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Adipose tissue has a key role in the development of metabolic syndrome (MS), which includes
obesity, type 2 diabetes, dyslipidaemia, hypertension and other disorders. Systemic insulin
resistance represents a major factor contributing to the development of MS in obesity. The
resistance is precipitated by impaired adipose tissue glucose and lipid metabolism, linked to a
low-grade inflammation of adipose tissue and secretion of pro-inflammatory adipokines.
Development of MS could be delayed by lifestyle modifications, while both dietary and pharma-
cological interventions are required for the successful therapy of MS. The n-3 long-chain (LC)
PUFA, EPA and DHA, which are abundant in marine fish, act as hypolipidaemic factors,
reduce cardiac events and decrease the progression of atherosclerosis. Thus, n-3 LC PUFA
represent healthy constituents of diets for patients with MS. In rodents n-3 LC PUFA prevent
the development of obesity and impaired glucose tolerance. The effects of n-3 LC PUFA are
mediated transcriptionally by AMP-activated protein kinase and by other mechanisms. n-3 LC
PUFA activate a metabolic switch toward lipid catabolism and suppression of lipogenesis, i.e.
in the liver, adipose tissue and small intestine. This metabolic switch improves dyslipidaemia
and reduces ectopic deposition of lipids, resulting in improved insulin signalling. Despite a
relatively low accumulation of n-3 LC PUFA in adipose tissue lipids, adipose tissue is speci-
fically linked to the beneficial effects of n-3 LC PUFA, as indicated by (1) the prevention of
adipose tissue hyperplasia and hypertrophy, (2) the induction of mitochondrial biogenesis in
adipocytes, (3) the induction of adiponectin and (4) the amelioration of adipose tissue inflam-
mation by n-3 LC PUFA.

Metabolic syndrome: EPA: DHA: Fat

Many studies indicate the key role of hypertrophic adipose
tissue in the development of various morbidities in obese
individuals, including type 2 diabetes, dyslipidaemia and
hypertension, i.e. the major components of metabolic syn-
drome (MS). Insulin resistance, the central defect under-
lying the MS, most probably results from increased
accumulation of lipids in the peripheral tissues (lipotoxi-
city) as a result of enhanced release of fatty acids from

hypertrophic fat cells(1,2). In addition to other lifestyle
interventions(3,4), adjustment of the quality of dietary lipids
is also important for the prevention and treatment of MS.
In particular, long-chain (LC) PUFA of the n-3 series,
DHA (22: 6n-3) and EPA (20: 5n-3), which are abundant
in marine fish, lower TAG while increasing HDL-choles-
terol levels in plasma, prevent the development of heart
disease and exert anti-inflammatory properties in human

Abbreviations: ACC, acetyl-CoA carboxylase; ALA, a-linolenic acid; AMPK, AMP-activated protein kinase; cHF, maize oil-based high-fat; LC, long
chain; MS, metabolic syndrome.
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subjects(5–7). Studies in rats and mice fed a high-fat or
lipogenic sucrose-rich diet have shown that n-3 LC PUFA
counteract the development of both obesity and insulin
resistance(8–13). Also, in human subjects n-3 LC PUFA
could reduce fat accumulation and improve glucose
metabolism(14–16). Although n-3 LC PUFA appear to have
little effect on glycaemic control in patients with type 2
diabetes, these fatty acids are considered to be healthy
dietary constituents for this type of patients as a result of
the beneficial effect on the plasma lipid profile(17,18).

