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On the numerical computation of temperature in an ice sheet
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ABSTRACT. Quadrature solutions for temperature fields in the central regions of ice
sheets where flow is by internal deformation are presented and compared with numerical
computations and the European Ice Sheet Modelling Initiative (EISMIN'T) Benchmark
standards. T'he solution appears to be more accurate than the EISMINT Benchmark stan-
dards for thermomechanically uncoupled temperature distributions. The ability of finite-
difference and pseudo-spectral methods to reproduce this solution is considered.

Errors in the EISMINT Benchmark are larger than expected. The possibility that
they could arise from inaccurate evaluation of the vertical velocity is considered, and
found to be unlikely. Formulae for computing the vertical velocity in Jenssen’s o coordi-
nate are complicated and may lead to programming errors. A simple form of the heat-
transport equation in the o coordinate for flow by sliding and internal deformation is de-
rived and ])t‘cst‘nlt’(l. and it 1s shown how this form is particularly suitable for finite-
element computations. It is also shown that only two quadratures are necessary to com-
pute the vertical and horizontal heat transport and the ice flux.

1. INTRODUCTION

intervals can reproduce this solution to the expected 1% ac-
curacy, as compared with the 5% accuracy of the mean
value of the EISMINT Benchmark experiment.

The recent European Ice Sheet Modelling Initiative e 5 i : :
I'wo other sources of error are investigated: the numeri-

(EISMINT) Benchmark series of ice-sheet modelling inter-
comparisons has provided an invaluable set of tests for com-
paring and validating ice-sheet models in ranges of parameter
space where no analytical solutions exist (Huybrechts and
others, 1996). While the analytical solution for temperature

cal integration required to compute the vertical velocity, and
programming error. Firstly, it seems that the error in the
EISMINT Benchmark Level 1 1s too large to be explicable
by integration error associated with the computation of the
vertical velocity. Secondly, when directly transformed into

has long been known (Robin, 1935) in regions where horizon- . . ; = e ]
the terrain-following coordinate (Jenssen’s (1977) o coordi-

tal flow can be neglected in the heat equation and where ver-

; v ; ; : . nate) usually used in glaciology, the heat-transport equation
tical velocity is proportional to elevation as in a plug flow, it ¢ = i

becomes extremely complicated in the sense that it contains

has not been generally appreciated that accurate solutions : s
a large number of terms. However, many of these terms can

only requiring a quadrature exist for flow by internal deform- ; .
be shown to cancel, and a much simpler form of the heat

equation thereby derived. This form, a development of work
(1997) and Hulbe (1998), lends itself naturally
to consistent definition of flux and vertical heat transport,
and also means that the computation of the heat transport
and ice continuity requires only two quadratures,

ation, for both linear and non-linear rheologies, although
much of the relevant theory already exists (Zotikov, 1986). As
with the Robin solution, one needs to solve a second-order
boundary value problem, and a first integral is readily
obtained analytically. The solution can then be obtained by a

by MacAyeal (

quadrature, which plays the same role as the error function in
the Robin solution.

If the ice-sheet thickness and upper surface vertical
velocity are known, then this quadrature solution can be
applied, which has the consequence that the EISMINT
Benchmark Level | temperature calculations, which are not
coupled to the ice-sheet rheology, can be compared with this

2. THEORY

The steady-state diffusion advection equation for an ice

T : T sheet near its centre, where horizontal advection and dissi-
solution n areas where horizontal flows are negligible (e.g. . ; -

the central areas ol ice sheets). Results from these areas have
been reported (Huybrechts and others, 1996) and are com-
pared here with the analytical solution. This brings us to the 920 o6

main point of this paper: the mean EISMINT Benchmark Bz 3C2 w(C) 5~ ac =0, (1)
results are not particularly accurate, and if one were to seek

to validate one’s model by obtaining the mean EISMINT

pation can be neglected, is given by

Benchmark wvalue, this would be possible only by using
rather inaccurate linite-difference (FD) approximations.
The solution presented in this paper is more accurate and it
is also shown that second-order schemes with ten FD grid
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where 3 = r/Ha, H is the thickness of the ice, a is the accu-
mulation rate, # is the thermal diffusivity of ice, # is the tem-
perature, ¢
the vertical velocity w normalised by the accumulation rate

