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Freeness and The Partial Transposes of
Wishart Random Matrices

James A. Mingo andMihai Popa

Abstract. We show that the partial transposes of complex Wishart random matrices are asymptoti-
cally free. We also investigate regimes where the number of blocks is ûxed but the size of the blocks
increases. _is gives an example where the partial transpose produces freeness at the operator level.
Finally, we investigate the case of real Wishart matrices.

1 Introduction

Supposewehave amatrixA inMd1(C)⊗Md2(C). We canwrite this as a blockmatrix.

A =

⎛
⎜
⎜
⎜
⎜
⎝

A(1, 1) ⋅ ⋅ ⋅ A(1, d1)

⋮ ⋮

A(d1 , 1) ⋅ ⋅ ⋅ A(d1 , d1).

⎞
⎟
⎟
⎟
⎟
⎠

.

with each A(i , j) ∈ Md2(C). We can form two partial transposes of this matrix.

A Γ
=

⎛
⎜
⎜
⎜
⎜
⎝

A(1, 1) ⋅ ⋅ ⋅ A(d1 , 1)

⋮ ⋮

A(1, d1) ⋅ ⋅ ⋅ A(d1 , d1).

⎞
⎟
⎟
⎟
⎟
⎠

, AΓ
=

⎛
⎜
⎜
⎜
⎜
⎝

A(1, 1)T ⋅ ⋅ ⋅ A(1, d1)
T

⋮ ⋮

A(d1 , 1)T ⋅ ⋅ ⋅ A(d1 , d1)
T .

⎞
⎟
⎟
⎟
⎟
⎠

.

In quantum information theory the partial transpose has been used as an entan-
glement detector. Suppose that A is a positive matrix in Md1(C) ⊗ Md2(C). Re-
call that A is entangled if we cannot ûnd positive matrices B1 , . . . , Bk ∈ Md1(C) and
C1 , . . . ,Ck ∈ Md2(C) such that A = ∑

k
i=1 A i ⊗ B i . If a positive matrix fails to have a

positive partial transpose, then thematrixmust be entangled. Itwas shown byAubrun
[2] that in a particular regime of theWishart distribution, the partial transpose of a
positivematrix is typically entangled. He also showed that the limiting distribution of
a partially transposedWishartmatrix is semi-circular. _iswas quite unexpected. We
revisit his theorem and show that the conclusion can be explained by the requirement
that the non-crossing partitions that survive in the limit have to remain non-crossing
when the order of elements is reversed.
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In this paper we show that in addition to transforming aMarchenko–Pastur into
a semi-circular distribution, the partial transpose also produces freeness in two dif-
ferent regimes. _e ûrst is when both d1 and d2 tend to inûnity; we show that when
W is aWishart matrix,W ,W Γ,WΓ , andWT are asymptotically free in the complex
case and that W =WT andWΓ =W Γare asymptotically free in the real case.

_e second regime is the one considered by Banica and Nechita [3] where we ûx
d1 and let d2 tend to ∞. In this case we show that W and WΓ are asymptotically
free. As (W Γ)T = WΓ , one has that W ΓandWΓ have the same limit distributions.
Banica and Nechita showed that the limit distribution of d1W Γcould be written as
the free diòerence of two Marchenko–Pastur distributions. We can show that in the
same regime andwhen d1 = 2, one canwrite the limit distribution of d1W Γas the sum
of two free operators X1 and X2 coming from the diagonal and oò-diagonal parts of
d1W Γ. More precisely, if we write aMarchenko–Pastur random variable w as a block
matrix

w =
1
2
(
w11 w12
w21 w22

) , X1 = (
w11 0
0 w22

) , X1 = (
0 w21
w12 0 ) ,

then d1w Γ= X1 + X2 and X1 and X2 are free. Moreover, X1 is a Marchenko–Pastur
random variable with the same distribution as 2w, and X2 is an even operator whose
even cumulants are the same as those of X1. So, by writing d1w Γas a sum as opposed
to a diòerence, we get a natural representation for the two operators.

_e connection of the transpose to freeness goes back to the work of Emily Re-
delmeier on real second order freeness [13]. She showed that the �uctuationmoments
of real Gaussian andWishart matrices require the transpose to be taken into account.
Later in [9] the authors showed that the transpose can also appear at the ûrst order
level. Namely, that formany complex ensembles a randommatrix could be asymptot-
ically free from its transpose. Before this, the known examples of asymptotic freeness
required independence of the entries; see [10, Ch. 4] and [11, Lect. 23, 24] for exam-
ples.

Our main tool here is the explicit evaluation of the mixed moments of the four
matrices W ,W Γ,WΓ , andWT and then to show that mixed cumulants must vanish,
thus demonstrating freeness. In order to achieve thiswe use the technique of doubling
of indices, which already appeared in the work of Redelmeier [12, 13].
Besides the transpose one can consider the action of other positive linear maps

on the blocks of matrices and the eòect on the limit eigenvalue distribution. _is
was considered in considerable generality in the recent paper of Arizmendi,Nechita,
and Vargas [1]. A third regime was considered by Fukuda and Śniady in [6] and a
connection to meander polynomials was found.

_e outline of the paper is as follows. In section 2we establish the notation needed
for our calculations. _e main method for computing mixed moments is to expand
the expression as a sum over the symmetric group. _is part is presented in _eo-
rem 3.7. In Section 4 we determine which permutations contribute to the limit. _e
main result in this section is Proposition 4.7. In Section 5 we consider the limit dis-
tributions of our partially transposed operators in the two regimes. In particular, we
will show that the operators X1 and X2 mentioned above are free. In Section 7 we
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present our main results, the asymptotic freeness of our partially transposedWishart
matrices. In Section 8 we consider the situation for real Wishart matrices.

2 Notation and Statement of Results

Suppose G1 , . . . ,Gd1 are d2 × p random matrices where G i = (g(i)jk ) jk and g(i)jk
are complex Gaussian random variables with mean 0 and (complex) variance 1, i.e.,
E(∣g(i)jk ∣2) = 1. Moreover, suppose that the random variables g(i)jk }i , j,k are indepen-
dent. _en

W =
1

d1d2

⎛
⎜
⎝

G1
⋮

Gd1

⎞
⎟
⎠
(G∗

1 ⋅ ⋅ ⋅ G∗
d1

) =
1

d1d2
(G iG∗

j )i j

is a d1d2 × d1d2 complex Wishart matrix. We writeW = d−1
1 (W(i , j))i j as a d1 × d1

block matrix with each entry the d2 × d2 matrix d−1
2 G iG∗

j . From this we get four
matrices {W ,W Γ,WΓ ,WT} deûned as follows:
● WT = 1

d1
(W( j, i)T)i j is the “full” transpose

● W Γ= 1
d1
(W( j, i))i j is the “le�” partial transpose

● WΓ = 1
d1
(W(i , j)T)i j is the “right” partial transpose

Note that the X ↦ XΓ notation conceals the dependence on d1 and d2. _us, as
the size of thematrix grows, these operators might be expected to behave diòerently,
depending on the way d1 and d2 grow.

If the random variables {g(i)jk }i , j,k are real Gaussian random variables with mean
0 and variance 1, then W is a real Wishart matrix. For many eigenvalue results there
is no distinction between the real and complex case. In [9] we showed that when it
comes to freeness there is a diòerence, in particular with respect to the behaviour of
the transpose. In this paper we show that with the partial transpose we continue to
see a diòerence between the real and complex cases.

If we assume that d1 , d2 → ∞ and that p
d1d2 → c, 0 < c < ∞, then the eigenvalue

distributions ofW andWT converge to Marchenko–Pastur with parameter c. _is is
the distribution on R+ that has density

√
(b − t)(t − a)/2πt on [a, b] and an atom

of weight (1 − c) at 0 if c < 1; we set b = (1 +
√
c)2 and a = (1 −

√
c)2.

Note thatwe are usingwhat onemight call the free probabilist’sMarchenko–Pastur
law. In our normalization, all the cumulants are equal to c. For the relation between
the two see [10, Ch. 2 Remark 12]. With this normalization we can restate Aubrun’s
theorem.

Suppose limd1 ,d2→∞
p

d1d2 = c, then the eigenvalue distributions ofW ΓandWΓ converge
to a shi�ed semi-circular operator with mean c and variance c.

Our main results are the following theorems.

