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Abstract

An existence and uniqueness theorem for mild solutions of stochastic evolution equations is presented
and proved. The diffusion coefficient is handled in a unified way which allows a unified theorem to
be formulated for different cases, in particular, of multiplicative space–time white noise and trace-class
noise.
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1. Introduction

The theory of stochastic evolution equations, by which we mean essentially stochastic
partial differential equations (SPDEs) of the parabolic or hyperbolic types, shares all
of the complications of the corresponding theory for their deterministic counterparts
together with many more due to the nature of the noise, in particular its infinite
dimensionality. The literature contains many existence and uniqueness results for such
SPDEs; see, for example, Da Prato and Zabczyk [3, 4] and Prévot and Röckner [9] and
the papers cited therein.

In this note we consider SPDEs of the form

d X t = [AX t + F(X t )] dt + B(X t ) dWt , X0 = x0 (1.1)

on a Hilbert space H and where A is in general an unbounded linear operator (for
example A =1with Dirichlet boundary conditions), F and B are (possibly) nonlinear
functions and Wt is a cylindrical Wiener process. In particular, we consider the
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SPDE (1.1) in the mild integral equation form

X t = eAt x0 +

∫ t

0
eA(t−s)F(Xs) ds +

∫ t

0
eA(t−s)B(Xs) dWs, almost surely,

(1.2)
for t ∈ [0, T ]. A precise description of that equation and the assumptions that we use
are given in Section 2.

In this article we concentrate in particular on the diffusion coefficient. We assume
that B : H → L(U, D) is a strongly measurable mapping from H into the space of
bounded linear operators from U to D, where D is a (possibly) larger space than H .
In addition we assume eAt (D)⊂ H for every t > 0 and therefore eAt B(v) is a well-
defined linear operator from U to H for every v ∈ H , t > 0. Then, instead of Lipschitz
assumptions on B directly, we assume that the mapping v 7→ eAt B(v) satisfies a linear
growth bound and a global Lipschitz condition with respect to the Hilbert–Schmidt
norm for each t > 0 with the constants depending of a fractional power of t (see also
[4, Theorem 5.3.1]). This enables us to handle space–time white noise and trace-class
noise as well as additive and multiplicative noise in one setting. This is useful when,
for example, one investigates Taylor expansions and numerical approximations of the
solutions of such SPDEs [5, 6, 8].

This article is organized as follows. In the next section, we describe more exactly
the SPDE that we are considering and state the assumptions that we require on its
terms and coefficients and on the initial value. We state our existence and uniqueness
theorem and a second theorem on the regularity of solutions in the third section.
The proofs are given in the Section 5 after we give two examples which satisfy our
assumptions in Section 4, one with space–time white noise and one with trace-class
noise.

In conclusion, we note that we assume that the drift coefficient F satisfies a global
Lipschitz condition, but this is only a convenience which allows us to focus on the
noise terms here. Our results can be extended to more general drift coefficients such
as those satisfying a dissipativity condition as in [1, 2, 7].

2. Setting and assumptions

Fix T > 0 and let (�, F, P) be a probability space with a normal filtration
Ft , t ∈ [0, T ], see for example [3] for details. In addition, let (H, 〈 · , · 〉H ) and
(U, 〈 · , · 〉U ) be two separable R-Hilbert spaces with norms denoted by ‖ · ‖H and
‖ · ‖U , respectively. Moreover, let (D, ‖ · ‖D) be a separable R-Banach space with
H ⊂ D continuously and let L(U, D) be the R-Banach space of all bounded linear
operators from U to D.

