids (i. e. 11 po ints) the two numeri cal methods of 
eva lua tion (Equations (33) and (34)) gave identical answers, 
and the m ax imum absolute difference in the velocities 
betwee n the numerical integrati on a nd the analytical 
solution a t a ny point was < 1 % . Since the g rid spacing is 0.1, 
thi s erro r magnitude is consistent with the fac t that Riema nn 
sums a re second-order acc urate. Max imum relative error, 
where the difference be tween the two velociti es was norm a l­
ised by the velocity, was a round 5%, but thi s occurred at the 
first g riclpoint from the base, where vertical ve locity is sma ll 
(-0.023) a nd ad\'ection therefore does not contribute signifi-
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candy to heat transport. 10 put it another way, we might ex­
pect the relative error in points near the base to be higher, as 
a relatively coarser grid has been used in their computati on 
(onc gridpoint in thi s case). However, the sma ll velocity near 
the base mitigates this error. From these results, it seems un­
likely that error in the numerical integrati on of the vertical 
veloci! y led to the reported errors in the EISMINT Bench­
mark resul ts. 

Arc there any aspects of the problem which might tend 
to lead to programming error? Straightforward application 
ofjenssen's (1977) "0" transform (i.e. using a normali sed ver­
ti cal coordina te) of the heat equation with a computation of 
the vert ical velocity based on the continuity equa tion (A4) 
and the numerical intcg rations in Equation (33) or (34) 
leads to quite complicated formulae for the vertical heat 
transport (see Equation (A I5)), and it is conceivable that 
thi s has resulted in programming errors in previous work. 
In fact , combina tion of continuity equation a nd the 0 trans­
form allows cancellation of seve ra l term s; this has already 
been noted for plug fl ow by M acAyeal (1997) and Hulbe 
(1998). We present herc a relatively simple form of the advcc­
tion equation in norm alised coord inates which generalises 
the M acAyeal- Hulbe formula to include fl ow by internal 
deformation. 

Thc h eat-transport equ ation in normali sed coordinates 
can be written 

K, 828 
H 2 8(2' 

(36) 

where q S is the tota l flux through the thickness (i. e. 
qS(p) == q (p,( = 1). Its derivation is quite lengthy and is 
given in the Appendix. The M acAyeal- Hulbe formul a is 
obtained for the special case of plug flow, since for such a 
flow regime q = ( q S because hori zontal velocity is indepen­
delll of vertical elevation. Equation (36) has ad vantages for 
thermomechanically coupled flows, since th e general eflect 
of increased basal temperatures is to make fl ows more plug­
like, mea ning that the dominant term in the vertical heat 
transport is usually a(. Errors in computing the flu xcs by 
numerical integration should therefore be of less signifi­
cance in computing the vertica l heat transport. An alterna­
tive form of Equation (36) is 

88 . \7 8 _ \7 H . q + (8 H / 8t + m 88 _ ~ 828 
8t + U H H 8( - H 2 8(2 . 

(37) 

Equations (36) and (37) a lso lead to simple design of finite­
element schemes for computing the \'ertical heat transport 
(sce Hulbe (1998) for a di scuss ion of the difficulties). With the 
present formulation, flux divergence terms in the vertica l heat 
transport can be multiplied by a test function <p, and Green's 
theorem can then be applied to obtain weak fo rms like 

J 1 '" ( \7 H . q ' - \7 Tt . q 88 d d 
'f' H 8( x y 

11 (q' - q 88 
= - \7 H <p . H 8( dx dy 

l' A- ( q S - q 88 dr 
+ j 'f' H 11 8( , (38) 

where the areal integra ls a re over the element, n represents 
the outwa rd-pointing normal to the boundary of the ele­
ment, a nd the second term on the righthand side is the inte-
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g ral around the boundary r o[ the element. This expression 
obviates the need [or elements with special properties in the 
horizontal in order to allow computation of the vertical heat 
transport. The other terms in th e heat equation can be trea­
ted by the usua l m ethods (see M acAyea l, 1997; Hulbe, 1998). 