= z/H, zis the elevation above the bed, and w is
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such that w(¢ = 1) = —1 (see Equation (A23)). This relation
has a first integral (Zotikov, 1986, section 4.1)
a6 o0
8( ¢

C
W(e) = / w(¢)d¢, 3)

== exp[W(()/A], (2)

where superscript b stands for evaluation at the base, We can
thus write the formal solution

00" ¢ ' ;
90— = (07 /U exp[W(¢)/A) d¢’. (4)

In the thermally uncoupled case, w is simply a function of ¢
and the computation of this solution is therefore just a quad-
rature, i.¢. a numerical integration involving ¢ only and not
6. The upper surface boundary condition can be inserted by
evaluating the quadrature at the upper surface ¢ = 1 and
eliminating #”. For plug flow, where the horizontal velocity
is independent of {, w(¢) = —(, and we readily obtain

aﬂb ue - ;
6—6 = W/ exp [— ¢ )”/2,()’] d¢
0

?imedyw_)

which is the Robin solution.
For flow by internal deformation, we proceed as follows.

We need to demonstrate that we have suflicient information
from the EISMINT Benchmark ice-sheet geometries and
forcing functions to solve the temperature equation where
horizontal velocities are negligible. A crucial point to under-
stand is that small horizontal velocities do not imply small
horizontal gradients of horizontal velocity, which must be
large enough to balance the accumulation.

It is shown in the Appendix (Equation (A22)) that the
vertical velocity w near the centre of an ice sheet is given by

w = aw(() = — Vi - q(¢), (6)

where

aQ)=H ] “ude )

is the integral horizontal flux of'ice for the interval 0 to ¢ and
u is the horizontal velocity. We term this the partial flux, to
distinguish it from the quantity q*(¢) = H [, wd(’, gener-
ally known in glaciology as the flux. The horizontal diver-
gence operator V- is taken along surfaces of constant (.
Implicitly, the velocity, partial flux and flux are all functions
of a horizontal vector coordinate p, over which the diver-
gence is taken, but we do not show this explicitly in the fol-
lowing derivation, where we are interested in the vertical
variation of u and q.

Since
Va-q'=a (8)
we can also write
) Vi - q(¢)
gl = (9)

Vu-q
We now need to evaluate the partial MuxVy; - q(¢), and in par-
ticular we need to be able to show that if we know Vi - g we
can thereby compute Vi - q(¢). This is possible under the
shallow-ice approximation (Hutter, 1983). Firstly, we need to
show how to compute u near the ice-sheet centre in order to
compute its horizontal divergence, which is not small, even
though u is small. For thermally uncoupled flow we use the
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Glen rheology together with the shallow-ice approximation
to obtain the shear relation

T~ Tae = — Al — 2\ v H
=c(1 —()", (10)
where
c= —2A(pg)"H"|VH|"'VH, (11)

A is a rate factor, p is the density of ice, g is the acceleration
due to gravity and we are using the reduced constitutive re-
lationship
du;
dz

=9 s, =1, (12)

1€ (2:) (13)

With these assumptions we have, in common with the
EISMINT Benchmark Level 1, specifically excluded the
divide of an ice sheet, where there is a different mechanical
zone (Raymond, 1983).

Now, using Equation (10) and the definition of the partial
flux (Equation (7)) we can cumpulc

w-are [

[ )" 4+ (n+2)¢ - 1}
=H- (n+2)(n+1)

which means that at the upper surface ¢ = 1,

o -I.' n [C” .IC

Vi-q' = Vy-(cH?) (n—er) B (15)
We can use Equations (6) and (14) to write
) [(1 — PRy O~ 1}
aw(C) + Vg - (cH) vy =il
(16)
and since [rom Equation (15) we know that
Vi (eH?) = (n+2)a (17)
we can substitute this into Equation (16) to arrive at
(1= ¢+ (n+2)¢ -1
w(C) = — = (18)

(n+1)

This functional dependence has been derived previously
(Raymond, 1983). As a check it can be seen easily that this
gives the correct answer w(¢) = —( for plug-like shear flow
(1 — 20). These steps have eliminated our need to know the
rate factor; given a geometry obtained from the EISMINT
Benchmark experiments, the accumulation rate and the
geothermal heat gradient, we have all the information
needed to solve the heat equation (1).