Animals and human subjects cannot synthesize PUFA,
which contain double bonds at C-6 and C-3 from the
methyl end of the molecule. Precursors for the synthesis
of n-6 and n-3 LC PUFA are linoleic acid (18: 2 n-6) and
a-linolenic acid (ALA; 18: 3 n-3) respectively. The con-
version of ALA to EPA and DHA occurs primarily in the
liver. Linoleic acid and ALA compete for the enzyme D6
desaturase, which is required for their further metabolism.
Thus, an excessive amount of linoleic acid slows down the
formation of EPA and DHA. Even without this inhibitory
effect, the synthesis of EPA and DHA from ALA, the
major proportion of which is rapidly oxidized, is quite
inefficient. Thus, (1) supplementation of diets with n-3 LC
PUFA results in a much higher increase in the plasma and
tissue EPA and DHA content when compared with sup-
plementation of the diet with ALA (for reviews, see
Arterburn et al.(19) and Brenna et al.(20)) and (2) the effects
of n-3 LC PUFA also depend on dietary n-6 PUFA:n-3
PUFA, which was lower in the diet of ancient hunter–
gatherers compared with that of modern humans and is still
increasing in affluent societies(21,22). EPA, DHA, ALA and
arachidonic acid (20: 4n-6) are incorporated into cellular
membranes through their binding to the sn-2 position in the
phospholipid molecule. These fatty acids thus influence the
fluidity of plasma membranes and the function of mem-
brane proteins. Moreover, the competition for binding to
phospholipids also affects the availability of n-3 LC PUFA
as substrates for cyclooxygenases and lipoxygenases after
their release by the action of phospholipases, as well as the
formation of their active metabolites, eicosanoids and other
lipid mediators(19,23,24). In general, eicosanoids derived
from n-3 LC PUFA have anti-inflammatory effects, while
the equivalent eicosanoids derived from n-6 PUFA pro-
mote inflammation(25). Lipid mediators derived from
EPA and DHA, resolvins and protectins, are potent locally-
acting agents in processes of acute inflammation and its
resolution. They possess anti-inflammatory effects, as well
as providing protection against tissue damage(26).

The biological effects of n-3 LC PUFA and their meta-
bolites are largely mediated by PPAR, with PPARa and
PPARd (-b) representing the main targets(27–29). However,
PPARg , liver X receptor-a, hepatic nuclear factor-4, sterol
regulatory element-binding protein-1 and NF-kB(7) are
also involved(30–32). The hypolipidaemic and anti-obesity
effects of n-3 LC PUFA probably depend on the in situ
suppression of lipogenesis and increase in fatty acid oxi-
dation in several tissues including liver, intestine, and
adipose tissue(12,31,33,34). This metabolic switch may
reduce the accumulation of toxic fatty acid derivatives,
while protecting the insulin signalling in liver and mus-
cle(9,13,24,30,35). Part of the metabolic effects of n-3 LC

PUFA in the liver(36), and possibly also in other tis-
sues(24,37) (also, see later), is mediated by the stimulation
of AMP-activated protein kinase (AMPK), a metabolic
sensor controlling intracellular metabolic fluxes, i.e. the
partitioning between lipid oxidation and lipogenesis (for
review, see Flachs et al.(23) and Carling(38)). Thus, n-3 LC
PUFA by multiple mechanisms of action modulate the
functions of all major tissues involved in the development
of MS, i.e. the liver, adipose tissue and skeletal muscle(23).

The aim of the present report is to characterize adipose
tissue as a target for n-3 LC PUFA in the prevention and
treatment of pathological conditions associated with MS.
Despite a relatively small increase in n-3 LC PUFA con-
centrations in adipose tissue lipids in response to dietary
intake of these fatty acids, adipose tissue is specifically
linked to the beneficial effects of n-3 LC PUFA on health.
This relationship is indicated by (1) the prevention of adi-
pose tissue hyperplasia and hypertrophy, (2) the induction
of mitochondrial biogenesis in adipocytes, (3) the induc-
tion of adiponectin secretion and (4) the amelioration of
adipose tissue inflammation by n-3 LC PUFA. The present
report represents an extension of a review published
recently(23), as it contains new results relating to bioavail-
ability (i.e. incorporation of EPA and DHA administered in
the diet into plasma lipids) and tissue accumulation of n-3
LC PUFA, as well as describing the effects of n-3 LC
PUFA on AMPK activity and low-grade inflammation of
adipose tissue. All the experiments described in the present
report were performed using adult male C57BL/6 mice
fed a maize oil-based high-fat (cHF; approximately 35%
(w/w) fat) diet, free of DHA and EPA and containing a low
level of ALA (approximately 2–4% (w/w) of total fatty
acids (11,13)), which induces the MS phenotype in the mice
within several weeks of feeding. The effects of n-3 LC
PUFA were studied using a concentrate (w/w; approxi-
mately 46% DHA and 14% EPA; EPAX 1050 TG; EPAX
AS, Aalesund, Norway) to replace 5, 15 or 44% (w/w)
dietary fat in the cHF diet(11).