_eorem 2.1 Suppose limd1 ,d2→∞
p

d1d2 = c; then the family {W ,W Γ,WΓ ,WT} is
asymptotically free in the complex case, and the family {W ,WΓ} is asymptotically free
in the real case.
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_eorem 2.2 Suppose d1 is ûxed and limd2→∞
p

d1d2 = c; then the family {W ,WΓ} is
asymptotically free in the complex case.

In M2(C), let {E i j}
2
i j=1 be the standardmatrix units. For convenience of notation

we write E i j for E i j ⊗ Id2 ∈ M2(C)⊗Md2(C).

_eorem 2.3 Suppose d1 = 2, p, d2 → ∞, and limd2→∞
p

d1d2 = c. _en
{W ,W Γ, E i j}

2
i ,=1 has a limit joint distribution, {w ,w Γ, e i j}2

i , j=1, in a non-commutative
∗-probability space (A, φ). Relative to thematrix units {e i j}2

i , j=1, we write

w =
1
2
(
w11 w12
w21 w22

) and w Γ
=

1
2
(
w11 w21
w12 w22

) .

_en X1 = ( w11 0
0 w22

) and X2 = ( 0 w21
w12 0 ) are free, X1 has a Marchenko–Pastur distri-

bution with parameter 2c, and X2 is an even operator with all even cumulants equal
to 2c.

3 A General Formula for Mixed Moments

Let A1 , . . . ,An be N × N matrices. _en

(3.1) Tr(A1 ⋅ ⋅ ⋅An) =
N
∑

i±1 , . . . , i±n=1
a(1)i1 , i−1

a(2)i2 , i−2 ⋅ ⋅ ⋅ a
(n)
in i−n ,

where the sum runs over all i∶ [±n]→ [N] such that

i(−1) = i(2), i(−2) = i(3), . . . , i(−n) = i(1).

Remark 3.1 We wish to use the symmetric group Sn of permutations on [n] =

{1, 2, 3, . . . , n} to keep track of the partial transposes. So we introduce the follow-
ing notation. Given a permutation σ in Sn , we extend σ to be a permutation on
[±n] = {1,−1, 2,−2, 3,−3, . . . , n,−n} by setting σ(−k) = −k for k > 0. We let δ
be the permutation of [±n] given by δ(k) = −k for all k ∈ [±n] and γ ∈ Sn be
the permutation with one cycle: γ = (1, 2, 3, . . . , n). With our conventions we have
γδγ−1 = (1,−n)(2,−1)(3,−2) ⋅ ⋅ ⋅ (n,−(n − 1)). _e condition in (3.1) now becomes
i = i ○ γδγ−1.

To show that the family {W ,W Γ,WΓ ,WT} is asymptotically free,we have to com-
pute the expectation of the trace of arbitrary words in {W ,W Γ,WΓ ,WT}. For this
we use the following notation.

Let (є, η) ∈ {−1, 1}2 = Z2
2. We set

W(є ,η)
=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

W if (є, η) = (1, 1),
W Γ if (є, η) = (−1, 1),
WΓ if (є, η) = (1,−1),
WT if (є, η) = (−1,−1).
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Let (є1 , η1), . . . , (єn , ηn) ∈ Zn
2 , then an arbitrary word in {W ,W Γ,WΓ ,WT} is

W(є1 ,η1) ⋅ ⋅ ⋅W(єn ,ηn) andwe seek towrite limd1 ,d2→∞ E(tr(W(є1 ,η1) ⋅ ⋅ ⋅W(єn ,ηn))) as a
sum of free cumulants.

To achieve this we need to introduce still more notation. We shall suppose that n,
the length of the word, is ûxed for themoment. Now given (є1 , є2 , . . . , єn) we denote
by є the permutation of [±n] given by є(k) = є∣k∣k; here k ∈ [±n], but ∣k∣ > 0, so є∣k∣
means the k th element of our vector (є1 , . . . , єn). Similarly given (η1 , . . . , ηn) we get
the permutation η of [±n]. Note that δ, є and η all commute with each other.

We shall think ofW ,W Γ,WΓ , andWT as random elements ofMd1(C)⊗Md2(C).
On this algebra we have a trace Tr⊗Tr; we also have the normalized trace tr⊗ tr =

1
d1d2 Tr⊗Tr.

Lemma 3.2 With the notations above, we have that

(3.2) E ( Tr⊗Tr(W(є1 ,η1) ⋅ ⋅ ⋅W(єn ,ηn))) =

(d1d2)
−n
∑

j±1 , . . . , j±n
∑

s±1 , . . . ,s±n
∑

t1 , . . . ,tn
E(g( j1)

s1 t1 ⋅ ⋅ ⋅ g
( jn)
sn tn g( j−1)

s−1 t1 ⋅ ⋅ ⋅ g
( j−n)
s−n tn ),

where the summation is subject to the conditions that j = j ○ єγδγ−1є, s = s ○ ηγδγ−1η.

Proof We have

Tr⊗Tr (W(є1 ,η1) ⋅ ⋅ ⋅W(єn ,ηn))

= d−n
1

d1

∑
i1 , . . . , in=1

Tr ((W(є1 ,η1))i1 i2 ⋅ ⋅ ⋅ (W
(єn ,ηn))in i1)

= d−n
1

d1

∑
i±1 , . . . , i±n=1
i=i○γδγ−1

Tr ((W(є1 ,η1))i1 i−1 ⋅ ⋅ ⋅ (W
(єn ,ηn))in i−n)

= d−n
1

d1

∑
j±1 , . . . , j±n=1
j= j○єγδγ−1є

Tr (W( j1 , j−1)
(η1) ⋅ ⋅ ⋅W( jn , j−n)

(ηn)) .

To achieve the last step we let j = i ○ є. Also we have adopted the convention that for
A amatrix in Md2(C) we let A(1) = A and A(−1) = AT.

Next wemust expand Tr(W( j1 , j−1)
(η1) ⋅ ⋅ ⋅W( jn , j−n)

(ηn)):

Tr (W( j1 , j−1)
(η1) ⋅ ⋅ ⋅W( jn , j−n)

(ηn))

=
d2
∑

r±1 , . . . ,r±n=1
r=r○γδγ−1

(W( j1 , j−1)
(η1))r1 r−1 ⋅ ⋅ ⋅ (W( jn , j−n)

(ηn)) rn r−n

=
d2
∑

s±1 , . . . ,s±n=1
s=s○ηγδγ−1η

(W( j1 , j−1)) s1 s−1
⋅ ⋅ ⋅ (W( jn , j−n)) sn s−n
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= d−n
2 ∑

s±1 , . . . ,s±n
(G j1G

∗
j−1

) s1 s−1
⋅ ⋅ ⋅ (G jnG

∗
j−n) sn s−n

= d−n
2 ∑

s±1 , . . . ,s±n

p
∑

t1 , . . . ,tn=1
g( j1)
s1 t1 g( j−1)

s−1 t1 ⋅ ⋅ ⋅ g
( jn)
sn tn g

( j−n)
s−n tn .

Hence the conclusion follows.

Next we need to compute E(g( j1)
s1 t1 ⋅ ⋅ ⋅ g

( jn)
sn tn g( j−1)

s−1 t1 ⋅ ⋅ ⋅ g
( j−n)
s−n tn ). We shall use the com-

plex form ofWick’s rule that says that if g1 , . . . , gm are independent N(0, 1) random
variables and α1 , . . . , αn , β1 , . . . , βn ∈ [m], then E(gα(1) ⋅ ⋅ ⋅ gα(n)gβ(1) ⋅ ⋅ ⋅ gβ(n)) is the
number of permutations σ ∈ Sn such that for all k ∈ [n]we have β(k) = α(σ(k)); see
Janson [7, p. 13].

_us, we let gα(k) = g( jk)
sk tk and gβ(k) = g( j−k)

s−k tk . So if σ ∈ Sn and β(k) = α(σ(k)), we
have

(3.3)

s(−k) = s(σ(k)) for k > 0,
j(−k) = j(σ(k)) for k > 0,

t = t(σ(k)) for k > 0.

We wish to write the ûrst two conditions as an equation involving functions on [±n].

Lemma 3.3 Let σ ∈ Sn and j∶ [±n]→ [d]. We have j(−k) = j(σ(k)) for all k > 0 if
and only if j = j ○ σδσ−1.

