
INTRINSIC FUNCTIONS ON SEMI-SIMPLE ALGEBRAS 

C. A. HALL 

1. Introduction. Rinehart (5) has introduced and motivated the study 
of the class of intrinsic functions on a linear associative algebra 21, with 
identity, over the real field R or the complex field C. In this paper we shall 
consider a semi-simple algebra 21 = 2li © . . . © 21* over R or C with simple 
components 21*. Let G be the group of all automorphisms or anti-automor­
phisms of 21 which leave the ground field elementwise invariant, and let H be 
the subgroup of G such that 1221 * = 211 (i = 1, 2, . . . , 0 for each 12 in H. 

DEFINITION 1. The single-valued junction F, with domain D and range in 21, 
is called an H-intrinsic function on D if: 

(1) 12D = D for each 12 in H, 
(2) Z in D implies F(ttZ) = ttF(Z) for all 12 in H. 

If H = G, then F is said to be intrinsic on D. Note that every intrinsic 
function on a semi-simple algebra 21 is also H-intrinsic, but not the converse. 
If 21 is simple, however, then H = G and every H-intrinsic function is trivially 
intrinsic. 

Intrinsic functions have been characterized by Rinehart (5) for the algebra 
of complex numbers over the real field and for the algebra Q of real quater­
nions. An essentially complete characterization of continuous intrinsic func­
tions on the total matrix algebras Cn (n by n matrices with complex elements) 
over C and Rn (n by n matrices with real elements) over R has also been 
achieved by Rinehart (6) and on Qn (n by n matrices with real quaternion 
elements) over R by Cullen (2). 

It is known that if 21 = 2ïi © . . . © 21 ̂  is semi-simple over R with the 21 * 
as simple direct summands, then each 21* is isomorphic to Cni, RniJ or Qni; 
whereas 21 semi-simple over C implies that the 21* are isomorphic to Cni (1). 

In this paper we shall use (4) and the characterizations in (2, 5, 6) to 
characterize those intrinsic functions on a general semi-simple algebra over 
the real or complex field which induce (single-valued) functions on the direct 
summands. This study was motivated by the attempt to extend the notion 
of an w-ary function to a general semi-simple algebra. 

2. Literature to date. There are several (essentially equivalent) methods 
of extending a function / of a complex variable to a function F on a linear 
associative algebra 21; cf. (7). Such functions F are called primary functions 
on 21 with stem function / . 
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INTRINSIC FUNCTIONS 591 

Consider the following definition from (6) and (2). 

DEFINITION 2. Given a function f(z, ah . . . , cn_i) with domain 2 contained 
in Ec

n {Euclidean complex n-space), and range in C. Define the n-ary function 
F, induced on Rn (Cn or Qn) by f, to have functional values 

F(A) = fA(A) = fA(A, vM], . . . , <rn^[A]) 

where at[A] is the ith symmetric function of the characteristic roots of A. F is 
defined at A if the distinct characteristic roots a\, . . . , ak of A satisfy: 

(1) (au <n[A], . . . , an-i[A]) e 2 (i = 1, 2, . . . , *), 
(2) f(z, cr\[A], . . . , crra_i[̂ 4]) as a function of z is analytic at each at of index 

greater than one. 
(fA(A) is the primary functional value of the extension of the scalar func­

tion fA(z) = fA(z, ai[A], . . . , Œn_i[A]), considered as a function of z only). 

Note that the primary functions are w-ary functions that do not depend 
on the parameters at. 

In (6), Rinehart proved the following theorems that motivated the study 
of n-ary functions. 

THEOREM 2.1. An intrinsic function F on Cn induces a single-valued function 
/(X, (7i, . . . , crn-i) mapping a subset of Ec

n into the complex plane. The function 
f is defined at any point P: (X0, cri0, . . . , o-n-i°) for which there exists a non-
derogatory matrix A in the domain of F with X0 as a characteristic root and with 
characteristic polynomial 

t A \ n 0 n~-1 i 1 / 1 \n—l 0 I / * \n 0 

c(x, A) = x — o-i x + . . . + (—1) (jn-ix + (—1) an . 
The value of f at P is independent of the choice of the non-derogatory matrix A, 
and is given by \0[F(A)] = LA(X0), where LA(x) is a polynomial such that 
LA(A) = F (A) and \[B] denotes a characteristic root of B. 