We consider the SPDE (1.1) in the mild integral equation form (1.2) on H , where
Wt , t ∈ [0, T ], is a cylindrical Q-Wiener process on U with respect to Ft , t ∈ [0, T ]
for which the covariance operator Q = I is the identity on U (see [9]) and where the
objects A, F , B and x0 are specified through the following assumptions.
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ASSUMPTION 2.1 (Linear operator A). Let I be a finite or countable set. Moreover,
let (λi )i∈I be a family of positive real numbers with infi∈I λi > 0 and let (ei )i∈I be an
orthonormal basis of H . Then, suppose that the linear operator A : D(A)⊂ H → H
is given by

Av =
∑
i∈I
−λi 〈ei , v〉H ei

for all v ∈ D(A) with D(A)=
{
v ∈ H :

∑
i∈I |λi |

2
|〈ei , v〉H |

2 <∞
}
.

ASSUMPTION 2.2 (Drift F). The mapping F : H → H is globally Lipschitz
continuous with respect to ‖ · ‖H .

Let D((−A)r ), r ∈ R, denote the interpolation spaces of powers of the operator−A
(see, for example, [10]) and let ‖ · ‖HS denote the Hilbert–Schmidt norm for Hilbert–
Schmidt operators from U to H .

ASSUMPTION 2.3 (Diffusion B). Suppose that D ⊂ D((−A)−r ) continuously for
some r ≥ 0 and that B : H → L(U, D) is a strongly measurable mapping such that
eAt B(v) is a Hilbert–Schmidt operator from U to H and

‖eAt B(v)‖HS ≤ L(1+ ‖v‖H )t
(ε−1/2)

‖eAt (B(v)− B(w))‖HS ≤ L‖v − w‖H t (ε−1/2)

for all v, w ∈ H and t ∈ (0, T ], where L > 0 and ε > 0 are given constants.

By the assumed strong measurability we mean that the mappings

H → D, v 7→ B(v)u, v ∈ H

are B(H)/B(D)-measurable for every u ∈U . If B : H → L(U, D) is assumed to be
B(H)/B(L(U, D))-measurable, then in particular it is strongly measurable.

ASSUMPTION 2.4 (Initial value x0). Let p ∈ [2,∞) be given and suppose that
x0 :�→ H is a F0/B(H)-measurable mapping with E‖x0‖

p
H <∞.

3. Existence, uniqueness and regularity results

The main result of this article is that the SPDE (1.1) has a unique solution up to
modifications under the assumptions given in Section 2.

THEOREM 3.1. Let assumptions 2.1–2.4 be satisfied. Then, there is a unique
(up to modifications) predictable stochastic process X :�× [0, T ] → H with
sup0≤t≤T E‖X t‖

p
H <∞, where p ≥ 2 is given in Assumption 2.4, such that

P
[

X t = eAt x0 +

∫ t

0
eA(t−s)F(Xs) ds +

∫ t

0
eA(t−s)B(Xs) dWs

]
= 1 (3.1)

for all t ∈ [0, T ]. Furthermore, X is the unique mild solution of the SPDE (1.1) in this
sense.
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Note that the integrals in Equation (3.1) are well defined under the
Assumptions 2.1–2.4 (see the proof of Theorem 3.1). Finally, we also obtain the
following regularity property of the solution if further assumptions on eAt B( · ) are
satisfied.

THEOREM 3.2. Let Assumptions 2.1–2.4 be satisfied and let γ ∈ (0, 1) be such that
E‖(−A)γ x0‖

p
H <∞. Furthermore, suppose that (−A)γ eAt B(v) is a Hilbert–Schmidt

operator from U to H with

‖(−A)γ eAt B(v)‖HS ≤ L(1+ ‖v‖H )t
(ε−1/2)

for all v ∈ H and all t ∈ (0, T ] with constants L > 0 and ε > 0. Then, the unique
solution process X :�× [0, T ] → H of the SPDE (1.1) given by Theorem 3.1 satisfies
sup0≤t≤T E‖(−A)γ X t‖

p
H <∞.