Proof Suppose that for k > 0 we have j(−k) = j(σ(k)). _en for k > 0 we have
j ○ σδσ−1(k) = j(−σ−1(k)) = j(−l) = j(σ(l)) = j(k), where l = σ−1(k) > 0. Also
j ○ σδσ−1(−k) = j(σ(k)) = j(−k). _us, j = j ○ σδσ−1.

Now suppose that j = j ○ σδσ−1. For k > 0, we have that j(−k) = j ○ σδσ−1(−k) =
j(σ(k)), as claimed.

Lemma 3.4 We have

E ( g( j1)
s1 t1 ⋅ ⋅ ⋅ g

( jn)
sn tn g( j−1)

s−1 t1 ⋅ ⋅ ⋅ g
( j−n)
s−n tn ) =

∣ {σ ∈ Sn ∣ j = j ○ σδσ−1 , s = s ○ σδσ−1 , t = t ○ σ}∣ .

Proof By Lemma 3.3 and equation (3.3) we have to count the number of permuta-
tions σ such that j = j ○ σδσ−1 on the set [d1], s = s ○ σδσ−1 on the set [d2], and
t = t ○ σ on the set [p].

Remark 3.5 In the proposition belowwe use the notation #(σ) to denote the num-
ber of cycles in the cycle decomposition of σ . If σ and π are permutations, we let
σ ∨ π be the partition obtained by regarding σ and π as partitions where the blocks
of the partition are the cycles of the permutation. Now σ ∨ π denotes the supremum
of the two partitions in the lattice of partitions. Recall that the function σ ↦ #(σ) is
a central function on Sn , so #(π−1σπ) = #(σ) for all π and σ .
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Proposition 3.6 Subject to the conditions j = j ○ єγδγ−1є and s = s ○ ηγδγ−1η,

∑
j±1 , . . . , j±n

∑
s±1 , . . . ,s±n

∑
t1 , . . . ,tn

E(g( j1)
s1 t1 ⋅ ⋅ ⋅ g

( jn)
sn tn g( j−1)

s−1 t1 ⋅ ⋅ ⋅ g
( j−n)
s−n tn ) =

∑
σ∈Sn

d#(єγδγ−1є ∨ σδσ−1
)

1 d#(ηγδγ−1η ∨ σδσ−1
)

2 p#(σ) .

Proof According to Lemma 3.4, subject to the conditions j = j ○ єγδγ−1є and s =
s ○ ηγδγ−1η,

∑
j±1 , . . . , j±n

∑
s±1 , . . . ,s±n

∑
t1 , . . . ,tn

E(g( j1)
s1 t1 ⋅ ⋅ ⋅ g

( jn)
sn tn g( j−1)

s−1 t1 ⋅ ⋅ ⋅ g
( j−n)
s−n tn )

=∑
j±1 , . . . , j±n
s±1 , . . . ,s±n
t1 , . . . ,tn

∣ {σ ∈ Sn ∣ j = j ○ σδσ−1 , s = s ○ σδσ−1 , and t = t ○ σ}∣

= ∑
σ∈Sn

∣ {( j, s, t) ∣ j = j ○ σδσ−1 , s = s ○ σδσ−1 , and t = t ○ σ}∣

= ∑
σ∈Sn

d#(єγδγ−1є ∨ σδσ−1
)

1 d#(ηγδγ−1η ∨ σδσ−1
)

2 p#(σ) .

To get the last equality we recall that the condition on j is that it must simultaneously
satisfy j = j ○ єγδγ−1є and j = j ○ σδσ−1. _en j must be constant on the cycles of
єγδγ−1є and of σδσ−1; so j must be constant on the blocks of єγδγ−1є ∨ σδσ−1. _e
same argument applies to s. _e only condition on t is that t = t ○ σ .

_eorem 3.7 We have

(3.4) E(tr⊗ tr(W(є1 ,η1) ⋅ ⋅ ⋅W(єn ,ηn))) = ∑
σ∈Sn

(
p
d1d2

)
#(σ)

d fє(σ)
1 d fη(σ)

2 ,

where fє(σ) = #(єγδγ−1є∨σδσ−1)+#(σ)−(n+1) and fη(σ) = #(ηγδγ−1η∨σδσ−1)+

#(σ) − (n + 1).

Proof According to equation (3.2) and Proposition 3.6 we have

E ( tr⊗ tr(W(є1 ,η1) ⋅ ⋅ ⋅W(єn ,ηn)))

= (
1

d1d2
)

n+1
∑
σ∈Sn

d#(єγδγ−1є ∨ σδσ−1
)

1 d#(ηγδγ−1η ∨ σδσ−1
)

2 p#(σ)

= ∑
π∈Sn

(
p
d1d2

)
#(σ)

d#(єγδγ−1є ∨ σδσ−1
)+#(σ)−(n+1)

1

× d#(ηγδγ−1η ∨ σδσ−1
)+#(σ)−(n+1)

2

= ∑
σ∈Sn

(
p
d1d2

)
#(σ)

d fє(σ)
1 d fη(σ)

2 .
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4 Asymptotics of Permutations

_eorem 3.7 gave us an expansion ofmixedmoments of {W ,W Γ,WΓ ,WT} as a sum
over the symmetric group. We now have to determinewhich permutations contribute
to the limit. We shall show that for all є and all σ , fє(σ) ≤ 0 and determine for which
σ equality is achieved. Our ûrst goal is to show that fє(σ) < 0 unless є is constant on
the cycles of σ . Since є is arbitrary, whatever we show for є will apply to η.

_ere is a fundamental equation thatwe shall frequently use inwhat follows. Given
a subgroup, G, of the group Sn of permutations of [n], we shall say that the subgroup
acts transitively on [n] if given k, l ∈ [n] we can ûnd ρ ∈ G such that ρ(k) = l .

Given two permutations π and σ of Sn such that the subgroup generated π and σ
acts transitively, there is a non-negative integer g such that

(4.1) #(π) + #(π−1σ) + #(σ) = n + 2(1 − g);
see [10,_eorem 5.9] and [5, p. 14] for a discussion.

Recall that a pairing of [n] is a partition π of [n] with all blocks of size 2; note this
implies that n is even. _e set of all pairings of [n] is denoted P2(n). We shall also
regard such a π as the permutation whose cycles are the blocks of π. In this case, π
has no ûxed points and π2 = id. In [8, Lemma 2] we proved the following lemma.

Lemma 4.1 Let π, σ ∈ P2(n) be pairings and (i1 , i2 , . . . , ik) a cycle of πσ . Let jr =
σ(ir). _en ( jk , jk−1 , . . . , j1) is also a cycle of πσ , and these two cycles are distinct;
{i, . . . , ik , j1 , . . . , jk} is a block of π ∨ σ and all are of this form; 2#(π ∨ σ) = #(πσ).
_e cycle decomposition of πσ can be written c1c′1 ⋅ ⋅ ⋅ ckc′k where c′i = σc−1

i σ . With this
notation, the blocks of π ∨ σ are c i ∪ c′i .

Lemma 4.2 Let σ ∈ Sn and є ∈ Zn
2 be given; then є is constant on the cycles of σ if

and only if єδσδσ−1є[n] = [n].

Proof We begin by recalling (Remark 3.1) that σ acts trivially on [−n] and δσδ acts
trivially on [n], and thus noting that for k > 0

(4.2) єδσδσ−1є(k) =
⎧⎪⎪
⎨
⎪⎪⎩

єδσδσ−1(k) єk = 1,
єδσ(k) єk = −1,

=

⎧⎪⎪
⎨
⎪⎪⎩

єσ−1(k)σ−1(k) єk = 1,
−єσ(k)σ(k) єk = −1.

Suppose є is constant on the cycles of σ . _en

єδσδσ−1є(k) =
⎧⎪⎪
⎨
⎪⎪⎩

σ−1(k) єk = 1,
σ(k) єk = −1,

∈ [n].

Conversely, suppose that єδσδσ−1є[n] = [n]. _en for k > 0 by equation (4.2),

єδσδσ−1є(k) =
⎧⎪⎪
⎨
⎪⎪⎩

єσ−1(k)σ−1(k) єk = 1,
−єσ(k)σ(k) єk = −1,

and thus єσ(k) and єk have the same sign.

