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Abstract. We formulate a generalization of Givental—Kim’s quantum hyperplane principle. This
is applied to compute the quantum cohomology of a Calabi— Yau 3-fold defined as the rank 4 locus
of a general skew-symmetric 7 x 7 matrix with coefficients in P°. The computation verifies the
mirror symmetry predictions of Redland [25].
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0. Introduction

The rank 4 degeneracy locus of a general skew-symmetric 7 x 7-matrix with
I'(Ops(1))-coefficients defines a noncomplete intersection Calabi-Yau 3-fold M3
with 4! = 1. We recall some results of Redland [25] on the mirror symmetry of
M?: a potential mirror family W, is constructed as (a resolution of) the orbifold
M 3 /247, where M 3 is a one-parameter family of invariants of a natural Z;-action
on the space of all skew-symmetric 7 x 7-matrices. It is shown that the Hodge
diamond of W, mirrors the one of M 3. Further, at a point of maximal unipotent
monodromy*, the Picard—Fuchs operator for the periods is computed to be (with
D = ¢qd/dg):

(1 —289q — 57¢* + ¢*)(1 — 3¢q)*D*+
+ 49(3q — 1)(143 + 57q — 874> + 3¢°)D*+
+ 2¢(—212 — 473q + 7254 — 435¢> + 274" D*+ (1)
+2¢(—69 — 481¢ + 1594> — 1714° + 184*)D
+ q(—17 — 202g — 8¢* — 54¢° + 94" .
*There are two points with maximal unipotent monodromy. Remarkably, the Picard—Fuchs

equation at the other point is the one found in [2] for the mirror of the complete intersection
Calabi—Yau 3-fold in G(2, 7).

https://doi.org/10.1023/A:1017585802461 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017585802461

80 ERIK N. TIGTTA

Mirror symmetry conjectures that this operator is equivalent to the operator

1 d
ngDz, where K(¢q) = 14 + Z ndd3137d ) 2
d>1 q

and ny, the instanton number of degree d rational curves on M3, is defined [20] using
Gromov—Witten invariants by

p.p )i =Y K.

kld

We shall prove the conjecture.

THEOREM 1. The differential operators (1) and (2) are equivalent under mirror
transformations. That is:

Let Iy, 1,,1,,Is be a basis of solutions to (1) with holomorphic solution
Io=1+Y,-a4q" and logarithmic solution Iy = In(q)lo + >, > | baq®. Then

Iy I I, I;
I, Iy L)' Iy’
is a basis of solutions for (2) after change of coordinates q = exp(ly/1).

Our approach follows closely the work of Givental [14, 15] for complete inter-
sections in toric manifolds, and Batyrev, Ciocan-Fontanine, Kim, Van Straten
[1, 2] for complete intersections in partial flag manifolds. It builds on the following
three observations:

(i) Awell-known construction identifies the degeneracy locus M? with the vanishing
locus of a section of a vector bundle on a Grassmannian manifold (see Section 2).
It is crucial, for us, that this vector bundle decomposes into a direct sum of vector
bundles £ & H, where H is again a direct sum of line bundles.

(i) The quantum hyperplane principle of B. Kim [18] extends to relate the
E-restricted quantum cohomology with the E & H-restricted one. This is for-
mulated as a general principle in Section 1.

(iii) The E-restricted quantum cohomology can be effectively computed using
localization techniques and WDV V-relations. An application of the quantum
hyperplane principle then yields Theorem 1. The computations are carried
out in Section 2.