Bioavailability of n-3 long-chain PUFA and capacity of
adipose tissue for n-3 long-chain PUFA storage

Despite the low rate of conversion of ALA to EPA and
DHA, both animal and human studies indicate that (1)
diets containing only ALA as a source of n-3 fatty acids
support the formation of limited amounts of both EPA
and DHA, resulting in a relatively low plasma and tissue
content of these fatty acids and (2) increased supply of
dietary ALA results in increases in ALA and EPA content
in plasma and tissues, but has no effect on plasma DHA
concentration(19,39). Dietary intake of fish oil or concen-
trates containing both EPA and DHA results in increased
incorporation of both fatty acids into plasma lipids, a
measure of the bioavailability of the administered com-
pounds. In human subjects steady-state levels of n-3 LC
PUFA in total plasma lipids are reached within approxi-
mately 1 month, while incorporation of n-3 LC PUFA into
erythrocytes (and presumably tissues) exhibits slower
kinetics(19,20). The experiments with mice have investi-
gated both the bioavailability (Fig. 1(A and B)) and the
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Fig. 1. Bioavailability of DHA and EPA and incorporation of these fatty acids into total lipids (TL) in white adipose tissue (C, D),

liver TAG (E, F) and phospholipid (PL; G, H) fractions and brain PL (I, J). At 3 months of age mice were placed on a maize-

based high-fat (cHF) diet or the cHF diet with 5% (w/w; D5) or 15% (w/w; D15) of its lipid replaced by the n-3 long-chain PUFA

concentrate EPAX 1050 TG (EPAX AS, Aalesund, Norway). After 9 weeks of treatment the mice were killed and plasma and

tissues collected for analysis of DHA (*) and EPA (L) content. (A, C, E, G, I), The relationship between measured dietary

DHA concentration (n 3) and measured DHA content (n 4–7) in plasma and various tissues; (B, D, F, H, J), corresponding

results for EPA. (A, B), DHA and EPA respectively in plasma TL. The fold increases in the corresponding fatty acid as a result

of actual measured 3.1-fold increase in DHA or EPA concentration in dietary lipids (from 5% (w/w) to 15% (w/w) in D5 and D15

diet respectively; basal values measured in cHF-fed mice were subtracted) are also shown. Values are means with their

standard errors represented by vertical bars.
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incorporation of EPA and DHA into total adipose tissue
lipids (Fig. 1(C and D)), liver TAG (Fig. 1(E and F)) and
phospholipid (Fig. 1(G and H)) fractions and brain phos-
pholipids (Fig. 1(I and J)). In mice fed cHF at the 5 or 15%
(w/w) level of substitution for 9 weeks both the DHA and
EPA contents of plasma and tissue lipids are increased in
response to increasing doses of n-3 LC PUFA in the diets.
Plasma fatty acid levels remain similar between 2 and 9
weeks of the treatment (not shown), indicating relatively
fast kinetics in relation to the equilibration of the total lipid
pool in this compartment. The DHA:EPA in plasma is
similar to that in the diet; however, a relatively high accu-
mulation of DHA is observed in the tissue lipids, with the
most dramatic difference between accumulation of DHA
and EPA observed in brain phospholipid fraction (Fig. 1(I
and J))(40). These differences indicate different metabolism
of DHA and EPA, as well as specific transport mechanisms
for these fatty acids in various body compartments(19,41).
EPA accumulates proportionally to its dietary content,
except for liver TAG (Fig. 1(F)) and phospholipid
(Fig. 1(H)) fractions, suggesting saturation at higher dietary
intakes of EPA. Except for a linear dose response in total
adipose tissue lipids (Fig. 1(C)) and brain phospholipids
(when the values measured in the cHF-mice are subtracted;
Fig. 1(I)), DHA incorporation in total plasma lipids
(Fig. 1(A)), liver TAG (Fig. 1(E)) and phospholipid
(Fig. 1(G)) fractions is saturable in relation to the dietary
content of DHA. Importantly, even in the absence of any
EPA or DHA in the cHF diet, substantial amounts of DHA
are detected in liver (Fig. 1(G)) and especially in the brain
(Fig. 1(I)) phospholipids, indicating quite efficient form-
ation of EPA from ALA contained in the diet and pre-
ferential deposition of DHA in these tissues. The linear
correlation between the accumulation of both EPA and
DHA in total adipose tissue lipids and the dietary content
of these fatty acids could reflect different molar con-
centrations of n-3 LC PUFA in adipose tissue lipids as
compared with, for example, liver TAG, which are several-
fold lower in the case of adipose tissue(41). However,
despite a relatively low specific content of n-3 LC PUFA in
adipose tissue, which has also been observed in human
subjects(19), adipose tissue provides high storage capacity
for these fatty acids. Thus, in lean adult human subjects
adipose tissue accounts for 15–25% body weight (this
percentage can increase to 50% in morbidly-obese
patients), while approximately 70% of the adipose tissue
mass comprises lipids(42). Accordingly, adipose tissue is
known to serve as a buffer for LC PUFA in nursing
mothers, thus preventing large fluctuations of LC PUFA
concentration in breast milk(43).