THEOREM 2.2. Let F be an intrinsic function on Rn (or Cn) with domain D 
and let A belong to D. Letf(z, ai, , . . . , o-n-i) be the function on Ec

n to the com­
plex plane induced by F. Let fA(z) denote the function of z only, 

/ A ( « ) = / ( S i O-li • • • , 0"n- l ) t 

where at = (?i[A], the ith symmetric function of the characteristic roots of A. 
Then F (A) must be given by the primary function value fA (A) if either: 

Case I: A has distinct characteristic roots, or 
Case II: A has repeated characteristic roots, A is interior toD, F is continuous 

at A, and fA (z) is analytic in a z-neighbourhood of the repeated characteristic 
roots of A. 

Thus Rinehart has shown that intrinsic functions on Rn (or Cn) subject to 
the conditions of the preceding theorem are w-ary functions. Cullen (2) has 
shown that similar conditions also imply that an intrinsic function on Qn is 
an w-ary function; thus intrinsic functions have been characterized on these 
three matrix algebras as being essentially n-ary functions. 
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In (4) the authors prove the following: 

THEOREM 2.3. Let 21 be an algebra over R (or C) and let F be an intrinsic 
function from 21 to 21. Let 90? be an algebra over the same field isomorphic to 21. 
F induces on 9JÎ a function G with functional values 

G (A) = (j>F(4>'1 A) = <l>F(a), 

where 0 is an isomorphism of 21 onto 93? and 0(a) = A. Schematically. 

F 

if F is intrinsic on 21, then G is intrinsic on 99?. 
Since the isomorphism 0 maps the zero of 21 into the zero of 99? and also 

we have 

THEOREM 2.4. If <j>(a) = A, then the minimum polynomial of a equals the 
minimum polynomial of A over the same field. 

3. Intrinsic functions on simple algebras. Let 21 be an «-dimensional 
simple algebra over R (or C) and F an intrinsic function on 21. As discussed 
in § 1, 21 is isomorphic to a matrix algebra $)? (99? = Cn, Rny or Qn) and, by 
Theorem 2.3, F induces an intrinsic function G on 3R. Let a belong to 21, 
<j)(a) = A (where 0(21) = 99?), and define a norm on 2Ï by the isomorphism 0, 
i.e. ||o:[| = | \A 11, where |\A \\ = 1/n sup A tj for A = (A tj). 21 is then a normed 
ring and the concepts of continuity, interior point, etc. are well defined. We 
shall extend the definition of «-ary function to simple algebras in general by 
the following: 

DEFINITION 3. F is said to be an n-ary function on a simple algebra 21 if its 
domain and range are contained in 21, and for each a in the domain of F, 
FM = g A M where 

(1) gA(z) = gA(z, o-iWL . . . , <rn-i[A]) 

is the stem function induced by A — <j>(a) on C, in accordance with Theorem 2.1, 
and gA (a) is the primary functional value of the extension of gA (z) to 21. 

Using this extended definition of «-ary functions on simple algebras we 
now characterize intrinsic functions on simple algebras as follows: 
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T H E O R E M 3.4. If 31 is an n-dimensional simple algebra over C, then an in­
trinsic function F on % is an n-ary function on 31 if for each a in the domain 
of F, either 

Case I : the minimum polynomial of a over C has n distinct roots, or 
Case I I : a is interior to the domain of F, F is continuous at a, and the scalar 

function gA{z) is analytic in a z-neighbourhood of the roots of the minimum 
polynomial of a. 

Proof. By Theorem 2.3, the induced function G on 5D? = Cn is intrinsic. G 
induces by Theorem 2.1 a scalar function (1) on C. 

Case I above implies, by Theorem 2.4, t ha t A is non-derogatory, and 
further t ha t A has distinct characteristic roots. 