4. Examples

As an example in which our assumptions hold, we consider the following situation.
Let O := (0, 1)d ⊂ Rd with d ∈ N and let H = L2(O, R) be the Hilbert space of all
square integrable functions from O to R, with scalar product and the norm

〈v, w〉H =

∫
O
v(x)w(x) dx, ‖v‖H =

(∫
O
v(x)2 dx

)1/2

for every v, w ∈ H . (In fact, H is the Hilbert space of equivalence classes of square
integrable functions, but for convenience we do not take care of this differentiation.)
We also define U := H . Moreover, let A = ϑ1 with ϑ > 0 be a constant times the
Laplacian with Dirichlet boundary conditions, so I = Nd and

ei (x)= 2d/2 sin(i1πx1) · · · sin(idπxd), λi = ϑπ
2(i2

1 + · · · + i2
d)

for all x = (x1, . . . , xd) ∈ O and all i = (i1, . . . , id) ∈ I . The operator A is then
given by

A f =
∑
i∈I
−λi 〈ei , f 〉H ei

for all f ∈ D(A) with

D(A)=

{
f ∈ H

∣∣∑
i∈I

λ2
i |〈ei , f 〉H |

2 <∞

}
.

Thus, Assumption 2.1 holds here.
Furthermore, let f, g : R→ R be two globally Lipschitz continuous functions,

that is,
|g(x)− g(y)| ≤ L|x − y|, | f (x)− f (y)| ≤ L|x − y|
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for all x, y ∈ R with a constant L > 0, and define

F : H → H, F(v)(x)= f (v(x)), x ∈ (0, 1)d (4.1)

and

G : H → H, G(v)(x)= g(v(x)), x ∈ (0, 1)d (4.2)

for all v ∈ H . Hence, F and G are also globally Lipschitz continuous functions on H ,
that is,

‖G(v)− G(w)‖H ≤ L‖v − w‖H , ‖F(v)− F(w)‖H ≤ L‖v − w‖H

for all v, w ∈ H , and Assumption 2.2 holds.
To discuss Assumption 2.3 we now consider separately the two cases of space–time

white noise and trace-class noise.

4.1. Space–time white noise. Let d = 1 and D = L1(0, 1). Then, we define B by

B : H → L(H, D), (B(v)(w))(x) := (G(v))(x) · w(x) (4.3)

for every x ∈ (0, 1) and v, w ∈ H . Indeed, B is well defined, since, by the Cauchy–
Schwarz inequality,

‖B(v)(w)‖D =

∫ 1

0
|G(v)(x) · w(x)| dx

≤

(∫ 1

0
|G(v)(x)|2 dx

)1/2(∫ 1

0
|w(x)|2 dx

)1/2

= ‖G(v)‖H · ‖w‖H

for all v, w ∈ H , so B(v) is indeed a bounded linear operator from H to D with the
property

‖B(v)‖L(H,D) ≤ ‖G(v)‖H

for all v ∈ H . In the same way, we obtain

‖B(v)− B(w)‖L(H,D) ≤ ‖G(v)− G(w)‖H ≤ L‖v − w‖H

for all v, w ∈ H , since G is globally Lipschitz continuous. Hence, B is also a globally
Lipschitz continuous function from H to L(H, D) and is, in particular, measurable.
Combining the definitions in (4.1)–(4.3), we obtain

B : H → L(H, D), (B(v)(w))(x) := g(v(x)) · w(x) ∀x ∈ (0, 1)
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and every v, w ∈ H . In the next step, let γ ≥ 0. Then, of course, (−A)γ eAt B(v) is a
bounded linear operator from H to H for every v ∈ H and t ∈ (0, T ]. Moreover,

‖(−A)γ eAt B(v)‖2HS =
∑
i∈I
‖(−A)γ eAt B(v)ei‖

2
H

=

∑
i∈I

∥∥∥∥(−A)γ eAt
(∑

j∈I
〈e j , B(v)ei 〉H e j

)∥∥∥∥2

H

=

∑
i∈I

∥∥∥∥∑
j∈I
(−A)γ eAt e j 〈e j , B(v)ei 〉H

∥∥∥∥2

H

=

∑
i∈I

∑
j∈I
((λ j )