Extrapolation of the results relating to the dose depen-
dence of various effects of n-3 LC PUFA from mice to
human subjects is problematic for several reasons includ-
ing, for example, a large difference in specific metabolic
rate between the two species. In this context the results
describing saturability of various plasma and tissue com-
partments with DHA may provide a useful lead, since a
saturation of the plasma (phospholipid) pool by DHA has
also been observed in human subjects(19). Thus, it could be
inferred that n-3 LC PUFA effects observed in mice fed
the cHF diet at the 15% (w/w) level of substitution (35%

(w/w) fat; with 15% of its lipids replaced by the n-3
LC PUFA concentrate, corresponding to approximately 9 g
DHA+EPA/100 g dietary lipids) are relevant for human
subjects treated with about 2 g DHA (in a mixture with
EPA)/d, since under these conditions the plasma lipid
pool is close to saturation with DHA in both mice and
human subjects(19) (see Fig. 1(A)). A decrease in the
DHA:EPA(19) or in the fat content of the diet should result
in the lower DHA intake needed for saturation of the
plasma pool.

Prevention of body fat accumulation by n-3 long-chain
PUFA

In accordance with other studies (for review, see Ruzick-
ova et al.(11)), the experiments on C57BL/6 mice have also
demonstrated that substitution of 15% (w/w) lipids in cHF
diets by the n-3 LC PUFA concentrate EPAX 1050 TG
prevents fat accumulation with a preferential reduction in
abdominal fat depots(11–13). Using semi-synthetic high-fat
diets a stronger anti-obesity effect has been observed with
increasing DHA:EPA in the diets(11). The reduction in
adipose tissue growth results in part from the inhibition of
fat cell proliferation(11). In vitro, DHA inhibits adipocyte
differentiation and induces apoptosis in post-confluent
preadipocytes(44). DHA also induces apoptosis in several
models of cancer(45). The mechanism of the anti-proli-
ferative effect of n-3 LC PUFA on adipose tissue is not
completely understood and may reflect modulation of
in situ eicosanoid production(46–48). The anti-proliferative
effect of n-3 LC PUFA may be involved in the reduced
adiposity of pups born to rat or mouse dams fed diets
supplemented with n-3 LC PUFA(49) or ALA(22) during
gestation and suckling, and even in the anti-obesity(50) and
anti-diabetic effects(51) of breast-feeding. Moreover, all
these studies indicate that reduction in both hyperplasia of
adipose tissue cells and hypertrophy of adipocytes (also,
see later) contribute to the reduced accumulation of body
fat as a result of n-3 LC PUFA intake.

Induction of a metabolic switch in adipose tissue and
small intestine by n-3 long-chain PUFA