1. Gromov—Witten Theory

We begin by recalling some basic results on g = 0 Gromov—Witten invariants before
stating the quantum hyperplane principle. Our approach is the algebraic one
following [19]. We refer the reader to [7, 11] for a fuller account and references.

https://doi.org/10.1023/A:1017585802461 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017585802461

QUANTUM COHOMOLOGY OF A PFAFFIAN CALABI-YAU VARIETY 81

1.1. FROBENIUS RINGS

Let X be a smooth projective variety over C. Unless otherwise specified, we only
consider even-dimensional cohomology with rational coefficients. In fact we will
work with a further restriction: if E is a vector bundle on X, and Y is the zero-set
of a regular section of E, then we are mainly interested in the cohomology classes
on Y that are pulled back from X. These are represented by the graded Frobenius
ring A*(E) with

AP(E):= H”(X, Q)/ann(Ep) 3)

and non-degenerate pairing (y;, 7,)%: = Jx 7172 Eo, where Ej is the top Chern class of
E, and 7, denotes a lift of y; to A*(X).

Let A;(E, Z) be the dual of A'(E, Z)/torsion. We will identify 4;(E, Z) with the
image of the natural inclusion

A(E,Z) - A1(X, Z). “4)

1.2. MODULI SPACE OF STABLE MAPS [11, 20]

Let (C, sy, ...,s,) be an algebraic curve of arithmetic genus 0 with at worst nodal
singularities and » nonsingular marked points. A map f: C — X is stable if all con-
tracted components are stable (i.e. each irreducible component contains at least three
special points, where special means marked or singular). For d € 41(X, Z), let X, 4
denote the coarse moduli space (or Deligne-Mumford stack) of stable maps with
f[Cl=d. If X is convex, that is H'(C,f*TX) =0 for all stable maps, then X, 4
is an orbifold (only quotient singularities) of complex dimension

dimCX+/cl(X)+n—3. (5)
d

Of great importance to the theory are some natural maps on the moduli space of
stable maps. For i =1,...,n, let ¢;: X;, s — X be the map obtained by evaluating
stable maps at s;, and let n;: X;, ;s — X,—1.4 be the map which forgets the marked
point s;. Also of significance are certain gluing maps which stratify the boundaries
of the moduli spaces. In the stack theoretic framework, the diagram

€n+1

Xop1a — X

- ©
Xoa

along with sections s;: X, 4 — X,41.4 defined by requiring e; = e,,41 o s;, is identical to
the universal stable map.

https://doi.org/10.1023/A:1017585802461 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017585802461

82 ERIK N. TIGTTA

1.3. GROMOV-WITTEN INVARIANTS [4, 5, 19, 21, 24, 27]

Suppose E is a convex vector bundle (i.e H'(C, f*E) = 0 for all stable maps). Base
change theorems in [16] imply that 7, .e; | E is a vector bundle on X, ; with fibers
HY(C,f*E). Let E, 4 denote the top Chern class of Tay14€5, £ and let ¢; denote
the first Chern class of the line bundle s}wy,,, on X, s, where w,,,, is the relative
sheaf of differentials. Let ¢ be an indeterminate.

A system of E-restricted Gromov—Witten invariants for X is the family of
multilinear functions ( )5 on 4*(E)[[c]]®", defined for all n > 0 and d € 4,(E, Z) by

n

<P1V17"'7Pﬂyn>§::/

Pi(ci)e; (7)) En.a » (7
[Xna] i=1

where y; € A*(E), P; € Q[[c]], and [X,, 4] is the virtual fundamental class of dimension

(5).

There is an exact sequence of vector bundles
0 — ker — myq1,€,, E— €/E — 0, (8)

where the right-hand map is obtained by evaluating sections at the ith marked point.
This implies that E, ;4 is divisible by Ep in A*(X), 4), hence the invariants (7) are inde-
pendent of the chosen lifts 7;.

When X is convex, then [X,, ;] is simply the fundamental class of X, 4. If Y C X is
cut out by a regular section of E, then

Jo O [Yual = Ena - [Xndl, ©)
id'=d

where the map j: ¥, 4 — X, 4 is induced from the inclusion map i: ¥ — X.

