
TWO REMARKS ON EXTREME FORMS 

MARTIN KNESER 

1. Introduction. The following remarks concern two different parts of the 
theory of extreme quadratic forms. In §2, I shall give a new proof for the 
theorem of Voronoï (4), which asserts that a form is extreme if and only 
if it is both perfect and eutactic. (For the definitions see, e.g., Coxeter (2) 
or the text below.) There is indeed a comparatively simple proof in Bachmann's 
Zahlentheorie, IV, 2. For two reasons, however, it may not be useless to 
communicate another proof here. First, I shall prove the necessity and the 
sufficiency in one step, and second, as a consequence, my proof requires a 
minimum of calculation. In §3, I shall add a new senary extreme form to 
Hofreiter's list (3) and Coxeter's paper (2). This form was found independently 
by Barnes (see the succeeding paper (1)). I therefore restrict myself to 
determining its group of automorphs, which is not done in Barnes's paper. 

2. Voronoï's theorem. In this section, we denote: real symmetric 
(n X w)-matrices by capital letters A, B, . . . , the \n{n + 1)-dimensional 
space of these matrices by R; vectors, considered as (n X 1)-matrices, by 
small letters x, yy . . . ; the transposition of a matrix by a prime, and real 
numbers by Greek letters. Let x'Ax be a positive definite quadratic form, 
and fx(A) the minimum of x'Ax taken over all x with integer coordinates not 
all 0. This minimum is attained at a finite number of vectors, called minimal 
vectors; for these we shall reserve the letter m. The form xfAx is called extreme 
if the quotient 

8(B) = fx(B) det(B)~1/n 

has a local maximum at B = A, i.e., if 8 (A + C) K 8(A) for all matrices 
C G R whose elements are sufficiently small. Since 8(XB) = 8(B), we may 
restrict C to a hyperplane through the origin not containing A, e.g. the 
hyperplane H of R defined by tr(^4-1C) = 0. Continuity shows that, for small 
C, A + C is positive definite and the minimal vectors of A + C are contained 
among those of A. Hence 8(A + C) < 8(A) means that for at least one 
minimal vector m of A, the inequality 

(1) rn'(A + C)m.det(A + C)~1/n < mfAm.det(A)-1/n 

holds; or, what is the same, the union of thv regions Km of C s such that 
A + C is positive definite and (1) holds, contains a neighbourhood of the 
origin 0 in R; or, finally 

(a) \JmH r\ Km contains a neighbourhood of 0 in H. 

Now, the following lemma shows that Km is convex and H P\ Km is strictly 
convex. 
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LEMMA. Let m be a fixed vector and X > 0. The set K of positive definite 
symmetric matrices C satisfying the inequality m'Cm < X det(C)1/w is a convex 
cone with its vertex at the origin 0. If His a hyperplane not containing 0, H C\ K 
is strictly convex (i.e., if C and D are in HC\K and if 0 < r < 1, then 
TC + (1 — T)D is an inner point of H C\ K). 

Proof. We have to show that if C and D are in K, so is TC + (1 — r)D, and 
that the latter is an inner point unless D — KC. Since K obviously is a cone, 
we may replace D by a scalar multiple and so may assume 

m'Cm = m'Dm = m'(rC + (1 — r)D)m. 

It remains to prove that the inequalities 

det(C)1/n > M = m'Cm.\~l , det(Z>)1/n > M 

imply det(rC + (1 — r)D)1/n > /x with equality only if D = C. This is well 
known. It is proved by transforming C and D simultaneously to diagonal 
form and then applying the inequality 

II (m + (1 - T)*,)1* > rll yi
Un + (1 - r)fl hVa. 

Moreover, Km possesses a tangent hyperplane at the origin. This will be 
shown by developing (1) into a power-series in the elements of C and taking 
the linear terms only. In point of fact, write (1) in the form 

1 + m'Cm »{A)-1 < det(E + A~lC)lln. 

For the half-space determined by the tangent hyperplane and containing Km, 
we then obtain the linear inequality 

m'Cm fi (A T 1 < - t r ( ^ ~ 1 C ) . 
n 

Restricting C to H> we obtain 

lm(C) — m'Cm < 0. 

Next we show that (a) is equivalent to 

(b) The half-spaces lm(C) < 0 cover the whole space H except 0. 

First suppose (a) holds. Let C ^ 0 be any point of H. It follows from (a) 
that there exist an m and a X > 0 such that XC is in Lm = H C\ Km. Since 
Lm is strictly convex, /zC is an inner point of Lm if 0 < M < X, and thus 

lm(C) = ix-Hm{nC) < 0, 

which proves (b). Conversely, suppose (b) holds. Let S be the unit sphere in 
H. For every C 6 S there is an m with lm(C) < 0. Since lm = 0 is the tangent 
hyperplane of Lm at 0, there exists a X > 0 such that XC is an inner point of 

https://doi.org/10.4153/CJM-1955-018-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-018-2


TWO REMARKS ON EXTREME FORMS 147 

Lm. Then there is a neighbourhood U of C on 5 such that pD 6 Lm for every 
D £ U and 0 < M < X. As 5 is compact, it is covered by a finite number of 
f/'s. Denote by X0 the minimum of the corresponding X's. Then the solid 
sphere of radius X0 is contained in l)mLm, which proves (a). Transforming (b) 
into a statement about the complementary half-spaces lm(C) > 0, we get 

(c) 0 is the only point of H common to all the half-spaces lm{C) > 0. 