Lemma 4.3 Let σ ∈ Sn and є ∈ Zn
2 be given; then fє(σ) < 0 unless є is constant on

the cycles of σ .
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Proof Suppose є is not constant on the cycles of σ ; then by Lemma 4.2 we have that
єδσδσ−1є[n] meets [−n]. Both єγδγ−1є and σδσ−1 are pairings and as permutations
δ and є commute. _us, by Lemma 4.1,

2#(єγδγ−1є ∨ σδσ−1
) = #(єγδγ−1єσδσ−1

) = #(γδγ−1δ єδσδσ−1є)

= #((єδσ−1δσє)−1γδγ−1δ) .

Now #(γδγ−1δ) = 2 and #(єδσδσ−1є) = #(δσδσ−1) = #(δσδ) + #(σ−1) = 2#(σ).
Hence, by equation (4.1) there is g ≥ 0 such that

#(єδσ−1δσє) + #((єδσ−1δσє)−1γδγ−1δ) + #(γδγ−1δ) = 2n + 2(1 − g),

and thus,

fє(σ) = #(єγδγ−1є ∨ σδσ−1
) + #(σ) − (n + 1) = −(g + 1) ≤ −1.

Lemma 4.4 Suppose that σ ∈ Sn and є ∈ Zn
2 and є is constant on the cycles of σ . _en

there is a permutation σє ∈ Sn such that єδσδσ−1є = δσєδσ−1
є . Moreover, if σ = c1 ⋅ ⋅ ⋅ ck

is the cycle decomposition of σ , then σє = cλ1
1 ⋅ ⋅ ⋅ cλk

k , where λ i is the (constant) value of
є on the cycle c i .

Proof In the proof of Lemma 4.2we showed thatwhen є is constant on the cycles of
σ , we have that for k > 0

єδσδσ−1є(k) =
⎧⎪⎪
⎨
⎪⎪⎩

σ−1(k) if єk = 1,
σ(k) if єk = −1.

_us on a cycle of σ on which є = 1 we have σ−1
є and єδσδσ−1є agree and on a cycle

on which є = −1 we have σє and єδσδσ−1є agree.

Deûnition 4.5 Let π ∈ Sn be a permutation of [n] and γ = (1, 2, 3, . . . , n). We say
that π is a non-crossing permutation if #(π) + #(π−1γ) = n + 1. We shall denote by
SNC(n) the non-crossing permutations of [n].

Remark 4.6 We have already used the idea of taking a permutation of [n] and
regard it as a partition of [n] by using the decomposition of the permutation into
disjoint cycles andmaking these the blocks of a partition. Biane [4] showed that the
permutations that satisfy #(π) + #(π−1γ) = n + 1; i.e., g = 0 in equation (4.1), are
exactly those whose cycles form a non-crossing partition of [n].

Proposition 4.7 Let σ ∈ Sn and є ∈ Zn
2 . Suppose that є is constant on the cycles of σ .

_en fє(σ) ≤ 0 with equality only if σє is a non-crossing permutation.
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Proof Let єδσδσ−1є = δσєδσ−1
є as in Lemma 4.4. As in the proof of Lemma 4.3 we

have that

fє(σ) = 1
2#(γδγ

−1δєδσδσ−1є) + #(σ) − (n + 1)

= 1
2#(γδγ

−1δδσєδσ−1
є ) + #(σє) − (n + 1)

= 1
2#(σ

−1
є γ δγ−1σєδ) + #(σє) − (n + 1)

= #(σє) + #(σ−1
є γ) − (n + 1).

By equation (4.1), we have fє(σ) ≤ 0, and, according to Deûnition 4.5, σє is a non-
crossing permutation if and only if fє(σ) = 0

Remark 4.8 As an illustration let us consider two examples: є ≡ 1 and є ≡ −1. First
suppose є ≡ 1; then #(єγδγ−1є ∨ σδσ−1) = 1

2#(γδγ
−1σδσ−1) = #(σ−1γ), so σ1 = σ

and f1(σ) = #(σ) + #(σ−1γ) − (n + 1) = 0 only if σ is non-crossing. When є ≡ −1,
we have that #(єγδγ−1є ∨ σδσ−1) = 1

2#(δγδγ
−1δσδσ−1) = #(σ−1γ), so σ1 = σ−1 and

f−1(σ) = #(σ−1) + #(σγ) − (n + 1) = 0 only if σ−1 is non-crossing.

5 Limit Distributions

We assume that d1d2 → ∞ and that p
d1d2 → c, for some 0 < c < ∞. Since W and

WT areWishart matrices, their eigenvalue distributions converge to theMarchenko–
Pastur law with parameter c. Setting b = (1 +

√
c)2 and a = (1 −

√
c)2, this is the

distribution on R+ that has density
√

(b − t)(t − a)/2πt on [a, b] and an atom of
weight (1 − c) at 0 if c < 1.

_e asymptotic eigenvalue distributions ofW ΓandWΓ were described by G. Au-
burn (see [2]) for the case when d1 , d2 →∞, respectively by T. Banica and I. Nechita
for the case when d2 → ∞ (see [3]). _e calculations below give another proof of
these results and give somemore insight on the limit distributions.

Lemma 5.1 Let σ ∈ Sn and suppose that both σ and σ−1 are non-crossing in the sense
of Deûnition 4.5. _en σ can have only cycles of size 1 or 2.

Before proving Lemma 5.1, we need to recall some standard facts about permu-
tations and pairings. We recall that [±n] = {1,−1, 2,−2, . . . , n,−n}. If σ ∈ Sn is a
permutation of [n], then σδσ−1 is a pairing of [±n]; moreover if (r, s) is a pair in
this pairing, then r and s have opposite signs. We let Pδ2(±n) be the set of pairings
of [±n] that only pair a positive number to a negative number. _ere is a standard
bijection from Sn to Pδ2(±n) that we will use. For σ ∈ Sn we have σδσ−1 ∈ Pδ2(±n).
If π ∈ Pδ2(±n) then πδ leaves [n] invariant and so πδ∣[n] ∈ Sn . _ese two maps are
inverses of each other.
For example, consider γ = (1, 2, . . . , n) ∈ Sn . _en

γδγ−1
= (−n, 1)(−1, 2)(−2, 3) ⋅ ⋅ ⋅ ( − (n − 1), n) ∈ Pδ2(±n) and (γδγ−1

)δ∣[n] = γ.
Also the permutation γδ has the one cycle (1,−1, 2,−2, . . . , n,−n).

Inside Pδ2(±n) we have the non-crossing pairings of [±n], which only connect a
positive number to a negative number; we shall denote this subset by NCδ2 (±n).
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Lemma 5.2 _emap σ ↦ σδσ−1 is a bijection from SNC(n) to NCδ2 (±n).

Proof We have to check that σ ∈ SNC(n) if and only if σδσ−1 ∈ NCδ2 (±n). Note
that σδσ−1 is a pairing so that #(σδσ−1) = n. Also #((σδσ−1)−1γδ) = #(δσδσ−1γ) =
#(δσδ) + #(σ−1γ) = #(σ) + #(σ−1γ), because δσδ acts trivially on [n] and σ−1γ acts
trivially on [−n] (cf. Remark 3.1). _us, #(σδσ−1) + #((σδσ−1)−1γδ) = n + #(σ) +
#(σ−1γ). By Remark 4.6 we have that σ is non-crossing if and only if σδσ−1 is non-
crossing.

Proof of Lemma 5.1 Suppose that σ ∈ SNC(n) and i1 < i2 < i3 are distinct with
σ(i1) = i2 and σ(i2) = i3. _en γδ visits {i1 ,−i1 , i2 ,−i2 , i3 ,−i3} and (i1 ,−i2) and
(i2 ,−i3) are pairs of σ−1δσ . _us, σ−1δσ is not in NCδ2 (±n), and hence by Lemma 5.2
σ−1 /∈ SNC(n). _us, the only permutations σ ∈ SNC(n) for which σ−1 ∈ SNC(n) are
those where σ = σ−1; i.e., all cycles are singletons or pairs.

_eorem 5.3 ([2,_m. 1]) If d1 , d2 →∞, then the limit distributions ofW ΓandWΓ

are semi-circular with mean c and variance c.

Proof We let є ≡ 1 and η ≡ −1; then W(є1 ,η1) ⋅ ⋅ ⋅W(єn ,ηn) = (WΓ)n . Also fє(σ) =

f1(σ) = #(σ−1γ)+ #(σ)− (n + 1) and fη(σ) = f−1(σ) = f1(σ−1). So by equation (3.4)
we have

E ( tr((WΓ
)
n) = ∑

σ∈Sn

(
p
d1d2

)
#(σ)

d f1(σ)
1 d f1(σ−1

)

2 .