It has been found previously that feeding C57BL/6 mice
a cHF diet supplemented with n-3 LC PUFA (i.e. 15%
(w/w) lipids in cHF diets substituted by n-3 LC PUFA
concentrate EPAX 1050 TG) induces mitochondrial bio-
genesis in white fat, with a stronger effect in epididymal
fat in the abdomen than in subcutaneous adipose tissue(12).
The effect in abdominal fat is associated with a 3-fold
increase in the expression of genes for regulatory factors
for mitochondrial biogenesis and oxidative metabolism,
PPARg co-activator 1a and nuclear respiratory factor-1
respectively. A marked down-regulation of the stearoyl-
CoA desaturase gene, Scd-1, is observed in white fat(12),
consistent with the induction of lipid oxidation by n-3
LC PUFA in the tissue(12) and the role of Scd-1(52) in
the control of lipid oxidation. Expression of PPARg co-
activator 1a and nuclear respiratory factor-1 genes is also
stimulated by n-3 LC PUFA in 3T3-L1 adipocytes(12).
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Similar to the effect in adipose tissue, mitochondrial bio-
genesis is also induced by n-3 LC PUFA in the small
intestine(34) but not in the liver(12) or in the skeletal muscle
(P Flachs and J Kopecky, unpublished results). Also, in
the adipose tissue and in the intestine, as in the liver (see
earlier), n-3 LC PUFA increase fatty acid oxidation, while
in situ lipogenesis is suppressed(34). Thus, in the liver,
adipose tissue and intestine dietary intake of n-3 LC PUFA
induces a switch toward lipid catabolism and suppressed
lipogenesis. Moreover, n-3 LC PUFA could depress basal
lipolysis in adipose tissue of obese and insulin-resistant
rats fed a sucrose-rich diet(53).

The effect of n-3 LC PUFA on lipolysis may reflect
restoration of the anti-lipolytic effect of insulin, while the
induction of the metabolic switch in adipocytes could
depend on transcriptional control mediated by PPARa and
PPARg (27–29). It has been hypothesized previously(23) that
the AMPK regulatory axis(38) could also be involved in the
induction of the metabolic switch, including up-regulation
of mitochondrial biogenesis and suppression of basal lipo-
lysis in adipocytes. As indicated in a recent review(23),
induction of AMPK activity in adipose tissue(54) is the key
mechanism that induces (1) the metabolic switch toward
lipid catabolism and suppressed lipogenesis in adipocytes
and (2) the lean phenotype of mice with respiratory
uncoupling induced by the aP2-Ucp1 transgene in adipo-
cytes; AMPK in adipose tissue is also activated by phos-
phorylation in response to the anti-diabetic drugs the
thiazolidinediones, the adipokines leptin and adiponectin,
starvation and physical activity, i.e. under conditions pro-
moting the metabolic switch in white fat. Phosphorylation
of AMPK is required for the full activation of the enzyme
and the phosphorylated:unphosphorylated form reflects the
actual enzymic activity. To evaluate possible activation of
the AMPK regulatory cascade(38) in white fat by n-3 LC
PUFA the content of a1 AMPK and phosphorylated
AMPK, as well as total acetyl-CoA carboxylase (ACC) and
its phosphorylated form was evaluated by Western blotting
in epididymal fat of mice fed cHF substituted with n-3 LC
PUFA at the 15% or 44% (w/w) level for 5 weeks
(Fig. 2(A and B)). ACC is the target for AMPK and its
activity is inhibited by AMPK-mediated phosphorylation.
Both a1 AMPK and phosphorylated AMPK contents tend
to increase in response to the 15% (w/w) level of sub-
stitution (not shown) and their contents increase signifi-
cantly in mice fed diet at the 44% (w/w) level of
substitution, while the phosphorylated AMPK: total a1
AMPK remains unchanged (Fig. 2(A)). The contents of
both total ACC and phosphorylated ACC, as well as the
phosphorylated ACC: total ACC increase in response to the
cHF diet at the 44% (w/w) level of substitution (Fig. (2B)).
The status of AMPK phosphorylation is known to change
in response to various immediate stimuli, while corres-
ponding changes in ACC phosphorylation are more stable
and could serve as a better marker of the metabolic switch.
Activation of AMPK has also recently been observed in
genetically-obese ob/ob mice (B6.V-Lepob/J) fed a low-fat
(7% (w/w) fat) diet supplemented with n-3 LC PUFA(24).
Thus, although no difference in phosphorylated AMPK:
AMPK was detected in the experiment, the results together
suggest activation of the AMPK intracellular regulatory

pathway by n-3 LC PUFA. As shown in the case of the
activation of AMPK in adipocytes under other conditions
(see earlier), n-3 LC PUFA can also promote the conversion
of white adipocytes into ‘fat burning cells’ by this mechan-
ism(55,56). Activation of AMPK could increase the mito-
chondrial content of adipocytes, which is consistent with the
suggestion that the number and activity of mitochondria
within adipocytes contribute to the threshold at which fatty
acids are released into the circulation, leading to insulin
resistance and type 2 diabetes(57).