2γ e−2λ j t |〈e j , B(v)ei 〉H |
2)

for all v ∈ H , t ∈ (0, T ]. Therefore, the definition of B yields

‖(−A)γ eAt B(v)‖2HS =
∑
i∈I

∑
j∈I
((λ j )

2γ e−2λ j t |〈ei , B(v)e j 〉H |
2)

=

∑
j∈I

(
(λ j )

2γ e−2λ j t
(∑

i∈I
|〈ei , B(v)e j 〉H |

2
))

=

∑
j∈I
((λ j )

2γ e−2λ j t‖B(v)e j‖
2
H )

for all v ∈ H and all t ∈ (0, T ]. Since |e j (x)| ≤
√

2 for every j ∈ I = N and
x ∈ (0, 1), we obtain

‖(−A)γ eAt B(v)‖HS ≤

(∑
j∈I
((λ j )

2γ e−2λ j t 2‖G(v)‖2H )
)1/2

=
√

2‖G(v)‖H‖(−A)γ eAt
‖HS

for all v ∈ H , t ∈ (0, T ]. Suppose now that γ ∈ [0, 1
4 ). Then, we obtain

‖(−A)γ eAt
‖

2
HS =

∞∑
j=1

(λ j )
2γ exp (−2λ j t)=

∞∑
j=1

(ϑ j2π2)2γ exp (−2ϑ j2π2t)

≤ ϑ2γπ4γ
(∫
∞

0
(x4γ
+ 1) exp

(
−

1
2
(2
√
ϑ tπx)2

)
dx

)
≤
ϑ2γπ4γ

2
√
ϑ tπ

(∫
∞

−∞

((
|x |

2
√
ϑ tπ

)4γ

+ 1
)

exp (−x2/2) dx

)
=
ϑ (2γ−

1
2 )π (4γ−1)

2
√

t

(∫
∞

−∞

(
|x |

2
√
ϑ tπ

)4γ

exp (−x2/2) dx +
√

2π
)
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for every t ∈ (0, T ]. Hence,

‖(−A)γ eAt
‖

2
HS ≤

ϑ (2γ−
1
2 )
√
π

√
2t

(
1
√

2π

∫
∞

−∞

(
|x |
√
ϑ t

)4γ

e−x2/2 dx + 1
)

=
ϑ (2γ−

1
2 )
√
π

√
2t

(
(ϑ t)−2γ
√

2π

∫
∞

−∞

|x |4γ e−x2/2 dx + 1
)

≤
ϑ (2γ−

1
2 )
√
π

√
2t

(
(ϑ t)−2γ
√

2π

∫
∞

−∞

(1+ x2)e−x2/2 dx + 1
)

=
ϑ (2γ−

1
2 )
√
π

√
2t

(2(ϑ t)−2γ
+ 1)≤

ϑ (2γ−
1
2 )
√

2π
√

t
((ϑ t)−2γ

+ 1)

=
√

2π(ϑ−
1
2 t (−

1
2−2γ )

+ ϑ (−
1
2+2γ )t−

1
2 )

≤

√
2π(1+ T 2γ )

min(ϑ, 1)
t (−

1
2−2γ )

which yields

‖(−A)γ eAt
‖HS ≤

(√√
2π
√

T + 2
min(ϑ, 1)

)
t−(

1
4+γ )

for every t ∈ (0, T ]. Hence, we obtain

‖(−A)γ eAt B(v)‖HS ≤

(
4(T + 1)
min(ϑ, 1)

)
‖G(v)‖H t−(

1
4+γ )

for every v ∈ H , t ∈ (0, T ] and γ ∈ [0, 1
4 ). In the same way, we can show that