Case II above implies, by isomorphism of algebras, t ha t A is interior to 
the domain of the induced function G on SDÎ = Cn, G is continuous a t A, and 
the stem function gA(z) is analytic in a z-neighbourhood of all the roots of A. 

In either case, Theorem 2.2 implies t ha t G (A) is the pr imary value g A {A) 
with stem function gA{z). 

Now gA, being pr imary on SDt = Cny is also a poly-function (4), and thus 
there exists a polynomial LA(x) such tha t LA(A) = gA{A) and 

F (a) = 4rigA(A) = <t>~lLA{A) = LA(4>-iA) = LA(a) = gA(a). 

T h a t every intrinsic function on a simple algebra over C is not an w-ary 
function can be shown by the following: 

Example 1. Define 

EV A \ — i ^ ^ det A = a\ + a2 i, a\ rational, 
\ l if det A = a\ + a2i, a,\ irrational, 

for A in 3Ï = C2 as an algebra over C. This example is similar to Example 4 
in (3) and the method there shows t ha t F (A) is intrinsic on C2 over C bu t 
not w-ary on C2 over C, 

Note t ha t if a satisfies Case I of Theorem 3.4, then the stem function (1) 
can be considered as a function 

g<*(z) = g(z, ai[a], . . . , <rn_i[a]), 

where at[a] is the ith symmetric function of the roots of the minimum poly­
nomial of a, since the minimum polynomial of a equals the characteristic 
polynomial of A. If a satisfies Case I I , however, in general there is no such 
relationship between the a^a] and the <TI\A]. 

If 31 is simple over R, then an intrinsic function F on 21 is w-ary if in addit ion 
to the conditions of Theorem 3.4, we also have tha t the stem function gA(z) 
is an intrinsic function of z a t the eigenvalues of A (or equivalently a t the 
roots of the minimum polynomial of a). This added condition ensures t ha t 
the functional value gA{A) is a real polynomial in A, and thus is an element 
of 2ft; cf. (3). 
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We now prove the following theorem, which is a consistent extension of 
similar results in (2, 6) for matrix algebras over R or C. 

THEOREM 3.5. Every n-ary function F on a simple algebra 21 is an intrinsic 
function on 21. 

Proof. The function gA(z) of Definition 4, when extended to the total 
matrix algebra isomorphic to SI, yields an n-ary function, which by (2, 6) 
is also intrinsic. Theorem 2.3 then yields the desired result. 

4. Intrinsic functions on semi-simple algebras. Let 21 be an n-dimen-
sional semi-simple algebra over R (or C) ; then 21 = 311 0 . . . 0 21*, where 
the 21 i are wrdimensional simple algebras over R (or C). Let F be a function 
with domain D = Di 0 . . . 0 D* and range in 21. For each a = a± + . . . + at, 
a{ Ç D i ( there are unique fit in 21* such that F (a) = /3i + . . . + /3t. 

If F is Hausdorff-differentiable, then Fu the restriction of F to 21 *, satisfies 
Fi(ai) = Pu i = 1» 2, . . . , t, cf. (9), and more recently (8). In general Ft 

need not map 21* into 21* and in fact the correspondence at—>$t may not 
even define a (single-valued) function. If the correspondence at—>pt is a 
well-defined function Ft (i = 1, 2, . . . , t), then we shall write F = Fi 0 . . . 
0 Ft. Note that Ft maps the ith direct summand into itself. 

We shall extend the concept of n-ary functions to semi-simple algebras by 
the following: 

DEFINITION 4. The function F = Fi 0 . . . 0 Ft on 2Ï = 211 0 . . . 0 21, is 
a direct sum of nrary functions if each of the functions Ft is nrary on the direct 
summand 21 % (i = 1, 2, . . . , t). 

In (4) it is shown that if F = Fi © . . . 0 Ft is H-intrinsic on 21 = 211 0 
. . . © 21*, then the Ft are intrinsic on the direct summands. Since an intrinsic 
function is H-intrinsic, we also have that F intrinsic on 21 implies that the 
Fi are intrinsic on the 21 *. The converse of the former statement is true, but 
the converse of the latter is false. Using these results from (4) and Theorem 
3.4, we have the following characterization of those intrinsic functions on 
semi-simple algebras which induce (single-valued) functions on the direct 
summands. 