In order to compute the solution for the temperature
from the formal solution (Equation (4)), we nced to inte-
grate w((), and obtain

] - (1 - C)H+.’i B
(n+3)(n+1)

This can be substituted into the formal solution (Equation

C(n/24+1)-1

ik =~ (n+1)

(19)

(4)) and the vertical velocity computed by a quadrature.

In the applications below, Riemann sums (a second-
order divide the interval
[0, ¢n] into e — 1 grids, not necessarily of equal size, with

569

method) have been used. We
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nodal points numbered ¢ = (1, 9m). Then, the quadrature is

defined by

rCm
Lewwwwmw

A ZEXD(W{Q—l/z}/ﬂ)(G — 1) (20)

Giz1/2 E%{Q 5. (21)

Since we are dealing with summations, numerical problems
arising from finite word lengths are less acute than in differ-
ence solutions, meaning that fine grids, leading to very
accurate evaluations, are in principle possible. In contrast,
in difference solutions of the original equations, overly fine
grids lead to the subtraction of very similar values of the tem-

perature, and a concomitant loss of accuracy as a result of

finite word lengths. In the applications below we specify m
=1001, which implies a relative error of 10 b for a second-
order method.

3. THE EISMINT BENCHMARK TEMPERATURE
CALCULATION

The properties of the advection—diffusion equation for
internal deformation are well known and we simply present
some examples of the solutions. We take the EISMIN'T Bench-
mark Level | parameters n = 3, a = (0.3ma and consider
the thickness computed by the fixed-margin type-1*3d” models
(Huybrechts and others, 1996, table 2), where the mean thick-
ness is H = 3419.9 m. The geothermal heat flux is 0.042 W m’
and the thermal conductivity of ice is 21Wm 'K ', which
gives a basal temperature gradient of 0.02 K m . The upper
surface temperature is —34.15 K. Figure | presents solutions
for n € {1,3,5,10,30,00}; the last case corresponds to the
case where the shear layer is infinitesimally thick, indistin-
guishable from a plug flow, and the temperature is thus de-
scribed by the Robin solution.

The EISMINT Benchmark Level 1 temperatures are
presented in what is termed a “homologous temperature”
fr, which in Robin (1955) is defined as

By =~y (22)
3500 : 1 ; : .
3000r' n= 3 =
----- n=35
RO Dchistoms P e xiepe st e e faambish | 1B ]
£ n=30
g 200r Robin 1
=
& 1500} 1
[84]
1000 1
500} -
9 ; . AR s
35 -30 25 -20 -15 -10 5

Temperature (°C)

Fig. I Illustrating analytical solutions lo the ice-sheet tem-
perature equation for various . indicated. “Robin” refers (o
the plug-flow solution due to Robin (1953).

£
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where ~ corresponds to the EISMINT Benchmark /3 and
~H represents the melting-point depression caused by an
overburden pressure corresponding to ice thickness H. In
those experiments, v was set to be 8.7 x 10 *Km !, which is
the appropriate value for air-saturated ice (Paterson, 1994,
p-212). The homologous temperature is more commonly
defined as

T 0
SOy —H’
where ) is the melting point at standard temperature and
pressure, and the definition used in the EISMINT Bench-
mark Level 1is only approximately consistent with this defi-
nition when 0y 2= 1, i.e. near the melting point. Indeed, the
EISMINT Benchmark definition can lead to negative abso-
lute lémperalm‘e, and if one wants to avoid this problem and
also define the homologous temperature in K, a consistent
definition is

O (23)

o, — (O — vH)6
p—
: 24
00y —tvH) _, 6o -
O O

It is not clear that all the modellers were using the same
definition of the homologous temperature, which at a tem-
perature of around 264 K would lead to an error of 0.11 K,
The results of these various corrections applied to the ana-
lytical solution are shown inTable 1. The analytical solution
is accurate to at least two decimal places. One should com-
pare the column headed EISMINT Benchmark to the ana-
lytical solution headed corrected analytic | as these should
have had the same corrections applied.