‖(−A)γ eAt (B(v)− B(w))‖HS ≤

(
4(T + 1)
min(ϑ, 1)

)
‖G(v)− G(w)‖H t−(

1
4+γ )

for every v, w ∈ H , t ∈ (0, T ] and γ ∈ [0, 1
4 ). Thus, Assumption 2.3 holds. Finally, if

the initial value satisfies Assumption 2.4, then the SPDE

d X t (x)= [1X t (x)+ f (X t (x))] dt + g(X t (x)) dWt , X0(x)= x0(x), x ∈ (0, 1)

has a unique solution by Theorem 3.1 and if the initial value also satisfies

E‖(−A)γ x0‖
p <∞ with γ ∈ [0, 1

4 ) and p ∈ [2,∞),

then the solution has values in D((−A)γ ) almost surely in the sense of Theorem 3.2.
In particular, the equation with additive noise

d X t (x)= [1X t (x)+ f (X t (x))] dt + dWt , x ∈ (0, 1)

with g(y)≡ 1 and the stochastic heat equation with linear multiplicative noise

d X t (x)=1X t (x) dt + X t (x) dWt , x ∈ (0, 1)

with g(y)= y and f (y)= 0 for all y ∈ R both have unique solutions.
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4.2. Trace-class noise. Let d ∈ N, D = H and let ( fi )i∈I be another orthonormal
basis in H with the property that fi : Ō→ R are continuous functions, which satisfy

sup
i∈I

sup
x∈Ō
| fi (x)|<∞.

Moreover, let
√

Q : H → H be a bounded linear operator given by√
Qv =

∑
i∈I

αi fi 〈 fi , v〉H , v ∈ H

for real numbers (αi )i∈I satisfying
∑

i∈I α
2
i <∞. Then

√
Qv : Ō→ H is a

continuous mapping with

sup
x∈Ō
|(
√

Qv)(x)| ≤ c‖v‖H = c

√∫
O
|v(x)|2 dx

for every v ∈ H , where the constant c ∈ [0,∞) is given by

c =

((∑
i∈I

α2
i

)1/2(
sup
i∈I

sup
x∈Ō
| fi (x)|

))
= ‖

√
Q‖HS

(
sup
i∈I

sup
x∈Ō
| fi (x)|

)
.

Indeed, for v ∈ H , we obtain

sup
x∈Ō
|(
√

Qv)(x)| = sup
x∈Ō

∣∣∣∣∑
i∈I

αi fi (x)〈 fi , v〉H

∣∣∣∣
≤

∑
i∈I

(
|αi | · |〈 fi , v〉H | · sup

x∈Ō
| fi (x)|

)
≤

∑
i∈I

(|αi | · |〈 fi , v〉H |)
(

sup
i∈I

sup
x∈Ō
| fi (x)|

)
≤

(∑
i∈I

α2
i

)1/2(∑
i∈I

|〈 fi , v〉H |
2
)1/2(

sup
i∈I

sup
x∈Ō
| fi (x)|

)
≤

(∑
i∈I

α2
i

)1/2(
sup
i∈I

sup
x∈Ō
| fi (x)|

)
‖v‖H = c‖v‖H .

In the next step, we define B by

B : H → L(H, D), (B(v)(w))(x) := (G(v))(x) · (
√

Qw)(x) (4.4)
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for every x ∈ (0, 1)d and v, w ∈ H . Indeed, B is well defined, since

‖B(v)(w)‖D =

(∫
(0,1)d

|G(v)(x) · (
√

Qw)(x)|2 dx

)1/2

≤

(∫
(0,1)d

|G(v)(x)|2 dx

)1/2(
sup
x∈Ō
|(
√

Qw)(x)|
)

= ‖G(v)‖H

(
sup
x∈Ō
|(
√

Qw)(x)|
)
≤ c‖G(v)‖H‖w‖H

for all v, w ∈ H . Therefore, B(v) is a bounded linear operator from H to H = D with
the property