The AMPK-dependent induction of the metabolic switch
in white fat should contribute to a decrease in the size of
mature adipocytes, as observed in mice treated with n-3
LC PUFA or thiazolidinediones(11,58,59) and even in
patients with diabetes whose diet is supplemented with n-3
LC PUFA(60). Compared with large adipocytes, small cells
are more insulin sensitive and less lipolytic, release lower

0

2

4

6

8

10

In
te

ns
ity

 (
A

U
)

Total α1 AMPK pAMPK:total α1 AMPKpAMPK

(A)

0

0·5

1·0

1·5

In
te

ns
ity

 (
A

U
)

Total ACC pACC:total ACCpACC

(B)

Fig. 2. AMP-activated protein kinase (AMPK) and acetyl-CoA

carboxylase (ACC) phosphorylation. At 3 months of age mice were

randomly assigned to a maize-based high-fat (cHF) diet or the cHF

diet with 44% (w/w; D44) of its lipid replaced by n-3 long-chain

PUFA concentrate EPAX 1050 TG (EPAX AS, Aalesund, Norway).

After 5 weeks of feeding the mice were killed and epididymal adi-

pose tissue collected for the analysis of AMPK and ACC phos-

phorylation(54,76). (A), Total a1 AMPK-immunoreactive protein,

phosphorylated form of AMPK (pAMPK) and pAMPK:total AMPK,

measured as a signal intensity using Western blotting. (B), Total

ACC-immunoreactive protein, phosphorylated form of ACC (pACC)

and pACC: total ACC, measured as a signal intensity using Wes-

tern blotting. (K), Control cHF diet; (&), experimental D44 diet.

Values are mean with their standard errors represented by vertical

bars for five to eight mice. AU, arbitrary units.
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levels of inflammatory cytokines (for review, see Yang &
Smith(61) ) and secrete higher levels of adiponectin(62). The
small cells could also serve as a ‘buffer’ for lipids and
protect tissues against the lipotoxicity(63,64). Thus, n-3 LC
PUFA would enhance insulin action in adipose tissue by
counteracting adipose tissue hypertrophy. Despite a mini-
mal contribution of adipose tissue to the whole-body glu-
cose uptake, impairment of glucose transport in adipocytes
results in insulin resistance in the skeletal muscle and
liver(65); the insulin-sensitizing effect of n-3 LC PUFA in
adipocytes may be crucial for the beneficial effect of these
lipids on whole-body glycaemic control. Importantly, in
addition, induction of the metabolic switch in the small
intestine by n-3 LC PUFA could be mediated by AMPK
and limit accretion of body fat(34,37).

Amelioration of low-grade inflammation of
adipose tissue and induction of adiponectin by n-3

long-chain PUFA

In accordance with the general anti-inflammatory action
of n-3 LC PUFA(6) (possibly mediated by NF-kB(7,34))
low-grade inflammation of adipose tissue, which is asso-
ciated with obesity, is also reduced by n-3 LC PUFA sup-
plementation in obese diabetic db/db mice(59), as well as
in the experiments on C57BL/6 mice fed the cHF diet at
the 15% (w/w) level of substitution(13). The inflammation
is suppressed even more potently by a DHA derivative
(a-ethyl DHA ethyl ester) replacing only 1.5% (w/w)

lipids in the cHF diet(66). As shown in Fig. 3, the cHF diet-
induced adipose tissue hypertrophy is associated with
infiltration of adipose tissue by macrophages immuno-
reactive for MAC-2 (b-galactoside-binding lectin expressed
on activated macrophages), which aggregate in crown-like
structures surrounding adipocytes(67). Numerous crown-
like structures are detected in cHF diet-fed mice (Fig. 3(A
and E)) but not in chow diet-fed (Fig. 3(C)) mice. In accor-
dance with the previous study(67), adipocytes surrounded
by crown-like structures are not viable, based on the absence
of perilipin staining. Viable adipocytes, not surrounded
by macrophages, are positive for perilipin (Fig. 3(D)). n-3
LC PUFA prevent, in part, the macrophage infiltration
(Fig. 3(B)). It should be investigated whether n-3 LC PUFA
not only decrease the total number of macrophages in adi-
pose tissue but could also change their polarity, while sup-
pressing specifically M1 pro-inflammatory macrophages and
activating M2 macrophages secreting anti-inflammatory
cytokines(68). Such an effect has recently been demonstrated
for thiazolidinediones, affecting macrophages in adipose
tissue(69) and peripheral blood(70).