Let {A;}, {A"} denote a pair of homogeneous bases of A*(E) such that (A;, N)E = 5’;,
and let 7; € A*(E)[[c]]. The natural maps on the moduli space of stable maps respect
the virtual classes, hence induce important relations on GW-invariants. Among
these are:

Divisor equation. For p € A'(E) we have
P T T

= (/dﬁ)m,...,Tn)dE+Z<T1,...,pT,-/c,...,Tn)dE.
i=1

WDV V-relation. Denote*

I, T4 E oA E
(P = (T1, To. AYE (A, Ty, Ty)E .
I Ts/a dlgdz::d 1 ’

*We use the Einstein summation convention.
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Then,

()

Ty, Ty
T, T3d_( H )

1> 15/ 4
Topological recursion relation (TRR).

(T, To, T = ) (Ti/e, A)G (A, Ty, Ts)),
d\+dy=d

N

The above equations are subject to some restrictions: If 4 = 0 we must assume that
n = 3 in the divisor equation. Further, all undefined correlators appearing above are
set to 0, except for y,, 7, € A*(E) we define

O1/e o= (7).

Let {p;} be a nef (i.e. pairs nonnegatively with all effective curve classes in A (E, Z.))
basis for A'(E, Z))/torsion, and let {g;} be formal homogeneous parameters such that
> ;deg(gi)pi = c1(X) — ci(E) modulo ann(Ep). The WDVV-relations imply the
associativity of the quantum product defined by

Aixp A= (A A A Fg A",
d.k
Jin

where ¢? = [[,¢;* . Note that the product is homogeneous with the chosen grading.

1.4. QUANTUM HYPERPLANE PRINCIPLE

Let /1 be a formal homogeneous variable of degree 1. Let e£, be the map induced from
the push-forward ey, by passing to the quotient (3). Use Ei,d to denote the top Chern
class of the kernel in (8), thus E; ; = EOE’M. Consider the following degree 0 vector in

A*(E)lg, i '1):
E
_ ~pIn(g)/h L.d
=Pl Zq el*<h(h—cl)>

— opIn(@)/n Z y <h(hAi C)>EA1

where plng =), In(g;)p;, and the convention (A;/(/i(h — c)))OEAi =1 is used. Sup-
pose H = ®L; is a sum of convex line bundles on X. If ¢|(X) — ¢;(E @ H) is nef,
the quantum hyperplane principle suggests an explicit relationship between Jg
and Jggy via the following adjunct in 4*(E & H)|[g, )

(10)

E,
E q figey, hii—cn )’ (11)
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where

LCI(LI)
He=T] [] (@ +mn,

i m=1

and the ¢;’s are regraded so that ), deg(q:)p; = c1(X) — c1(E & H) modulo ann(Ey).
Hence, by assumption, all deg(q;) > 0. The precise statement is:

The vectors I and J ey coincide up to a mirror transformation of the following type:

(1)  multiplication by a exp(b/h) where aand b are homogeneous q-series of degree 0 and
1 respectively,
(i1) coordinate changes In q;\— In q; + f; , where f; are homogeneous g-series of degree
0 without constant term.
Further, the mirror transformation is uniquely determined by the first two
coefficients in the h™'-Taylor expansion of 17 and Jpen.

THEOREM 2. If X is a homogenous space and E is equivariant with respect to a
maximal torus action on X, then the quantum hyperplane conjecture as formulated
above is true.

Proof. The proof in [18] for rank(E) = 0 extends with minor modifications to the
general case. [

Remark 1. An early version of this principle appeared in [3]. Givental formulated
and proved the rank(E) = 0 case for toric manifolds [14, 15]. The above formulation
when rank(£) = 0 is due to B. Kim [18]. Extending the conjecture of B. Kim we
expect that the principle holds for more general X. In [26] the conjecture was tested
on a nonconvex, nontoric manifold.

Remark 2. An analogue generalization of the hyperplane principle in [13, 17] for
concavex H can be formulated with E convex/concave. The proof in [18] extends
to cover these cases when X is homogenous. See also [22].