There is clearly some deviation between EISMINT
Benchmark Level 1 and the analytical solutions. The accu-
racy achievable is a function of the grid interval used in the
vertical, something not reported in the EISMINT Bench-
mark Level 1 experiments. The accuracy achievable is illus-
trated here using two FD methods and one pseudo-spectral
method (Fornberg, 1996) which solve Equation (1). The FD
methods have (i) a first-order upwinded difference operator
and (ii) a second-order central difference operator for the
advective term, and second-order operators for the diffusive
terms. The pseudo-spectral method uses the weight-generat-

Table 1. Basal temperatures for EISMINT Benchmark
Level 1. Results are expressed in K — 275.15, which ts roughly
equivalent lo °C

Op, EISMINT 0Og, corrected 0, uncorvected O, corrected

Benchmark analytic | analylic analytic 2
Fl 8.84 £1.04 —112 10.7 ~7.84
7 9.04 £ 067 -8.12 11.03 8.24
Mi 1343 £075 12,62 -15.23 =12.77
M2 1329+ 048 —1242 14.99 12.56

Nutes: Fand M refer to fixed and moving margin experiments, number to
maodel types. Second column is the results from the EISMINT Benchmark
experiments, corrected for pressure-melting (#g). Third column is the
analytical basal temperature corrected as specified in the the EISMINT
Benchmark Level | definitions (#z). Fourth column is the uncorrected
analytical result for the basal temperature (@ ). Fifth column is the ana-
lytical basal temperature corrected using the consistent definition of
homologous temperature (64).
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ing algorithm described by Fornberg and uses “Chebyshev
clustering™ i.e. a grid density specified by a Chebyshev func-
tion. It has spectral accuracy. Eleven points were used in
each case.

The results are shown in Figure 2. As expected, the pseudo-
spectral method shows very high accuracy, while the second-
order FD method shows fair accuracy and gives a good esti-
mate of the basal temperature. The first-order method is not
of high accuracy. Closer inspection of the results shows that
errors in the first-order FD solution are about one-tenth of
the temperature range (23 K), while for the second-order
solution they are about one-hundredth; these errors are con-
sistent with error estimates for the FID methods and the grid
spacing of A; = 0.1. Note that the temperature solution does
not require node clustering at the base, as the curvature and
higher derivatives are low; Taylor-expansion error analysis
for FD methods shows that errors are proportional to the
higher derivatives. Such clustering might be needed for
accurate integrations of the velocity and flux near the base,
when there is thermomechanical coupling. Errors for the
pseudo-spectral method are <0.01 K. Inaccuracies in the
EISMINT Benchmark results, where decreased basal tem-
peratures compared with the analytical solution are re-
ported, cannot be due (o the use of first-order methods, as
these lead to warmer basal temperatures (Fig. 2); this is pre-
dictable, as first-order solutions increase numerical diffu-
sion, which decreases the significance of advection and
increases basal temperatures.

3500 . : T T T
2 +  FD O(AY)
3000} * x FEDOWALY |
* #* PS
— Analytical
2500 d
£l
= 2000 _
S
s
5 1500
(53]
1000
500 :
0 L I » i +
=35 =30 =25 =20 =15 -10 -5

Temperature (°C)

Fig. 2. lllustrating solutions to the ice~sheet temperature equa-
tion rum' the analytical solution. FD O(A() and FD
O[(AQ) ] are first- and second-order FD mm‘/mn'u PSisa
pseudo-spectral method and “Analytical” is the method de-
scribed in this paper. Marked points corvespond to solution
nodes; the FD methods are on evenly spaced grids, while pseu-
do-spectral nodes exhibit “Chebyshev clustering” Pseudo-
spectral and analytical solutions are coincident on the plot
and differ by < 0.01 K.

4. COMPUTATION OF VERTICALVELOCITY

It is likely that some of the reported error in the EISMIN'T
Benchmark experiments arises from the numerical compu-
tation of the vertical velocity, which in the present paper has
been computed analytically. Numerical models generally
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use some possibly rather disguised form of the integrated
continuity relationship

aw(C) + Vi - =(0);

qH‘M

to determine the vertical velocity, using numerical integra-

(25)

¢)'dgrag,  (26)

tion to approximate the integral defining q.

As was recognised by Hutter and others (1986), there is
never any need to perform an expensive double quadrature
as might be suggested by Equation (26), as integration by
parts can be used to turn the expression for q into a single
integral. For completeness, we treat the case where A de-
pends upon ¢ and define a new quantity

e, = —2(pg)"H"|VH|" 'V H.