An important point about Equation (36) is that it natu­
rall y leads to con sistent computa tions of the tota l flux (used 
in the equation describing the evolution of the ice-sheet 
profi le) and the vertica l heat transport through the compu­
ta tion o[ the partial flux. Fina ll y, we show that o nly two 
quadratures a re n ecessary in the computation of the flu x di­
vergence for the ice-sheet profile and the heat-transport 
equation. From Express ions (10), (27) and (28) we can see 
that 

8u ()" 8(=Hc1A1-( , 

U = Hc1l ( A(l- (')"' d(', 

q = H 2c1 r( A(( - (')(1 - (')" d(' 
.10 

= H(u - H 2c1 fo C, A(' (1 - (')" del 

(39) 

( 40) 

(41) 

(42) 

\lVe approximate these integrals by the Riemann ums, with 
the same di scre tisation used in Expression (20). The integral 
in Equation (40) can be computed by the Ri emann sum 

rn 

u((m) = L Ai - 1/2(1 - (; - 1/2)"((; - C- tl, (43) 
i=2 

while the second term on the righthand side of Equation 
(42) can be computed by the Ri emann sum 

l C, (' A(l - (,J" d( 

1ft 

= L Ai - 1/2(i- l/2(1 - (;-1/2)"((i - ( i - d· (44) 
;=2 

In these ex pressions Ai - 1/ 2 refers to A evaluated at the pOilll 
( i- 1/2' Obviously one performs the discreti sation such that 
the quadratures for successive ('" can be computed recur­
sively from the preceding value, e.g. 

u ((m) = U((m- l) + Am- 1/2 (1 - (111 - 1/2)" ((m - (m-I). 

(45) 

etc. 

5. DISCUSSION AND CONCLUSIONS 

A quadrature solution [or ice-sheet temperature equation [or 
flow by internal deformation, corresponding to Robin's 
(1955) solution for plug flow, has been found. This solution is 
of much higher acc uracy tha n the EISMINT Be nchmark 
Level I seri es. Good acc uracy of numerical solutions can be 
obtained with central difference estimates of the tempera­
ture gradient, and very high accuracy can be obtained by 
u ing pseudo-sp ectra l method s. Overly fine disc retisations 
of the ver tical transport equation using higher-order 
schemes can lead to numerica l artefacts ( pecificall y, "wig­
g les" ) but thi s does not seem to be a problem for coarse grids. 

EISMIl T Benchmark I temperature resu lts do not 
seem to be as good as they shou ld be; the error is larger than 
one would expect. It is unlikely that numerical erro rs result­
ing from integrating the vertical velocity a re the cause of 
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this. It is remarked upon that the complicated expressio ns 
res ulting from eva lua tion of the \-ertical velocity and substi­
tution of this into the a tran. form can lead to program m i ng 
errors, and a simpler formu la for heat transport in a a coor­
dinate is presented. This formul a shows that only two quad­
ratures a re needed to compute the ice-sheet evolution a nd 
the heat transport. 

There is independent ev idence tha t the computed ice­
sheet geometries in the EISMINT Benchmark Le\TI I ,,,ere 
accurate, as codes which gave typica l results in these expe ri­
ments a lso gave good r es ults when compa red against a m a p­
plane a na lytica l solution for the ca e n = I (Hindm a rsh 
and Paynr, 1996). 
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APPENDIX 

DERIVATION OF THE HEAT-TRANSPORT 
EQUATION IN (J COORDINATES 

In thi s a ppendix wc deri ve Equation (36) for the heat-trans­
port equation inJenssen's (1977) " if' coordinate. This is a nor­
malised \'e rtica l coordina te which ranges from 0 to l. In thi s 
pap er wc denote the coordinate (, a nd defin e it 

(=z_ ~ (r , t ) 
H (r , t ), 

(AI ) 

where b is the base of the ice sheet, r is the hori zonta l coo r­
dina te a nd t is ti me. We der ive an expression for the vertica l 
velocity dz/dt in this coordinate system (Equati on (AI3)). 
The expression is then substituted into the transformed 

Hindmarslz: ,\1/1l1erical comjJutalion ojle17ljJeralll re in an ice sheel 

heat-tra nsp ort equation, a nd a simpler form of this equation 
is derived. This express ion is related to fo rms presented by 
~[acAyeal (1997) and Hulbe (1998), but is m ore genera l as 
it considers fl ow by intern a l deform ation in a simpler way, 

FollowingJ enssen (1977) we consider two coordinate sys­
tems, a phys ical system (r . z. t ) where r = (x, y) and a trans­
formed system (p, (, T) where p represents the horizonta l 
coordina tes. Time coordina tes a re represented by t and T , In 
this sec tion wc need to consider the difference bet\\'een iden­
ticall y va l ued functions of (p, () and (r, z) . Fu nctions of (r , z) 
arc indica ted by a ca ret. In p a rti cul ar, we will need to di stin­
guish be tween u (p.() a nd u (r .z). The op erators VII. VII' 
refer to horizontal gradients and diverge nces with respcc t to 
r at constant z, while VII , V H · refer to operations carried out 
with resp ect to p at constant (. \ Vc also dcfine a functi on Z 
such tha t 

(=Z( r.t ) 

In thi s development wc use 

[z - b(r . L) ] 

H(r. t) 
(A2 ) 

though m ore general [o rm s a re possible (Hindm arsh and 
HUller, 1988). 