_us, byDeûnition 4.5 and Lemma 5.1, the only σ ’s that contribute to the limit are
those for which σ is non-crossing and has only blocks of size 1 or 2. Let us denote
the set of such σ ’s by NC1,2(n). We have shown that themoments ofWΓ converge to
those of an element wΓ in a non-commutative probability space (A, φ) with

φ((wΓ
)
n
) = ∑

σ∈NC1,2(n)
c#(σ) .

By themoment-cumulant formula [10, Deûnition 2.8], we have just computed the
cumulants of wΓ . Moreover, we have shown that the only non-vanishing cumulants
of wΓ are κ1 = κ2 = c. _us, the limiting distribution is semi-circular.

Remark 5.4 _emeasure onRwhose free cumulants are κ1 = κ2 = c and κn = 0 for
n ≥ 3 is the shi�ed semi-circle law. It has density 1

2πc

√
4c2 − (t − c)2 on the interval

[c − 2
√
c, c + 2

√
c]. We have used a diòerent normalization for W than Aubrun (we

used 1
d1d2 and he used 1

p ); the advantage of ours is that the free cumulants are very
simple with this normalization.

Next, we discuss the case when only one of the parameters d1, d2 approaches in-
ûnity and the other one is ûxed.

_e following remarkable result is due to T. Banica and I. Nechita [3, Lemma 1.1].

Lemma 5.5 Suppose that σ is a non-crossing permutation and that τ is a cycle of
length n in Sn . _en #(στ) = 1 + e(σ), where e(σ) is the number of cycles of σ of even
length.
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Let us recall themain result of [3,_eorem 3.1],which computes the free cumulants
of the limit distribution of d1W Γas p/(d1d2)→ c while keeping d1 ûxed.

_eorem 5.6 Suppose that d1 is a ûxed positive integer, and p
d1d2 → c with 0 < c <∞.

_e free cumulants of the limit distribution of d1W Γare κn = cd 2
1 for n even and κn =

cd1 for n odd. _is limit distribution is the free diòerence of two Marchenko–Pastur
laws, one with parameter cd1

d1+1
2 and the other cd1

d1−1
2 .

Proof Let є ≡ 1 and η ≡ −1 in _eorem 3.7. By Remark 4.8, fє(σ) < 0 unless
σ ∈ NC(n). For σ ∈ NC(n) and η ≡ −1 we have by Remark 4.8 and Lemma 5.5,
fη(σ) − #(σ) + n = e(σ). Hence_eorem 3.7 gives

lim
d2→∞

E(tr⊗ tr((d1W Γ
)
n
)) = ∑

σ∈NC(n)
c#(σ)d f−1(σ)+n

1 = ∑
σ∈NC(n)

(d1c)#(σ)d e(σ)1 .

Note that if we set κn = d2
1 c when n is even and κn = d1c when n is odd, then

κσ = (d1c)#(σ)d e(σ)1 . _is shows that the limit distribution of d1W Γhas the claimed
cumulants. Since κn = (d1c) d1+1

2 + (−1)n(d1c) d1−1
2 , we have the claim about the dis-

tribution being a free diòerence ofMarchenko–Pastur laws.

Remark 5.7 If in _eorem 3.7 we let є ≡ −1 and η ≡ 1, the coeõcients d1 and d2
switch roles, hence the argument above also gives an analogous statement for holding
d2 ûxed. More precisely, if d2 is ûxed and p/(d1d2)→ c, then the free cumulants of the
limit distribution of d2WΓ are given by κn = d2

2 c for n even and κn = d2c for n odd.
_is distribution is also the free diòerence of two Marchenko–Pastur distributions
one of parameter d2c d2+1

2 and one of d2c d2−1
2 .

Remark 5.8 Since taking transposespreserves eigenvalue distributions_eorem 5.6
and Remark 5.7 also gives us the free cumulants of the limit distribution of d1WΓ and
d2W Γ.

6 A Natural Free Decomposition of d1W Γwhen d1 = 2

In [3] it was shown that the limit distribution of d1W Γcan be written as the free
diòerence of two Marchenko–Pastur laws. _e operators so obtained are not related
to the operator d1W Γ, though. In this section we shall show that there is a natural
decomposition of d1W Γwhen d1 = 2, namely the diagonal and oò diagonal blocks,
into free summands. More precisely, we let w be the limit distribution ofW , which
we can write w as a 2 × 2 matrix

w =
1
2
(
w11 w12
w21 w22

) .

Relative to this block decomposition, 2W Γconverges to

2w Γ
= (

w11 w21
w12 w22

) .
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We consider the two operators

X1 = (
w11 0
0 w22

) and X2 = (
0 w21
w12 0 ) .

_e diagonal summand X1 has theMarchenko–Pastur distribution and the oò di-
agonal summand X2 is even and has the same even cumulants as the diagonal sum-
mand. Our main result in this section is that X1 and X2 are free.

Notation 6.1 Let d1 = 2, and suppose p/(d1d2) converges to c with 0 < c <∞. Let
{E11 , E12 , E21 , E22} be the standardmatrix units in M2(C), but viewed as elements of
M2(C)⊗Md2(C).

Lemma 6.2 _ere is a ∗-non-commutative probability space (A, φ) with elements
w , e11 , e12 , e21 , e22 ∈ A such that w has the Marchenko–Pastur distribution with pa-
rameter c and {e11 , e12 , e21 , e22} arematrix units in A free from w. Moreover, the joint
distribution of {W , E11 , E12 , E21 , E22} converges to that of {w , e11 , e12 , e21 , e22}.

Proof AsW , ourWishartmatrix, is unitarily invariant, it is asymptotically free from
our matrix units (see [10,_eorem 4.9]). _is is exactly the claim of the lemma.

Notation 6.3 _us, we can write the matrix of w with respect to the matrix units
{e11 , e12 , e21 , e22} as

w =
1
2
(
w11 w12
w21 w22

) .

We will let φ1 be the state on e11Ae11 given by φ1(x) = 2φ(x). _e elements
{w11 ,w12 ,w21 ,w22} are in e11Ae11, so their cumulants must be computed relative to
the state φ1. When necessary, we will denote these relative cumulants by κ(1)

n .

Lemma 6.4 Each of w11 and w22 has the Marchenko–Pastur distribution with
parameter d1c.

Proof By construction, w11 = e112we11. By [11,_eorem 14.18],

κ(1)
n (w11 , . . .w11) = 2nκn(e11we11 , . . . , e11we11) = 21κn(w , . . . ,w) = 2c.

Remark 6.5 Elements {a i j}
n
i , j=1 in a non-commutative probability space (A, φ),

they are calledR-cyclic if,whenever i1 , j1 , . . . , i l , j l ∈ [n],wehave κ l(a i1 j1 , . . . , a i l j l ) =
0 unless j1 = i2 , . . . , jn−1 = in and jn = i1. By [11, Example 20.4], the elements
{w11 ,w12 ,w21 ,w22} are R-cyclic. Moreover, κ l(2w , . . . , 2w) = 2lκ l(w , . . . ,w) = 2l c.
So by [11, Example 20.4],we have κ(1)

l (w i1 j1 ,w i2 j2 , . . . ,w i l j l ) = 2−l+1κ l(2w , . . . , 2w) =

2c, when j1 = i2 , . . . , jn−1 = in and jn = i1.

Let X1 = ( w11 0
0 w22

) and X2 = ( 0 w21
w12 0 ). _en 2w Γ= X1 + X2.

Lemma 6.6 X1 and X2 are self-adjoint. _e cumulants of X1 are all equal to 2c; i.e.,
X1 is a Marchenko–Pastur operator with parameter 2c, and X2 is an even operator in
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that it is self-adjoint and all of its oddmoments are 0. _e even cumulants of X2 are all
equal to 2c.

Proof We have φ(X l
1) = φ(1)(w l

11), so X1 and w11 have the same cumulants, which
by Remark 6.5 are all 2c. Because X2 is oò diagonal and self-adjoint, it is an even
operator. By [11, Proposition 15.12] the cumulants of X2 are the ∗-cumulants of w21.
In Remark 6.5, we observed that these are all 2c.