1.5. DIFFERENTIAL EQUATIONS

The vector Jg encodes all the E-restricted one-point GW-invariants. Reconstruction
using TRR [23] shows that these are determined by two-point GW-invariants
without ¢’s. This is organized nicely in terms of differential equations [8, 15]. Con-
sider the quantum differential equation

hqk%T:pk w2 T, k=1,... rank(4'(E)), (12)
k

where 7 is a series in the variables Ing; and /=" with coefficients from A*(E). The
WDVV-relations imply that the system is solvable. An application of the divisor
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equation and TRR [23, 26] shows that Jz = (S, )£ for fundamental solution S of
(12). In particular, if ¢;(X) — ¢|(E) is positive the hyperplane principle, when true,
yields an algebraic representation of the (quantum) D-module generated by Jgrgy.

Remark 3. A useful application of Theorem 2 is the following: for partial flag
manifolds F = F(ny, ..., n,, n) with universal sub-bundles U,, and quotient bundles
0,,, one may consider vector bundles E that are direct sums of bundles of type

A U’Zl ® NP2 Q""z ® S U,Z; ® S Qn[4~

If ¢ (F) — c¢1(E) is positive, the E-restricted quantum cohomology can in principle be
computed using localization techniques, and the theorem will yield the quantum
D-module for the nef (and, in particular, the Calabi—Yau) cases of type E & H, with
H decomposable.

2. The Pfaffian Variety

Let V be a vector space of dimension 7 and consider the projective space P = P(A*V)
with universal 7 x 7 skew-symmetric linear map a: V3 (—1) — Vp, where Vp denotes
the trivial vector bundle on P with fiber V. Define M C P as the locus where
ranke < 4. The scheme structure is determined by the Pfaffians of the diagonal
6 x 6-minors. The variety is locally Gorenstein of codimension 3 in P with canonical
sheaf Oy (—14). Its singular locus, which is the rank 2 degeneracy locus of «, is of
codimension 7 in M [6]. This implies that the intersection M* = M NP with
a general linear sub-space P** in P is of dimension k, has canonical sheaf
Ou(3 — k), and is smooth when k < 6.

We recall a classic construction for degeneracy loci (see, for instance, [12],
Example 14.4.11). Let G = Grass4(}') be the Grassmannian of 4-planes in V' with
universal exact sequence

0-U—->Veg—>0—0.

Pulling everything back to PG = P x G, we regard A>U(1) as a sub-bundle of
A2Vpg(1), where the twists are with respect to Op(1). The map o induces a regular
section o of the convex rank 15 quotient bundle on PG

A:= N2 Vpg(1)) A2 UQ).

LEMMA 1. The zero-scheme V(&) C PG projects birationally onto M. Moreover, the
projection is isomorphic over the nonsingular locus of M.

For a general linear sub-space P*** in P, let (4%, @) denote the pull-back of the
pair (4, @) to P**3 x G. By Lemma 1, V(&) projects isomorphically to M* for k < 6.

We are now set to compute the quantum D-module of the Calabi—Yau variety M?
using Theorem 2. This can in principle be done from any of the A*-restricted (k > 4)
GW-theories. We provide details for the case E = A°.
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First, we need to determine the cohomology ring 4*(E). Pull-backs to P’ x G of
the Chern classes p = ¢;(Op(1)) and y; = ¢;(Q),i =1, 2, 3, generate the Q-algebra
A*(P° x G), and induce generators of A*(E).

LEMMA 2.

(1) The Q-algebra A*(E) is generated by p and vy, with top degree monomial values as
follows.

=14, pY, =28,  pyi=59, 7 =117.

In particular the Betti numbers of A*(E) are [1,1,2,2,2,1,1]
(ii) We have the relation y, = 2p.