THEOREM 4.1. If 21 = 211 © . . . © 21 « is an n-dimensional semi-simple 
algebra over C {or R) with simple direct summands %t of dimension nu and if 
F = Fi © . . . © Ft is an intrinsic function on 21, then F is a direct sum of 
fii-ary functions Ft if for each a = a\ + . . . + at in the domain of F either: 

Case I: the minimum polynomial of at over C (or R) has nt distinct roots 
(i = 1 , 2 , . . . , / ) , or 

Case I I : at is interior to the domain of Fu Ft is continuous at au and the 
scalar function gAi(z) induced by at is analytic in a z-neighbourhood of the 
roots of the minimum polynomial of at (i = 1, 2, . . . , /). (If 21 is semi-simple 
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over R, then we also require gA{z) to be intrinsic at the roots of the minimum 
polynomial of at.) 

If we try to replace the conditions of at in Theorem 4.1 by equivalent 
conditions on a, we notice the following problem: In general, a can be interior 
to the domain of F without at being interior to the domain of Ft. For this 
reason Theorem 4.1 seems to be as far as one might expect to be able to go 
in the direction of characterizing intrinsic functions on semi-simple algebras 
in terms of w-ary functions. We have the following additional theorems, 
however: 

THEOREM 4.2. If F = F1@...@Ft on 21 = 2li 0 . . . 0 21* is a direct 
sum of nt-ary functions on 21 z, then F is H-intrinsic on 21. 

Proof. We have already shown that the ^ r a r y functions Ft are intrinsic 
on 21* (Theorem 3.5). By (4) this implies that F = Fx © . . . 0 Ft is H-
intrinsic on 31. 

In (4) an example is given of a function F = F± 0 . . . 0 Ft which is not 
intrinsic even though the Ft are intrinsic (in fact w rary). However, using 
other results of (3), we have 

THEOREM 4.3. If F = Fx © . . . 0 Ft on 21 = 2Ii © . . . © 21, is a direct 
sum of nrary functions on 21 * and 

(1) if 21 i is not isomorphic to 21 y (i 9e j), or 

(2) if for any automorphism or anti-automorphism 12' of 21 such that 0/2l* = 2I; 
(i 9^ j) it follows that Fjfaai) = Q!Fi{ai), for all at in the domain of Fiy 

then F is intrinsic on 21. 

Proof. Condition (1) or (2) implies that F is intrinsic on 21 if and only if 
the Ft are intrinsic on the 21 *; (4). The result follows from Theorem 3.5. 

We now determine whether our Definition 4 (of a direct sum of w rary 
functions) is consistent with the definition of w-ary functions on semi-simple 
algebras where both may be defined. Consider 2RW = 9KW1 © . . . © Tint (t > 1) 
where Tln is a subalgebra of Rn (Cn or Qn) containing matrices which are direct 
sums A=A1@...@AU with At belonging to $flni = Rni (Cni or Qni). 

Let F be an w-ary function on Rn (Cn or Qn) with domain D = Di ©... © D, 
contained in 2ftw. That every w-ary function on Wln does not induce single-
valued functions Ft on the Wni can be seen by the following: 

Example 2. Consider the w-ary function F on C4 with domain 

D = {A \A = A! ®A2lAt e C2} 

and functional values F (A) — tr(^4). IA. The stem function is fA(z) = tr A. 
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Let B = I2 © I2 and P = I2 © 02. Then if we assume that F = Fx © F2, 
we have 7^(5) = tr B-IA=^ F^h) = 4J2 while 

7 (̂P) = tr P-h^F^h) = 2/2. 

Thus î i is not single-valued. 

The following theorem sheds some light on the above example. 

THEOREM 4.4. The only n-ary functions on a direct sum of matrix algebras 
which induce single-valued functions on the direct summands are primary func­
tions. 