Then, from Equation (14), we see that

e = [ [ an-craca

= f (¢ - ¢)A(1

where, in an obvious notation, we have integrated by parts
using

(27)

— )" dd, (28)

v-[An-¢ra, v=c (o)
TFor the present case, where A is constant, we obtain
q=H L C(c —£)0 — )" 8 (30)
and we infer '
~n+2) [c-eia-¢yag, @
or .
(n+2) / f )" d¢”d¢’. (32)

1o investigate quadrature error, we approximate these inte-
grals by the Riemann sums, with the same discretisation
used in Expression (20). We ohtain

m

w(Cn) = _(H.+2)Z(Cm = C,‘_j_/g}([ - C"-I/Z)”(C, e
(33)
and
w(Gn) = —(n+ 2)2[1_1/2((;,- - Gi1), (34)
i=2
L= (1=Gap)"(G—G-1). (35)

=2
For ten grids (i.c. 11 points) the two numerical methods of
evaluation (Equations (33) and (34)) gave identical answers,
and the maximum absolute difference in the velocities
between the numerical integration and the analytical
solution at any point was <1%. Since the grid spacing is 0.1,
this error magnitude is consistent with the fact that Riemann
sums are second-order accurate. Maximum relative error,
where the difference between the two velocities was normal-
ised by the velocity, was around 5%, but this occurred at the
first gridpoint from the base, where vertical velocity is small
(-0.023) and advection therefore does not contribute signifi-

571
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cantly to heat transport. To put it another way, we might ex-
pect the relative error in points near the base to be higher, as
a relatively coarser grid has been used in their computation
(one gridpoint in this case). However, the small velocity near
the base mitigates this error. From these results, it seems un-
likely that error in the numerical integration of the vertical
velocity led to the reported errors in the EISMINT Bench-
mark results.

Are there any aspects of the problem which might tend
to lead to programming error? Straightforward application
of Jenssen’s (1977) “¢” transform (i.e. using a normalised ver-

tical coordinate) of the heat equation with a computation of

the vertical velocity based on the continuity equation (A4)
and the numerical integrations in Equation (33) or (34)
leads to quite complicated formulae for the vertical heat
transport (see Equation (AlD)), and it is conceivable that
this has resulted in programming errors in previous work.
In fact, combination of continuity equation and the o trans-
form allows cancellation of several terms; this has already
heen noted for plug flow by MacAyeal (1997) and Hulbe
(1998). We present here a relatively simple form of the advee-
tion equation in normalised coordinates which generalises
the MacAyeal-Hulbe formula to include flow by internal
deformation.

The heat-transport equation in normalised coordinates
can be written

a0 (Vi —Vu-q-a—m(1—C)ad
f)t.+u Vil + i ac
K 920 o

where q° is the total flux through the thickness (i.e.
q’(p) = q(p, ¢ = 1). Its derivation is quite lengthy and is
given in the Appendix. The MacAyeal-Hulbe formula is
obtained for the special case of plug flow, since for such a
flow regime q = (q" hecause horizontal velocity is indepen-
dent of vertical elevation. Equation (36) has advantages for
thermomechanically coupled flows, since the general effect
of increased basal temperatures is to make flows more plug-
like, meaning that the dominant term in the vertical heat
transport is usually a{. Errors in computing the fluxes by
numerical integration should therefore be of less signifi-
cance in computing the vertical heat transport. An alterna-
tive form of Equation (36) is

a0 Vi-q+ (OH/0t+ mdb
c)t+u Vyt i aC

K 0°0

a2 ()C i
(37)
Equations (36) and (37) also lead to simple design of finite-
element schemes for computing the vertical heat transport
(see Hulbe (1998) for a discussion of the difficulties). With the
present formulation, flux divergence terms in the vertical heat

transport can be multiplied by a test function ¢, and Green’s
theorem can then be applied to obtain weak forms like

" [ . ¢Vu-9° —Vi-qf
[ [ ?cd "

on
f/Vmb e OC dx dy

L o8
+¢ oL 94 ar,
H ¢
where the areal integrals are over the element, n represents
the outward-pointing normal to the boundary of the ele-
ment, and the second term on the righthand side is the inte-

(38)
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gral around the boundary I of the element. This expression
obviates the need for elements with special properties in the
horizontal in order to allow computation of the vertical heat
transport. The other terms in the heat equation can be trea-
ted by the usual methods (see MacAyeal, 1997; Hulbe, 1998).