The suppression of the low-grade inflammation of adi-
pose tissue by n-3 LC PUFA in mice is associated with
induction of adiponectin(32,71,72), the major adipokine
exerting an insulin-sensitizing effect, possibly as a result of
activation of AMPK in various tissues(73,74). The induction
of adiponectin is stronger in the epididymal fat in the
abdomen than in the subcutaneous fat(32,72) and it is prob-
ably mediated by PPARg (32) in fully-differentiated(72) fat

Fig. 3. Immunodetection of macrophages in epididymal adipose tissue. At 3 months of age mice were placed on a maize-based

high-fat diet (cHF) or the cHF diet with 15% (w/w; D15) of its lipid replaced by n-3 long-chain PUFA concentrate EPAX 1050 TG

(EPAX AS, Aalesund, Norway). Some mice were maintained on a chow diet. After 20 weeks of treatment, mice were killed and

adipose tissue samples processed for immunohistological analysis(67). (A, B, C), MAC-2 (b-galactoside-binding lectin expressed

on activated macrophages)-immunoreactive macrophages were detected in 5mm thick sections (darkly-stained cells). Note that

almost all macrophages are localized within crown-like structures surrounding individual adipocytes. (A), cHF diet; (B), D15 diet;

(C), chow diet; (D, E), detailed view of adipose tissue from the cHF-fed mice with visualized perilipin and MAC-2 respectively. ––,

200mm.
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cells. A recent clinical study has demonstrated the induc-
tion of plasma adiponectin in response to a daily intake of
1.3 g EPA and 2.9 g DHA (administered as EPAX 2050
TG; EPAX AS) in overweight patients who were simulta-
neously undertaking a weight-loss programme(75). The
induction of adiponectin could contribute to the beneficial
effect of n-3 LC PUFA on systemic insulin sensitivity.

It has recently been investigated whether combined
treatment with DHA+EPA and the thiazolidinedione rosi-
glitazone would provide additive beneficial effects on
various features of MS in the cHF diet-fed mice(13).
DHA+EPA administered at the 15% (w/w) level of sub-
stitution and a low dose of rosiglitazone exert additive
effects in the prevention of obesity, adipocyte hypertrophy,
low-grade adipose tissue inflammation, induction of
adiponectin, dyslipidaemia and insulin resistance. The
combined treatment also reverses dietary obesity, dyslipi-
daemia and impaired glucose tolerance in the mice. These
results suggest that DHA+EPA and thiazolidinediones
could be used as complementary therapies to counteract
various pathologies associated with MS and that adipose
tissue represents an important target in this strategy.

Conclusion

Adipose tissue metabolism, inflammatory status and
secretion of adipokines play an important role in the
development of the pathological conditions associated with
MS. Despite a relatively small increase in n-3 LC PUFA
concentrations in adipose tissue lipids in response to diet-
ary intake of these fatty acids, adipose tissue possesses a
substantial capacity for n-3 LC PUFA storage, and it is
specifically linked to the beneficial effects of n-3 LC
PUFA on health. Surprisingly strong suppression of adi-
pose tissue hyperplasia and hypertrophy by n-3 LC PUFA
supplementation, reflecting induction of lipid catabolism
and suppression of lipogenesis in adipocytes, as well as
amelioration of adipose tissue inflammation and increased
secretion of adiponectin, help to explain the beneficial
effects of n-3 LC PUFA in the prevention and treatment of
various components of MS. Modulation of adipose tissue
metabolism, cellular composition and secretion of adipo-
kines by n-3 LC PUFA has a prominent role in the multiple
mechanisms of action of these lipids and should be
explored further in combination therapies for various
pathologies in human subjects.
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