The diffe renti al transfo rms a rc 

0] Df ( 8TH + oTbDf 
(A3a) 

ot OT H oC 

0] I 8f 
(A3b) 

oz H D(' 

VII ] = VHf -
( VHH + V(lb Df 

(A3c) 
H 8(' 

of of ( 8TH + oTbDf 
(A3d ) 

Dt Eh H DC 

of I 8f 
(A3c) 

oz H 8(' 

VH'f = VH'f -
( VHH + VHb 8f 

(A3f) 
H . DC 

where f a nd f represent scala r a nd \'ec tor field s. 
Consider the continuit y condition 

(A4) 

With bo unda ry conditi o n ,(j} = il l) , Vb + 8J; - rn thi s 
integra tes to 

" 1 n " d ' " b nb" !l b" • w = - VII ' U Z + u . v + U t - rn. 
. () 

(A5) 

Here, r1~ is the basalmclt ra te. Application of th e transfo rms 
in Equa tio n (A3) allows this to be \\'I·itten in (p,() cOOl·din­
ates as 

w = ,- H j;C Vu' ud(~ +~IIH . {C (D(ud(', 

I 2 

+ ~llb · l C OCU cl(~ + u b 
, Vb + oTb - m . (A6) 

573 https://doi.org/10.3189/S0022143000001441 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000001441


Jounzal tifGlaciology 

An integration by parts of term 2 yields 

which evaluates to 

where 

(A8) 

is the horizontal velocity averaged over the range [0, Cl. An 
integration of term 3 on the righthand side of Equation (A6) 
yields 

Substitution orEquations (A 7) and (A9) back into Equation 
(A6) a llows us to find 

w = - H l( \7H ' ud(' + ( \7HH· (u - u) 

+ u · \7 Hb + Orb - m. (A lO) 

Now, using Equation (AB) and the definition 

q(p,C) = H l( ud(', (All ) 

we see that 

- H lC \7H ' ud(' = Cu· \7HH - \7H' q (p,C) , (A12) 

and substitution of this expression into Equation (AIO) so as 
to eliminate the first term on the righthand side shows us 
that 

w = - \7H . q(p, () + Cu· \7HH 

+ u·\7Hb +orb -m. 
(A13) 

We emphasise that thi s vertical velocity is the physical 
velocity. We shall use thi s relati on to eliminate w in the 
tran formed heat-transport equation. 

The heat-transport equation in (r , z) coordinates is 

(A14) 

where D is the dissipative heating. Application of Equations 
(AI) a nd (A3) yields the well-known form 

ore + U· \7He 

[
w - (or H - Orb - u . (C\7I:JH + \7Hb)] oe 

+ H ~ 
/'i, 2 

= H20(e + D, (A15) 

and substitution of Equation (AI3) to eliminate w means we 
can write the heat-transport equation as 

Ore + u. \7He _ (m + \7H . q~, C) + (Ot H ) oC, e 

K 2 
= H20(e+ D. (A16) 

This form is useful, and another useful form can be obtained 
from the continuity equation 

(A17) 

and using this to eliminate OtH in Equation (AI6) to obtain 

Ore + u . \7He 

(\7 H . q S - 'VH . q - Ca - (1 - C)m 
+ H ~e (A18) 

K, 2 
= H 2o( e + D. 

For plug fl ow thi s simplifies further to produce 

Ore + U· \7He _ [Ca + (~- C)mloc,e 

/'i, 2 
= H 2°C,e+ D, 

(A19) 

which is the correct form for ice shelves and ice streams 
(MacAyeal, 1997). One can also deduce immediately from 
Equation (AI6) that in steady state 

\7 e [m + \7B . q(p, ()lo e 
U · H - H c, 

K ? 
= H20r,e + D. 

(A20) 

A further assumption of prox imity to the centre of the ice 
sheet, which implies small horizontal advection and dissipa­
tion, combined with an assumption of no basal melting, 
yields 

(A21 ) 

The same set of ass umptions, together with an assumption 
ora stationa ry bed applied to Equation (AI3), yields 

W= -\7H · q (p,() , (A22) 

and substitution of thi s into Equation (A21) and use of the 
definition w == w / a gives us the equation 

-W(C)Oc,e + (3o~e = o. (A23) 

Note that the analysis in this section is purely kinematical 
and independent of the mecha nical model used . 
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