An important point about Equation (36) is that it natu-
rally leads to consistent computations of the total flux (used
in the equation describing the evolution of the ice-sheet
profile) and the vertical heat transport through the compu-
tation of the partial flux. Finally, we show that only two
quadratures are necessary in the computation of the flux di-
vergence for the ice-sheet profile and the heat-transport
cquation. From Expressions (10), (27) and (28) we can see
that

du n
U—C:HCM(I—C) " (39)
u=He, f Al — T8, (40)
0

¥ L n
a=H A AC—¢)1—-¢Yd¢  (41)

&
=Hou—He, [ AC(1-()"dC. (42)
Jo
We approximate these integrals by the Riemann sums, with
the same discretisation used in Expression (20). The integral
in Equation (40) can be computed by the Riemann sum

m

Cm ZAi—l/? ]-_C.'—I/J)”(C-“_Cl—l)‘ (43)

while the second term on the righthand side of Equation
(42) can be computed by the Riemann sum

¢
/ CfA(l _Cr n
J0

m

= Z A ool — ¢ -1/2)”(Cﬁ —Gi-1).  (44)
=2

In these expressions A,‘_U‘g refers to A evaluated at the point
Gi—1/2. Obviously one performs the discretisation such that
the quadratures for successive (i can be computed recur-
sively from the preceding value, e.g.

(Cm) = U(Cm “|‘ Am ]/J(l - Cm—l/") ,(Cm. - Cm—l}-

(45)

ete.

5. DISCUSSION AND CONCLUSIONS

A quadrature solution for ice-sheet temperature equation for
flow by internal deformation, corresponding to Robin’s
(1955) solution for plug flow, has been found. This solution 18
of much higher accuracy than the EISMINT Benchmark
Level 1 series. Good accuracy of numerical solutions can be
obtained with central difference estimates of the tempera-
ture gradient, and very high accuracy can be obtained by
using pseudo-spectral methods. Overly fine discretisations
of the vertical transport equation using higher-order
schemes can lead to numerical artefacts (specifically, “wig-
gles”) but this does not seem to be a problem for coarse grids.

EISMINT Benchmark 1 temperature results do not
seem to be as good as they should be; the error is larger than
one would expect. It is unlikely that numerical errors result-
ing from integrating the vertical velocity are the cause of
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this. It is remarked upon that the complicated expressions
resulting from evaluation of the vertical velocity and substi-
tution of this into the o transform can lead to programming
errors, and a simpler formula for heat transport in a & coor-
dinate is presented. This formula shows that only two quad-
ratures are needed to compute the ice-sheet evolution and
the heat transport,

There is independent evidence that the computed ice-
sheet geometries in the EISMINT Benchmark Level 1 were
accurate, as codes which gave typical results in these experi-
ments also gave good results when compared against a map-
plane analytical solution for the case n = 1 (Hindmarsh
and Payne, 1996).
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APPENDIX

DERIVATION OF THE HEAT-TRANSPORT
EQUATION IN ¢ COORDINATES

In this appendix we derive Equation (36) for the heat-trans-
port equation in Jenssen’s (1977) “o”coordinate. This is a nor-
malised vertical coordinate which ranges from 0 to 1. In this
paper we denote the coordinate ¢, and define it

(=z— M (A1)

H(r, 1),
where b is the base of the ice sheet, r is the horizontal coor-
dinate and ¢ is time. We derive an expression for the vertical
velocity dz/dt in this coordinate system (Equation (Al3)).
The expression is then substituted into the transformed
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heat-transport equation, and a simpler form of this equation
is derived. This expression is related to forms presented by
MacAyeal (1997) and Hulbe (1998), but is more general as
it considers flow by internal deformation in a simpler way,

Following Jenssen (1977) we consider two coordinate sys-
tems, a physical system (r, 2, ¢) where r = (. i) and a trans-
formed system (p,(,7) where p represents the horizontal
coordinates. Time coordinates are represented by £ and 7. In
this section we need to consider the difference between iden-
tically valued lunctions of (p, ¢) and (r, z). Functions of (r. z)
are indicated by a caret. In particular, we will need to distin-
guish between u(p, ¢) and 1u(r, z). The operators Vu. Vi
refer to horizontal gradients and divergences with respect to
r at constant z, while Vi, V- refer o operations carried out
with respect to p at constant ¢. We also define a function Z
such that

¢ =Z(r.t) :[“—;H’M (A2)