‖B(v)‖L(H,D) ≤ c‖G(v)‖H

for all v ∈ H . In the same way, we obtain

‖B(v)− B(w)‖L(H,D) ≤ c‖G(v)− G(w)‖H ≤ c L‖v − w‖H

for all v, w ∈ H , since G is globally Lipschitz continuous. Hence, B is also a globally
Lipschitz continuous function from H to L(H, H). Combining the definitions
in (4.1)–(4.2) and (4.4), we obtain that the operator B : H → L(H, D) is defined
by

(B(v)(w))(x) := g(v(x)) · (
√

Qw)(x) x ∈ (0, 1)d

for every v, w ∈ H . Let γ ∈ [0, 1). Hence, (−A)γ eAt B(v) is a linear bounded
operator from H to H and

‖(−A)γ eAt B(v)‖HS ≤ ‖(−A)γ eAt
‖L(H,H)‖B(v)‖HS ≤ t−γ ‖B(v)‖HS

= t−γ
(∑

i∈I
‖B(v)( fi )‖

2
H

)1/2

= t−γ
(∑

i∈I
α2

i

∥∥∥∥B(v)

(
fi

αi

)∥∥∥∥2

H

)1/2

≤ t−γ
(∑

i∈I
α2

i

)1/2(
sup
i∈I

∥∥∥∥B(v)

(
fi

αi

)∥∥∥∥
H

)

≤ t−γ
(∑

i∈I
α2

i

)1/2(
sup
i∈I
‖G(v)‖H

(
sup
x∈Ō

∣∣∣∣(√Q
fi

αi

)
(x)

∣∣∣∣))

= t−γ
(∑

i∈I
α2

i

)1/2

‖G(v)‖H

(
sup
i∈I

sup
x∈Ō
| fi (x)|

)
= c‖G(v)‖H t−γ

for every t > 0 and v ∈ H (see also [8, Remark 1]). In the same way, we obtain

‖(−A)γ eAt (B(v)− B(w))‖HS ≤ c‖G(v)− G(w)‖t−γ
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for every t > 0 and every v, w ∈ H . This yields that Assumption 2.3 is fulfilled.
Finally, if the initial value satisfies Assumption 2.4, then the SPDE

d X t (x)= [1X t (x)+ f (X t (x))] dt + g(X t (x))
√

Q dWt , X0(x)= x0(x)

with x ∈ (0, 1)d has a unique solution by Theorem 3.1 and if the initial value
also satisfies E‖(−A)γ x0‖

p
H <∞ with γ ∈ [0, 1

2 ), then the solution has values in
D((−A)γ ) almost surely in the sense of Theorem 3.2. In particular, the equation
with additive noise

d X t (x)= [1X t (x)+ f (X t (x))] dt +
√

Q dWt , x ∈ (0, 1)d

with g(y)≡ 1 and the stochastic heat equation with linear multiplicative noise

d X t (x)=1X t (x) dt + X t (x)
√

Q dWt , x ∈ (0, 1)d

with g(y)= y and f (y)= 0 for all y ∈ R both have unique solutions.

5. Proofs

Let (V, ‖ · ‖) be a normed vector space and denote the Lq -norm for q ∈ [1,∞) of
a F /B(V )-measurable mapping Z : �→ V by ‖Z‖Lq := (E‖Z‖q)1/q . We need the
following version of the Burkholder–Davis–Gundy inequality in infinite dimensions
(see [3, Lemma 7.7]).

LEMMA 5.1. Let X : [0, T ] ×�→ H S(U, H) be a predictable stochastic process
with E

∫ T
0 ‖Xs‖

2
HS ds <∞. Then, we obtain∥∥∥∥∫ t

0
Xs dWs

∥∥∥∥
Lq
≤ q

(∫ t

0
‖ ‖Xs‖H S‖

2
Lq ds

)1/2

for every t ∈ [0, T ] and every q ∈ [2,∞). Both sides could be infinite.