Proof. Let F be an n-ary function on Rn (Cn or Qn) with domain D con­
tained in 9WW and with stem function fA(z, <TI[A]} . . . , an-i[A]). Assume that 
F induces (single-valued) functions Ft on the direct summands, 

F= F1@... ®Ft. 

If fA is dependent on the <ru then there exist matrices A and B in D with 
a common characteristic root Z\ such that : 

/ ^ ( Z l , (Tl[Al . . . , CTn_i[^]) ^ / f l ( Z i , (Ti[5] f . . . , <T„-i[5]). 

Since T7 is intrinsic (2, 6), we can assume that A and B are in Jordan 
canonical form. Without loss of generality we can also assume that Z\ is a 
root of A\ (in fact that [^4i]n = Z\) and of B2 (in fact that [B2]u = Zi) where 
A = Ax © . . . ®At and B = Bx © . . . ®Bt. 

Noting that F (A) is the primary functional value of the extension of fA(z) 
to SI, it follows from (7) that: 

[ f t (4i ) ]n = [ / i (4 i ) ]n = /A(* I ) and [F2(B2)]n = \fB(B2)]n = fB(Zl). 

Construct the matrix C = G © . . . © Ct where G = Aly Cj = Bj (j j£ 1). 
C £ D since Ft has been defined at d (i = 1, 2, . . . , t). 

Now F(C) = S ck Ck for complex c* (note, however, that we cannot imply, 
nor is it necessary, that ck Ç R if R is the ground field (3)). This implies that 

[Fi(Ci)]n = [Fi(4i)]n = [E<*^i*]n = E<**i* 

and 

[FS(C,)]„ = [F2(5,)]n = [E c ,B 2 *] u = £ ckz,\ 

Thus 

/A (2l) = [ F l ^ O l l l = £ C* *l* = [^2(52)]„ = / B ( 2 l ) . 

But /^ (21) 7* fB(zi) and thus the ^ are not single-valued. 
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If F is primary, then it is known (8) t ha t F induces single-valued functions 
on the direct summands which are also pr imary with the same stem function 
as F. This completes our proof. 

COROLLARY 4.4. The only n-ary functions on a direct sum of matrix algebras 
that are Hausdorff differentiable are primary functions. 

Proof. If F is Hausdorff differentiable, then F induces (single-valued) func­
tions on the simple summands (9). 

Using the preceding theorem, we have: 

T H E O R E M 4.5. If F = Fi © . . . 0 Ft (Ft well defined) is an n-ary function 
on 21 = Winy then it is a direct sum of nt-ary functions. 

Proof. Theorem 4.4 implies t ha t F is pr imary on 9Wn, and this implies by 
(4) t ha t the Ft are pr imary on the 99?wi. Every pr imary function being n-ary, 
we obtain our conclusion. 

T h a t functions F = Fi © . . . © i7* on 21 = $Jln exist which are direct sums 
of w r a r y functions (and thus intrinsic) b u t are not w-ary can be shown by 
the following: 

Example 3. Consider the function F on C4 with domain 

D = {A \A = A1 ®A2fAi e C2) 

and functional values F (A) = F^AJ 0 F2{A2) = t r AVI2 © A2
2. Fx is 2-ary 

with stem function fAl (z) = t r A i and F2 is pr imary and thus 2-ary with 
stem function fA2(z) = *2- Thus F is a direct sum of 7^-ary functions on 9J?C4. 
F is not w-ary on C4 however, since if fA is the associated stem function, then 
for A = A i © A i we have 

fA(A) =fA{A,) ®fA{A,) = trAvI2 ®A,\ 

which contradicts the uniqueness of the pr imary extension to C2 of the 
function fA. 

We have thus derived a characterization of intrinsic functions on semi-
simple algebras which induce (single-valued) functions on the direct sum­
mands , as direct sums of n r a r y functions under similar conditions as those 
required in (2, 6) . Our extensions of the concept of ^-ary functions to semi-
simple algebras have been shown to be consistent with the original concepts 
where both are applicable. 
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