In this development we use

Pr =Tz, pPy=rty, T=1I,

though more general forms are possible (Hindmarsh and
Hutter, 1988).
The difterential transforms are

of _of CO-H+0:b0f

ot or H ac’ e
af 10f ,
Lo CVuH +Vybdf B
Vuf=Vuf - — " o (A3c)
of  of Co.H+0o.bof .
oo e —
ofF 108
e B A3e
9 HOC (Ase)
- -~ C(VuH + Vb Of ;
f=Vg-f—-—>— — . — A3f
Vg f=Vy i o (A3f)
where f and f represent scalar and vector fields.
Consider the continuity condition
Vi - @t + 8.0 = 0. (A4)

With boundary condition @’ =a"-Vb+ d,b—m this
integrates to

w= — / Vy-0dZ +a - Vb + 86 — 1. (A5)
Jo
Here, 11 1s the basal melt rate. Application of the transforms

in Equation (A3) allows this to be written in (p.¢) coordin-
ates as

o ¢
rr':—H/ v..-udc’+VHH-/ (deudd
0 J)

1 2
¢
+ Vb - [ dud¢ +u’-Vb+ 9.b — m. (AG)
J0
SRS
3
573
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An integration by parts of term 2 yields

¢ . ¢
VHH-/ CBCudC’ = V[]H' (|Cu|a —f udc').,
0 0
which evaluates to
¢
Vall - [ Qud¢ =Vui-(a—wC, (A7)
0
where
s
o= j ud¢'/¢ (A8)
0
is the horizontal velocity averaged over the range [0,¢]. An
integration of term 3 on the righthand side of Equation (A6)
yields

AL
Vb - j dud¢ =Vgb- (u—u’).  (A9)
0

Substitution of Equations (A7) and (A9) back into Equation
(A6) allows us to find

¢
w:—H[ Vi -udl +(VyH - (u—1u)
Jo

+u-Vgb+ 3-,—b = {A].O)
Now, using Equation (A8) and the definition
&
a(p.0) = [ e, (A11)
0

we sce that

49

—H/ Vu-ud¢ =¢0-VaH —Vu-q(p.¢), (Al2)
0

and substitution of this expression into Equation (Al0) so as

to eliminate the first term on the righthand side shows us

that

w=-Vg-q(p,{)+¢u-VgH

! (A13)
+u-Vyb+ 3,0 —m.

We emphasise that this vertical velocity is the physical
velocity. We shall use this relation to eliminate w in the
transformed heat-transport equation.

The heat-transport equation in (r, z) coordinates is
8,0+ - Vi + 0.0 = k0 + D, (A14)

where D is the dissipative heating, Application of Equations
(Al) and (A3) vields the well-known form

(?1'9 + e VHB
w— (0. H — 8;b—u-((VygH + Vgb)] 96
H a
K
= m839+]3. (A15)

and substitution of Equation (Al3) to eliminate w means we
can write the heat-transport equation as

(m+Vnu-a(p, () + (0 H)

31-9+u-VH9— 7

0.0

:%a‘gw D. (A16)

This form is useful, and another useful form can be obtained
from the continuity equation

OH+Vy-g°=a—m (A17)

and using this to eliminate d;H in Equation (Al6) to obtain

d-0+u- V“H

Ve-o —Va-q—Ca—(1—Om,
+C B g HC;I fa—{ C)mdc(ﬂ (A18)

K 9
= E}CG + D.
For plug flow this simplifies further to produce

_a+ (1 =()m]

8,0 +u- Vyb 9.6
. H (A19)
2
= ﬁacﬁ + Du

which is the correct form for ice shelves and ice streams
(MacAyeal, 1997). One can also deduce immediately from
Equation (Al6) that in steady state

[m + Vu - q(p,¢)] 5.0

L - VHQ— C
H (A20)

K
A further assumption of proximity to the centre of the ice
sheet, which implies small horizontal advection and dissipa-
tion, combined with an assumption of no basal melting,
yields
Vi -q(p, ;
V-0 56 1 poto = o. (A21)
a
The same set of assumptions, together with an assumption
of a stationary bed applied to Equation (Al3), yields

w=—-Vyq - -q(pg{), (A22)

and substitution of this into Equation (A2l) and use of the
definition w = w/a gives us the equation
—w(()8c0 + B0 = 0. (A23)

Note that the analysis in this section is purely kinematical
and independent of the mechanical model used.
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