PROOF OF THEOREM 3.1. Let p ≥ 2 be given by Assumption 2.4. First, we introduce
the R-vector space V p of all equivalence classes of predictable stochastic processes
X :�× [0, T ] → H with sup0≤t≤T ‖X t‖L p <∞, where all stochastic processes that
are modifications of each other lie in one equivalence class. Then, we equip this space
with the norms ‖X‖µ := sup0≤t≤T eµt

‖X t‖L p for every X ∈ V p and every µ ∈ R.
Note that the pair (V p, ‖ · ‖µ) is a Banach space for every µ ∈ R.

Now, we consider the mapping φ : V p→ V p given by

(φX)t := eAt x0 +

∫ t

0
eA(t−s)F(Xs) ds +

∫ t

0
eA(t−s)B(Xs) dWs

for every t ∈ [0, T ] and X ∈ V p. First, we show that φ is well defined. Given t ∈ [0, T ]
and X ∈ V p, the mapping from [0, t] ×� to HS(U, H) (the space of Hilbert–Schmidt
operators from U to H ) defined by

(s, ω)→ eA(t−s)B(Xs(ω))
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for every s ∈ [0, t] and ω ∈� is a predictable stochastic process, since eAs is
continuous in L(D, H) for s ∈ (0, T ] and since B( · ) is strongly measurable by
Assumption 2.3. Hence,∥∥∥∥∫ t

0
eA(t−s)B(Xs) dWs

∥∥∥∥
L p
≤ p

(∫ t

0
‖ ‖eA(t−s)B(Xs)‖HS‖

2
L p ds

)1/2

≤ p

(∫ t

0
‖L(1+ ‖Xs‖H )(t − s)(ε−1/2)

‖
2
L p ds

)1/2

≤ Lp

(∫ t

0
(1+ ‖Xs‖L p )2(t − s)(2ε−1)ds

)1/2

due to Lemma 5.1 and Assumption 2.3 and, therefore, we obtain∥∥∥∥∫ t

0
eA(t−s)B(Xs) dWs

∥∥∥∥
L p
≤ Lp

(
1+ sup

0≤s≤T
‖Xs‖L p

)(∫ t

0
s(2ε−1) ds

)1/2

≤
Lp
√

2ε

(
1+ sup

0≤s≤T
‖Xs‖L p

)
tε <∞

for every t ∈ (0, T ]. By Lebesgue’s theorem one can show that
∫ t

0 eA(t−s)B(Xs) dWs
for t ∈ [0, T ] is mean square continuous and, therefore, it has a predictable version.
The calculation for the second integral in the definition of φ is similar and, hence, we
obtain that φ is well defined.

Now, we show that φ is a contraction with respect to ‖ · ‖µ for an appropriate
µ ∈ R. From Assumption 2.2,

‖F(v)− F(w)‖H ≤ K‖v − w‖H

for all v,w ∈ H with a constant K > 0. Hence, for X, Y ∈ V p and t ∈ [0, T ]we obtain

(φX)t − (φY )t =
∫ t

0
eA(t−s)(F(Xs)− F(Ys)) ds

+

∫ t

0
eA(t−s)(B(Xs)− B(Ys)) dWs almost surely,

from which it follows that

‖(φX)t − (φY )t‖L p ≤

∫ t

0
‖eA(t−s)(F(Xs)− F(Ys))‖L p ds

+

∥∥∥∥∫ t

0
eA(t−s)(B(Xs)− B(Ys)) dWs

∥∥∥∥
L p

≤ K
(

sup
0≤s≤T

‖eAs
‖L(H,H)

) ∫ t

0
‖Xs − Ys‖L p ds
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+ p

(∫ t

0
‖‖eA(t−s)(B(Xs)− B(Ys))‖HS‖

2
L p ds

)1/2

≤ K

(∫ t

0
e−µs ds

)
‖X − Y‖µ

+ p

(∫ t

0
‖L(t − s)(ε−1/2)