Our next goal is to show that X1 and X2 are free in (A, φ). _is is somewhat
surprising in that X1 and X Γ

2 are not free. By X Γ
2 ,wemean thematrix ( 0 w12

w21 0 ). To see
this note that φ(X1X Γ

2 X Γ
2 X1) = 2c+3(2c)2+(2c)3,whereas if X1 and X2 were free,we

would have φ(X1X Γ
2 X Γ

2 X1) = (2c)2 + (2c)3. _is gives another unexpected instance
where a partial transpose produces freeness, but this time at the level of operators.

Now let us turn to the freeness of X1 and X2. Let

Y1 = X1 , Y2 = (
w21 , 0
0 w12

) and Y3 = (
0 1
1 0) .

_en X2 = Y2Y3. Let i1 , . . . , in be in [3]. We let ker(i) be the partition of [n] such that
r and s are in the same block of ker(i) if and only if ir = is . We let 1n be the partition of
[n]with one block. _en ker(i) = 1n if and only if i is the constant function. Suppose
that ker(i) < 1n . Let r be the number of times i = 2, and q = n + r. _en there are
j1 , j2 , . . . , jq ∈ {1, 2, 3} such that X i1 ⋅ ⋅ ⋅X in = Yj1 ⋅ ⋅ ⋅Yjq . We now apply the formula
for cumulants with products as entries [11,_eorem 11.12]. _en

κn(X i1 , . . . , X in) = ∑
π∈NC(q)

κπ(Yj1 , . . . ,Yjq),

where the sum runs over all non-crossing partitions in NC(q) such that π∨ρ = 1q and
ρ is the non-crossing partition whose blocks are have either 1 or 2 elements, and the
singletons are where j l = 1 appears in the string Yj1 ⋅ ⋅ ⋅Yjq , and the pairs are (l , l + 1)
where j l = 2 and j l+1 = 3. Since ker(i) < 1n , there must both singletons and pairs.
Let us consider a π ∈ NC(q) that is such that π ∨ ρ = 1q ; we will show that by the
R-cyclicity of w, we have κπ(Yj1 , . . . ,Yjq) = 0. Summing over all such π, we get that
κn(X i1 , . . . , X in) = 0. _is shows that all mixed cumulants vanish and hence that X1
and X2 are free, as claimed.

Lemma 6.7 Given p1 , . . . , ps ∈ [3], we have φ(Yp1 ⋅ ⋅ ⋅Yps) = 0 unless Y3 appears an
even number of times.

Proof Y1 and Y2 are diagonal, so Yp1 ⋅ ⋅ ⋅Yps will be 0 on the diagonal unless Y3 ap-
pears an even number of times.

Lemma 6.8 Given p1 , . . . , ps ∈ [3], we have κs(Yp1 , . . . ,Yps) = 0 unless Y3 appears
an even number of times.

Proof We write

κs(Yp1 , . . . ,Yps) = ∑
π∈NC(s)

µ(π, 1s)φπ(Yp1 , . . . ,Yps).
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Given π, we have by Lemma 6.7 that each block of π must contain an even number
of Y3’s, or else φπ(Yp1 , . . . ,Yps) = 0. Summing over all blocks of π, we get that the
number of Y3’s is even.

Deûnition 6.9 Let i1 , . . . , is ∈ [3], we say that the s-tuple has the property (nvc)
if each non-zero entry of Yi1 ⋅ ⋅ ⋅Yis is of the form wu1v1 ⋅ ⋅ ⋅wukvk , where v1 = u2 , v2 =

u3 , . . . , vk−1 = vk . Note that we do not require vk = u1 as in R-cyclicity. We say that
the string has property (vc) if it does not have property (ncv).

Remark 6.10 We now describe the generic sequenceswith property (nvc). First,we
have any power of Y1. _e product of two or more Y2’s does not have property (nvc).
No power of Y3 has property (nvc), because all its entries are either 0 or 1.

Now supposewe startwith a Y2. We can only followwith a Y1 or a Y3. So our basic
reduced sequence is (with the possibility that k = 0)

Y2 Y1 ⋅ ⋅ ⋅Y1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶

k

Y3Y2 .

We can enhance this by putting an even power of Y3 between any two letters above.
Note that there cannot be an odd number of Y3’s between two Y1’s, as

Y1Y3Y1 = (
0 w11w22

w22w11 0 ) .

So themost general string starting and ending with a Y2 is

Y2Y l1
3 Y k1

1 Y l2
3 Y k2

1 ⋅ ⋅ ⋅Y kr
1 Y lr+1

3 Y2

with l1 , . . . , lr even and lr+1 odd.

Lemma 6.11 Let i1 , . . . , ik be a string with property (nvc) that starts and ends with
Y2 and has no other Y2’s. _en the number of Y3’s is odd.

Proof We just observed that the number of Y3’s is l1+⋅ ⋅ ⋅+ lr + lr+1,which is odd.

Lemma 6.12 If π ∈ NC(q) and π ∨ ρ = 1q and κπ(Yi1 , . . . ,Yiq) /= 0, then each block
of π must contain the same number of Y2’s as Y3, and both numbers are even.

Proof We have just observed that the number of Y3’s between Y2’s is odd. _us, to
go all the way round a cycle, the number of Y3’s is equal to the number of Y2’s plus an
even number that might be 0. However, in our whole string the number of Y2’s and
Y3’s is the same. If one cycle had an excess of Y3’s, then another cycle would have a
deûcit. _us, all cycles must be balanced. Since we already know that each cycle has
an even number of Y3’s it also has an equal even number of Y2’s.

Lemma 6.13 Let i1 , . . . , iq ∈ [3] be such that ker(i) < 1q and let π ∈ NC(q) be such
that π ∨ ρ = 1q . _en κπ(Yi1 , . . . ,Yik) = 0.

Proof Let V be a block of π that contains a l such that j l = 1. _en (l) is a block
of ρ. Since we are assuming that π ∨ ρ = 1q , there must be l0 ∈ V with j l0 ∈ {2, 3}.
If the contribution of this block to κπ(Yi1 , . . . ,Yik) is not 0, then there must be a Y1
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followed by a Y3. Sowe can assume thatwe have a l and l ′ such that j l = 1, j l ′ = 3, and
l ′ follows l in V . We have that π restricts to a non-crossing partition of [l + 1, l ′ − 1].
Each block in this restriction contains the same number of Y2’s as Y3’s by Lemma 6.12.
However, this is impossible, because in the original string Yi1 , . . . ,Yik , a Y2 is always
followed by a Y3, and we have removed one Y3. _us, κπ(Yi1 , . . . ,Yik) = 0.

_eorem 6.14 X1 and X2 are free in (A, φ).

Proof We have just shown that by the formula for cumulants with products for en-
tries we have that mixed cumulants vanish. _us, X1 and X2 are free.

Remark 6.15 _e distribution of w Γin (A, φ) is the limit distribution ofW Γthat
is the same as WΓ . _us, the distribution of d1wΓ is the same as that of d1w Γ.

_eorem 6.16 For d1 = 2 and p/(d1d2) → c, the limit distribution of 2W Γis the
free additive convolution of a Marchenko–Pastur law with parameter 2c and an even
operator with all even cumulants equal to 2c.

7 Asymptotic Freeness

SinceW is unitarily invariant, a consequence of the results from [9] is thatW andWT

are asymptotically free if d1d2 →∞. In this sectionwewill present themain results of
the paper,which, using the relation form_eorem 3.7, improves the resultmentioned
above.

_eorem 7.1 If d1 →∞ and d2 →∞, then the family {W ,WT ,WΓ ,W Γ} is asymp-
totically free.

Proof By _eorem 3.7, we have that

E ( tr⊗ tr(W(є1 ,η1) ⋅ ⋅ ⋅W(єn ,ηn))) = ∑
σ∈Sn

(
p
d1d2

)
#(σ)

d fє(σ)
1 d fη(σ)

2 ,

and by Lemma 4.3 and Proposition 4.7, we have that
● fє(σ), fη(σ) ≤ 0 for all σ , є, and η;
● fє(σ), fη(σ) < 0 unless є and η are constant on the cycles of σ ;
● fє(σ) < 0 unless σє is non-crossing.
_us, when d1 , d2 →∞ and p

d1d2 → c, we need only consider σ ’s for which
(a) є and η are constant on the cycles of σ ;
(b) both σє and ση are non-crossing.