Now, let H' be the space of linear forms on H, and M d H' the convex set 
generated by 0 and the lm. Since the elements / of any hyperplane in H' 
passing through the origin satisfy an equation 1(C) = 0 with some fixed 
C 7^ 0, the statement (c) means that there is no hyperplane through 0 in 
H' leaving M on one side. Since M is convex, a neighbourhood of 0 in H' is 
contained in M. This assertion can be divided into two parts. First, Hf is the 
linear space generated by M, i.e., M is not contained in any hyperplane 
in Hf. This means that there is no hyperplane passing through 0 and the lm. 
Second, 0 is an inner point of M relative to the linear space generated by M, 
i.e., there are numbers p0, pm > 0 with sum 1, such that 0 = po.O + S Pmlm-

m 

We may multiply this equation by an arbitrary positive number, and so 
the condition that the sum of the coefficients is 1 may be dropped. We have 
the following two statements which, together, are equivalent to (c). 

(d) The equations lm(C) = 0 have no common solution C ^ 0 in H. 

(e) There exist positive numbers pm such that £ pmlm(C) = 0 for all C 
in H. 

Since H is defined by tr(^4_1C) = 0, (e) is equivalent to 

(2) X) Pm m'Cm = o- t r ^ C ) for all C in Ry 
m 

with some constant o\ Putting C = A we get <r > 0. If C = x.x' we obtain 

(3) X Pm(m'x)2 = vtriA^xx') = o-tr(x'4_1x) = a x'A~lx. 
m . . . . . . ... é 

This means that A is eutactic. Conversely (2) follows from (3), since every 
symmetric matrix C is a linear combination of matrices of the type xx' (this 
is nothing else than the well-known theorem that every quadratic form is a 
linear combination of squares of linear forms). Finally, (d) and (e) also imply 
that the equations m'Cm = 0 have no common solution in R, except C = 0. 
For, if C is a solution, (2) implies C 6 H and then C = O according to (d). 
This means that A is perfect and so we have proved 

VORONOI'S THEOREM. A positive definite quadratic form is extreme if and only 
if it is both perfect and eutactic. 

3. The new senary extreme form. The senary form 
3 / 6 \ 2 

XfAx = 2 (*< — ****+3 + *ffs) + 1 S * i ) 
i= l \ i= l / 
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with the matrix 

A = 

\ 

2 1 1 | 1 1 
1 2 1 1 \ 1 
112 11§ 
| 1 1 2 11 
1 ^ 1 1 2 1 
1 1 \ 1 1 2. 

\ 

has determinant 2~6.33.13 and minimum 2. There are 21 pairs -^ztvii of minimal 
vectors. First, the pairs i r a * (i = 1, . . . , 6) of unit vectors with ith coordinate 
± 1 , all others 0; second, 12 pairs i m * (i = 7, . . . , 18) with xk = 1, x* = — 1 
(& = / mod 3) and x^ = 0 if j ^ &, l; third, three pairs ± m j (i = 19, 20, 21) 
with coordinates obtained from x\ — x± = 1, x2 = #5 = — 1, #3 = #6 = 0 by 
permuting the values 1, — 1, 0. That A is perfect is seen by an easy calculation. 
That it is eutactic follows from the identity 

6 18 21 

(4) 39 y'Ay = 6 E Wyf + 5 £ {m'dyf + 7 £ (™'4;y)2 

i= l z=7 z'=19 

which, by the substitution y = A~lx, yields a formula of type (3). The 
representation (4) of y'Ay as a linear combination of the squares of the linear 
forms m [A y is unique. This fact is important for the determination of the 
group of automorphs of A, i.e., of those unimodular matrices U which trans­
form A into itself: U'A U = A. At the first glance there is a group G of 48 
automorphs, namely those permutations of the variables xt, which change 
each pair (x2-, xi+s) into a pair of the same kind. We shall show that G com­
bined with ± E is the whole group of automorphs of A. Obviously every U 
permutes the minimal vectors and preserves the scalar products m^Am^. 
Now U transforms the representation (4) into another of the same kind, with 
Urrii instead of m*. Since (4) is unique and the first coefficient, 6, is different 
from the two others, 5 and 7, U permutes the pairs ±w< (i = 1, . . . , 6) 
amongst each other. This permutation is such that any quadruple zhmu 

=hmi+3 changes into one of the same kind, because m'tAmk = 1 or ^ 1 accord­
ing as Ï ^ k or i = k mod 3. Hence we can write every automorph as a product 
of an element of G by an automorph V with Vmi — ±nii (i = 1, . . . , 6). 
As m\Amki ^ 0, the sign must be the same for all i and so V — =bE. Therefore 
the total group of automorphs is the direct product of G and the cyclic group 
dtzE of order two. 

As we have seen, the group of automorphs is not transitive on the minimal 
vectors, contrary to most other known extreme forms (2), nor is it irreducible. 
The irreducible subspaces are: One of dimension one, generated by 

6 

one of dimension two, generated by Wig, m2o, ^2iî one of dimension three, 
generated by n\ = m\ — m±,n2 = m2 — m^nz = m% — ra6. The representation 
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of G in the third subspace is isomorphic. G induces all transformations of the 
form fit —» ±nk, i—>k being any permutation and ± any combination of 
signs. So G is isomorphic to the extended octahedral group. This completes 
the determination of the structure of the group of automorphs. 
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