‖Xs − Ys‖H‖
2
L p ds

)1/2

for µ ∈ R by Lemma 5.1. This yields

eµt
‖(φX)t − (φY )t‖L p ≤ K

(∫ t

0
eµs ds

)
‖X − Y‖µ

+ Lp

(∫ t

0
(t − s)(2ε−1)e2µt

‖Xs − Ys‖
2
L p ds

)1/2

≤
K

µ
(eµt
− 1)‖X − Y‖µ

+ Lp

(∫ t

0
(t − s)(2ε−1)e2µ(t−s) ds

)1/2

‖X − Y‖µ

for every µ < 0, t ∈ (0, T ] and, hence,

‖φX − φY‖µ ≤
K

|µ|
‖X − Y‖µ + Lp

(∫ T

0
s(2ε−1)e2µs ds

)1/2

‖X − Y‖µ

≤

 K

|µ|
+ Lp

√∫ T

0
s(2ε−1)e2µs ds

 ‖X − Y‖µ

for every µ < 0.
Finally, for µ→−∞, we see that φ is a contraction with respect to ‖ · ‖µ, so

there is a unique element X ∈ V p with X = φX . This is the assertion that was to be
proved. 2

PROOF OF THEOREM 3.2. The solution process X satisfies

P
[

X t = eAt x0 +

∫ t

0
eA(t−s)F(Xs) ds +

∫ t

0
eA(t−s)B(Xs) dWs

]
= 1

for every t ∈ [0, T ].
First,

‖(−A)γ eAt x0‖L p = ‖eAt (−A)γ x0‖L p ≤ ‖(−A)γ x0‖L p <∞

for every t ∈ [0, T ], where p ≥ 2 is given in Assumption 2.4.
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Next, we obtain∥∥∥∥(−A)γ
∫ t

0
eA(t−s)F(Xs) ds

∥∥∥∥
L p
≤

∫ t

0
‖(−A)γ eA(t−s)F(Xs)‖L p ds

≤

∫ t

0
‖(−A)γ eA(t−s)

‖L(H,H)‖F(Xs)‖L p ds

≤

∫ t

0
(t − s)−γ K (1+ ‖Xs‖L p ) ds

for t ∈ [0, T ], where we used the fact that ‖F(v)‖H ≤ K (1+ ‖v‖H ) for all v ∈ H
with a constant K > 0. This yields∥∥∥∥(−A)γ

∫ t

0
eA(t−s)F(Xs) ds

∥∥∥∥
L p
≤ K

(
1+ sup

0≤s≤T
‖Xs‖L p

)(∫ t

0
s−γ ds

)
≤ K

(
1+ sup

0≤s≤T
‖Xs‖L p

) t (1−γ )

(1− γ )

≤
K (T + 1)
(1− γ )

(
1+ sup

0≤s≤T
‖Xs‖L p

)
<∞

for every t ∈ [0, T ]. Finally, we obtain∥∥∥∥(−A)γ
∫ t

0
eA(t−s)B(Xs) dWs

∥∥∥∥
L p
≤ p

(∫ t

0
‖‖(−A)γ eA(t−s)B(Xs)‖HS‖

2
L p ds

)1/2

≤ p

(∫ t

0
‖L(1+ ‖Xs‖H )(t − s)(ε−1/2)

‖
2
L p ds

)1/2

≤ Lp
(

1+ sup
0≤s≤T

‖Xs‖L p

)(∫ t

0
s(2ε−1) ds

)1/2

≤ Lp
(

1+ sup
0≤s≤T

‖Xs‖L p

) T ε
√

2ε
<∞

for all t ∈ [0, T ] due to [3, Proposition 4.15] and Lemma 5.1, which yields the
assertion. 2
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