Note that, aspartitions, σ , σє , and ση are the same, since the onlypossible diòerence
between them is whether we reverse the order of elements in a cycle of σ . _us, we
have shown that the limit when d1 , d2 → ∞ of an arbitrary mixed moment can be
written as a sum over non-crossing partitions; that means that the terms that appear
are the free cumulants of themixedmomentwe are considering. However, by (a), the
blocks of σ only connectW(є i ,η i) toW(є j ,η j) if (є i , η i) = (є j , η j). _ismeanswe have
shown that mixed cumulants vanish and this implies the conclusion.
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_eorem 7.2 (i) If d1 → ∞ and d2 is ûxed, then the family {W ,WΓ} is asymp-
totically free from the family {WT ,W Γ}, but W is not asymptotically free from WΓ ,
nor is WT from W Γ.

(ii) If d1 is ûxed and d2 →∞, then the family {W ,W Γ} is asymptotically free from
the family {WT ,WΓ} but W is not asymptotically free from WΓ , nor is WT from WΓ .

Proof Suppose ûrst that d1 → ∞ and d2 is ûxed. Hence, in the summation from
_eorem 3.7 only the terms where fε(σ) = 0 will contribute to the limit. As in the
proof of _eorem 7.1, the last condition is equivalent to σε being non-crossing and ε
being constant on the cycles of σ . Since the partitions σ and σε are the same, it follows
that the limit as d1 →∞ of an arbitrarymixedmoment is written as a sum over non-
crossing partitions, so the terms in the right-hand side are in fact free cumulants. _e
condition that ε is constant on the cycles of σ gives that only free cumulants in ele-
ments from only one of the families from part (i) do not vanish, hence the asymptotic
freeness is proved.
For the second part of (i), we will use the expansion of E ○ tr⊗ tr(W ⋅WΓ) from

_eorem 3.7 in the case ε = (1, 1) and η = (1,−1). Note that S2 contains only two
permutations, γ = (1, 2) and σ = (1), (2), both non-crossing. Also, since ε is constant,
it is constant on the cycles of σ and γ. It follows that fε(σ) = fε(γ) = 0. Moreover, η
is constant on the cycles of σ and ση = σ is non-crossing, hence fη(σ) = 0. _erefore,
_eorem 7.1 gives that

E ○ tr⊗ tr(W ⋅WΓ
) = c2 + c ⋅ d fη(γ)2 .

As d1 →∞, the ûrst moment ofW approaches c, and from _eorem 5.6, so does the
ûrst moment ofWΓ , hence

lim
d1→∞

κ2(W ,WΓ
) = c ⋅ d fη(γ)2 /= 0.

_e same argument also shows that WT and W Γare not asymptotically free, since
W Γ= (WΓ)T .
Finally, part (ii) also follows from the argument for part (i), since the relation from

_eorem 3.7 is symmetric in (d1 , ε) and (d2 , η).

8 The Case of Real Wishart Matrices

In this section we examine the case of real Wishart matrices. More precisely,W will
denote now the symmetric d1d2 × d1d2 random matrix

W =
1

d1d2
(G iG∗

j )
d1
i , j=1 ,

where {G i ∶ 1 ≤ i ≤ d1} is a family of d2 × p random matrices whose entries are
independent Gaussian random variables ofmean 0 and variance 1.

SinceW =WT andW Γ=WΓ we shall only workwithW andWΓ . For this reason
we shall use slightly diòerent notation that in the previous sections. For є ∈ Z2 =

{−1, 1}, we let

W(є)
=

⎧⎪⎪
⎨
⎪⎪⎩

W є = 1,
WΓ є = −1.
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_us, our goal will be to consider, W(є1) ⋅ ⋅ ⋅W(єn), an arbitrary word in W andWΓ

and ûnd its limiting expectation.

_eorem 8.1 With the notations from above, we have that

E ( tr⊗ tr(W(є1) ⋅ ⋅ ⋅W(єn))) = ∑
π∈P2(±n)

(
p
d1d2

)
#(πδ)/2

d g(π)
1 d g(єπє)

2 ,

where
g(π) = #(γδγ−1

∨ π) + #(πδ)/2 − (n + 1)

and є ∈ S(±n) is, as before, given by

є(k) =
⎧⎪⎪
⎨
⎪⎪⎩

k, if є∣k∣ = 1,
−k if є∣k∣ = −1.

Proof We have

Tr⊗Tr(W(є1) ⋅ ⋅ ⋅W(єn))

=
d1

∑
i±1 , . . . , i±n=1
i=i○γδγ−1

Tr (W(i1 , i−1)
(є1) ⋅ ⋅ ⋅W(in i−n)

(єn))

= ∑
i±1 , . . . , i±n

d2
∑

k±1 , . . . ,k±n=1
k=k○γδγ−1

(W(i1 , i−1)
(є1))k1k−1 ⋅ ⋅ ⋅ (W(in i−n)

(єn)) kn k−n

= ∑
i±1 , . . . , i±n

d2
∑

j±1 , . . . , j±n=1
j= j○єγδγ−1є

W(i1 , i−1) j1 j−1 ⋅ ⋅ ⋅W(in i−n) jn j−n

= (d1d2)
−n

∑
i±1 , . . . , i±n
j±1 , . . . , j±n

p
∑

k1 , . . . ,kn=1
g(i1)j1k1

g(i−1)

j−1k1
⋅ ⋅ ⋅ g(in)jn kn

g(i−n)j−n kn
.

In line 3 wemomentarily break with our previous convention about W(є) indicating
whether or notwe take a partial transpose; in this caseW(iu , i−u)

(−1) means take the
transpose of the d2 × d2 matrixW(iu , i−u). In passing from line 3 to line 4 above, we
let j = k ○ є.

Now

E ( g(i1)j1k1
g(i−1)

j−1k1
⋅ ⋅ ⋅ g(in)jn kn

g(i−n)j−n kn
) = ∑

π∈P2(±n)
∏

(r ,s)∈π
E(g(ir)jr kr

g(is)js ks
).

On the right-hand side in the expression abovewe are extending k as a function from
[n] to [p] to a function on [±n] by requiring kr = k−r . _is means k = k ○ δ. Now
E(g(ir)jr kr

g(is)js ks
) = 0 unless ir = is , jr = js , and kr = ks , in which case it is 1. _us,

E ( Tr⊗Tr(W(є1) ⋅ ⋅ ⋅W(єn))) = ∑
π∈P2(±n)

d#(γδγ−1
∨π)−n

1 d#(єγδγ−1є∨π)−n
2 p#(πδ)/2 .
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Since we require k = k ○ π and k = k ○ δ we must have k = k ○ πδ. Now as noted in
Lemma 4.1 the cycles of πδ appear in pairs where one part of a pair is the conjugate
by δ of the other. Since k is a function on [n], #(πδ) double counts the degrees of
freedom. Hence the exponent of p is #(πδ)/2. _us,

E ( tr⊗ tr(W(є1) ⋅ ⋅ ⋅W(єn)))

= ∑
π∈P2(±n)

(
p
d1d2

)
#(πδ)/2

d#(γδγ−1
∨π)+#(πδ)/2−(n+1)

1

× d#(єγδγ−1є∨π)+#(πδ)/2−(n+1)
2 .

Finally, note that

#(єγδγ−1є ∨ π) + #(πδ)/2 − (n + 1) =
1
2
#(γδγ−1єπє) + #(єπδє)/2 − (n + 1)

= g(єπє),
hence the conclusion.

Nextwe shall show that g(π) ≤ 0 and g(єπє) ≤ 0 for all є and π, and ûnd forwhich
pairings π we have equality.

Lemma 8.2 Let π ∈ P2(±n) be a pairing such that there is (r, s) ∈ π with the same
sign. _en g(π) < 0.

Proof Since π connects two elementswith the same sign, πδ connects two elements
with opposite signs. _en the subgroup generated by γδγ−1δ and πδ acts transitively
on [±n]. _us,

#(πδ) + #((πδ)−1γδγ−1δ) + #(γδγ−1δ) ≤ 2(n + 1).

We have

2#(γδγ−1
∨ π) = #(γδγ−1π) = #(γδγ−1δδπ) = #((πδ)−1γδγ−1δ).

_us, g(π) = #(γδγ−1 ∨ π) + #(πδ)/2 − (n + 1) ≤ −1.