Proof. Computed using Schubert.* ]

Our choice of basis {A;} for 4*(E) is the following:

{Lp.p* v2, 0, 02, 0. P*72. P°. PO}

Rather than to work directly with the solutions (10) and (11) we prefer to work with
their governing differential equations. The quantum differential equation (12) is
determined by the two-point numbers (A;, A;)5 for all d in 41(E, Z) ~ Z. A simple
dimension count shows that these are 0 unless

codim(A;) + codim(A;) = 54 3d. (13)
LEMMA 3. Values of d = 1 GW-invariants satisfying (13) are as follows:

PP =238, (. p )E =204, (P, pPy)T = 6617,
(2.0 =504, (p*, p")f = 1568,
PP =980.  (pfphE=3220,  (p°.p°)F = 9800

Proof. 1t follows from Lemma 2 that the map (4) identifies d with the curve class
(d,2d) in 4;(P° x G, Z), so the GW-invariants are integrals over (P? x G420

Localization. Consider the standard action of T = (C*)!° x (C*)” on P’ x G. Since
the integrands are polynomials in Chern classes of equivariant vector bundles with
respect to the induced T-action on (P° x G)(4.24)» they may be evalued using Bott’s
residue formula (see [10, 20]). As there are only finitely many fixed points and curves
in P’ x G, the formulae involved are similar to the ones found in [20]. Details are left
to the reader. The two-point integrals with d = 1 were evaluated in this manner.

*A MAPLE package for enumerative geometry written by S. Katz and S.-A. Stremme.
Software and documentation available at http://www.math.okstate.edu/katz/schubert.html.
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Reconstruction. The number (p°, p®)¥ is however more easily obtained from d = 1
numbers using the following WDV V-relations:

5 5 6 6
() Ger ) G ) (0, 19
D"V V272 P 272 \p 272 PP V272
In fact, a further analysis* shows that the 3-point d = 1 numbers appearing in the
equations (14) are in turn determined by the 2-point d = 1 numbers above.  []

Remark. Employing a description in [9] of the class in Grass,(A V) of lines on M,
the d = 1 GW-invariants which only involve powers of p can be computed without
using Bott’s formula.

Consider the differential equation (12), with invariants as in Lemma 3 and / = 1.
Denote g =¢q; and D = ¢d/dg. By reduction we find the (order 10, degree
5)-differential equation P(D) =Y, ¢ P4(D) = 0, with P, as below, for Jg(/i = 1).

Py=3D"(D — 1),

P, = D*(194D7 — 776D° + 1072D° — 1405D* — 1716D° — 1272D*—
— 414D — 51),

Py =343D' — 1715D° + 3185D% — 58593D7 — 55484D° — 460D° + 10697D*+
+ 1850D% — 896D — 480D — 96,

Py = —99127D7 4+ 22736D° — 11772D* — 34797D> — 31654D*—
— 13495D — 2175,

Py = —19551D% — 39102D° — 31360D* — 11524D — 1430,

Ps =343(D + 1).

Let H = 30p(1) and assume / = 1. The adjunct ¥ is obtained by correcting the
¢“-coefficients of Jx with the class Hy = [J%_,(p + m)*. A reformulation of this
transformation on the corresponding differential equations takes the same form**.
That is, the differential operator

5 d
> q'Pq [ [+ m)’ (17)
d=0 m=1

annihilates 7. Recall that the commutation rule is Dg — ¢D = q. If we factor out the
“trivial” term D3(D — 1) from the left of (15) and re-organize the terms we recover
the Picard—Fuchs operator (1).

*For instance, using Farsta, a computer program written by A. Kresch, available at http://
www.math.upenn.edu/kresch/computing/farsta.html.

**This is a general principle when rankA'(E) = 1. It is easily proved using recursion formulas
for solutions of differential equations [3, 26].
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Proof of Theorem 1. From (9) it follows that (p, p. p)’ = (p. p. p)’. Using (12) it

is straightforward to check that D>1/KD? is the differential operator governing
J s (see, for instance, [26]). The rest follows from Theorem 2. O

The first five curve numbers are

ny =588, np = 12103, n3 = 583884, ny = 41359136, ns = 3609394096.
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