Lemma 8.3 Suppose π ∈ P2(±n) and π only connects elements of opposite sign.
_en πδ leaves [n] invariant and g(π) ≤ 0with equality only if πδ∣[n] is a non-crossing
permutation.

Proof Since both π and δ switch signs, πδ preserves signs. _us, πδ leaves [n] in-
variant. By Lemma 4.1 we have #(πδ) = 2#(πδ∣[n]). Also,

2#(γδγ−1
∨ π) = #(γδγ−1δδπ) = #((πδ)−1γδγ−1δ) = 2#((πδ∣[n])−1γ) .

Hence,
g(π) = #(γδγ−1

∨ π) + #(πδ)/2 − (n + 1) ≤ 0
with equality only if πδ∣[n] is a non-crossing permutation.

Lemma 8.4 Let є ∈ Zn
2 and π ∈ P2(±n). _en g(єπє) < 0 unless єπδє leaves [n]

invariant. If єπδє leaves [n] invariant, then g(єπє) ≤ 0 with equality only if єπδє∣[n] is
a non-crossing permutation.
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Proof By Lemma 8.3 we have g(єπє) < 0 unless єπєδ = єπδє leaves [n] invariant. If
єπδє leaves [n] invariant, then again by Lemma 8.3,we have g(єπє) ≤ 0 with equality
only if єπδє∣[n] is a non-crossing permutation.

Lemma 8.5 Let є ∈ Zn
2 and π ∈ P2(±n). Suppose πδ leaves [n] invariant. _en єπδє

leaves [n] invariant if and only if є is constant on the cycles of πδ.

Proof Suppose (i1 , . . . , ik) is a cycle of πδ. All these elements must have the
same sign. _e corresponding cycle of єπδє is (є(i1), . . . , є(ik)). _e elements of
єπδє is (є(i1), . . . , є(ik)) have the same sign if and only if є is constant on єπδє is
(є(i1), . . . , є(ik)).

_e following theorem is the main result of this section. Recall from Lemma 4.4
that if є is constant on the cycles of σ , thenwe obtain σє from σ by reversing the cycles
on which є = −1.

_eorem 8.6 We have

lim
d1 ,d2→∞

E ( tr⊗ tr(W(є1) ⋅ ⋅ ⋅W(єn))) = ∑
σ∈SNC(n)

c#(σ) ,

where the sum runs over all non-crossing permutations σ such that є is constant on the
cycles of σ and σє is also non-crossing.

Proof In the formula from _eorem 8.1, only the pairings π such that g(π) =

g(єπє) = 0 will contribute to the summation when d1 , d2 →∞.
Recall thatPδ2(±n)denotes thepairings π of [±n] such that πδ leaves [n] invariant.

For such a π we let σ = πδ∣[n] be the corresponding permutation. We already noted
that this is a bijection from Pδ2(±n) to Sn and πδ = δσ−1δσ . From Lemma 8.3, the
condition g(π) = 0 implies that σ = δσ−1δσ [n] is noncrossing.
According to Lemmas 8.4 and 8.5, the condition g(єπє) = 0 implies that є is con-

stant on the cycles of σ . As in Lemma 4.4, єπδє = δσ−1
є δσє . _erefore,

#(єγδγ−1є ∨ π) = 1
2
#(γδγ−1δ(єπδє)−1)

=
1
2
#((δσ−1

є δσє)−1γδγ−1δ) = #(σ−1
є γ),

which gives

g(єπє) = #(σє) + #(σ−1
є γ) − (n + 1),

hence the formula (4.1) gives that g(єπє) ≤ 0 with equality if and only if σє is non-
crossing.

An immediate consequence of_eorem 8.6 is part (i) of the following result.
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_eorem 8.7 Suppose that p/(d1d2)→ c.
(i) If d1 , d2 → ∞, then WΓ is asymptotically a shi�ed semi-circular operator with

κ1 = κ2 = c.
(ii) If d1 →∞ and d2 ≥ 2 is ûxed, then the asymptotic distribution of d2WΓ , equals

the distribution of the diòerence of two free variables with Marchenko–Pastur laws, the
ûrst of parameter cd2

d2+1
2 and the second of parameter cd2

d2−1
2 .

(iii) If d1 is ûxed and d2 →∞, then the asymptotic distribution of d1WΓ , equals the
distribution of the diòerence of two free variableswith Marchenko–Pastur laws, the ûrst
of parameter cd1

d1+1
2 and the second of parameter cd1

d1−1
2 .

Proof Letting є j = −1 for all j = 1, . . . , n in _eorem 8.1, we obtain that

(8.1) E ○ tr⊗ tr ((WΓ
)
n) = ∑

π∈P2(±n)
(

p
d1d2

)
#(πδ)/2

d g(π)
1 d g(δπδ)

2 .

Suppose ûrst that d1 , d2 →∞. _en, in the summation from (8.1), only termswith
g(π) = g(δπδ) = 0 will contribute to the limit. From _eorem 8.6, this is equivalent
to both σ and σδ be noncrossing. But σδ = σ−1 so Lemma 5.1 implies that σ has only
cycles of length 1 or 2, hence part (i) is proved.

Suppose now that d1 → ∞ and d2 is ûxed. _en only π such that g(π) = 0 will
contribute to the limit in the summation (8.1). Applying Lemma 8.3 again, this is
equivalent to π = σδσ−1, for σ a non-crossing permutation on [n]. In this case, we
have that g(δπδ) = g(δσδσ−1δ).
Also, #(γδγ−1 ∨ δπδ) = 1

2#(γδγ
−1δσδσ−1δ), and, if k ∈ [n], we have that

γδγ−1δσδσ−1δ(k) = γδγ−1δσ(k) = γσ(k),
γδγ−1δσδσ−1δ(−k) = γδγ−1δσδσ−1

(k) = γδγ−1δσ(−σ−1
(k))

= γδγ−1
(σ−1

(k)) = γ−1(σ−1
(k)) = (σ ○ γ)−1

(k).

Moreover,
#((δπδ)δ) = #(δπ) = #((πδ)−1) = 2#(σ),

hence, Lemma 5.5 gives that

g(δπδ) = #(γσ) + #(σ) − (n + 1) = #(σ) + e(σ) − n,

so equation (8.1) becomes

lim
d1→∞

E ○ tr⊗ tr ((WΓ
)
n) = ∑

σ∈SNC(n)
c#(σ)d e(σ)+#(σ)−n

2 .

_us,

lim
d1→∞

E ○ tr⊗ tr ((d2WΓ
)
n) = ∑

σ∈SNC(n)
(cd2)

#(σ)d e(σ)2 = ∑
σ∈SNC(n)

κσ ,

where κn = cd2 for n odd and κn = cd2
2 for n even. _e conclusion follows, because

κn = (cd2)
d2+1

2 + (−1)n(cd2)
d2−1

2 (see the proof of _eorem 5.6). _e case d1 ûxed
and d2 →∞ is similar.
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_eorem 8.8 If both d1 , d2 →∞, then {W ,WΓ} is an asymptotically free family.

Proof _e result is a consequence of_eorems 8.6 and 8.7.

Remark 8.9 For W a real Wishart random matrix, WΓ is not asymptotically free
from W if d1 is ûxed or if d2 is ûxed.

Indeed, for n = 2 and є1 = 1 and є2 = −1, the formula from _eorem 8.1 gives

E ○ tr⊗ tr (WWΓ) = ∑
π∈P2(±2)

(
p
d1d2

)
#(πδ)/2

d g(π)
1 d g(єπє)

2 .

_ere are only 3 pairings in P2(±2): π1 = (1,−1), (2,−2), π2 = (1, 2), (−1,−2), and
π3 = (1,−2), (−1, 2). Direct calculations give that π1δ = id, π2δ = (1,−2), (−1, 2) and
π2δ = (1, 2), (−1,−2).

Moreover, єπ1є = π1, while єπ2є = π3 and єπ3є = π2; also, for n = 2, we have that
γδγ−1 = (1,−2), (−1, 2). _erefore, g(π1) = g(π2) = 0 and g(π3) = 1, so

E ○ tr⊗ tr (WWΓ) = (
p
d1d2

)
2
+ (

p
d1d2

) ⋅ (
1
d1
+

1
d2

) ,

and the second term in the equation above does not cancel asymptotically unless both
d1 , d2 →∞.
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