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Freeness and The Partial Transposes of
Wishart Random Matrices

James A. Mingo and Mihai Popa

Abstract. 'We show that the partial transposes of complex Wishart random matrices are asymptoti-
cally free. We also investigate regimes where the number of blocks is fixed but the size of the blocks
increases. This gives an example where the partial transpose produces freeness at the operator level.
Finally, we investigate the case of real Wishart matrices.

1 Introduction
Suppose we have a matrix A in M4, (C)® M, (C). We can write this as a block matrix.

ALY || AQdy)

A=

A(dy,1)| -+ | A(dy, dh).

with each A(i, j) € My, (C). We can form two partial transposes of this matrix.

A1) |-+ A(dy,1) A(LDT [+ A(Ld)T
A’I: : : Ar: :
AQ,dy)| -+ |A(dy, dy). A(d, )T | A(dy, dy)T.

In quantum information theory the partial transpose has been used as an entan-
glement detector. Suppose that A is a positive matrix in M4, (C) ® My, (C). Re-
call that A is entangled if we cannot find positive matrices By, ..., By € M4 (C) and
Ci,...,Cr € My, (C) such that A = Z:-‘zl A; ® B;. If a positive matrix fails to have a
positive partial transpose, then the matrix must be entangled. It was shown by Aubrun
[2] that in a particular regime of the Wishart distribution, the partial transpose of a
positive matrix is typically entangled. He also showed that the limiting distribution of
a partially transposed Wishart matrix is semi-circular. This was quite unexpected. We
revisit his theorem and show that the conclusion can be explained by the requirement
that the non-crossing partitions that survive in the limit have to remain non-crossing
when the order of elements is reversed.
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In this paper we show that in addition to transforming a Marchenko-Pastur into
a semi-circular distribution, the partial transpose also produces freeness in two dif-
ferent regimes. The first is when both d; and d, tend to infinity; we show that when
W is a Wishart matrix, W, W1, W', and W7 are asymptotically free in the complex
case and that W = WT and W' = W are asymptotically free in the real case.

The second regime is the one considered by Banica and Nechita [3] where we fix
d, and let d, tend to oco. In this case we show that W and W' are asymptotically
free. As (WT)T = W', one has that W' and W' have the same limit distributions.
Banica and Nechita showed that the limit distribution of d; WT could be written as
the free difference of two Marchenko-Pastur distributions. We can show that in the
same regime and when d; = 2, one can write the limit distribution of d; W7 as the sum
of two free operators X; and X, coming from the diagonal and off-diagonal parts of
d, W. More precisely, if we write a Marchenko-Pastur random variable w as a block

matrix
1 0 0
W= = win Wiz . Xy = wn . X = W ’
2 \wa1 wa 0 wy wp 0

then dyw" = X; + X, and X; and X, are free. Moreover, X; is a Marchenko-Pastur
random variable with the same distribution as 2w, and X, is an even operator whose
even cumulants are the same as those of X;. So, by writing d;w” as a sum as opposed
to a difference, we get a natural representation for the two operators.

The connection of the transpose to freeness goes back to the work of Emily Re-
delmeier on real second order freeness [13]. She showed that the fluctuation moments
of real Gaussian and Wishart matrices require the transpose to be taken into account.
Later in [9] the authors showed that the transpose can also appear at the first order
level. Namely, that for many complex ensembles a random matrix could be asymptot-
ically free from its transpose. Before this, the known examples of asymptotic freeness
required independence of the entries; see [10, Ch. 4] and [11, Lect. 23, 24] for exam-
ples.

Our main tool here is the explicit evaluation of the mixed moments of the four
matrices W, WT, WT, and W7 and then to show that mixed cumulants must vanish,
thus demonstrating freeness. In order to achieve this we use the technique of doubling
of indices, which already appeared in the work of Redelmeier [12,13].

Besides the transpose one can consider the action of other positive linear maps
on the blocks of matrices and the effect on the limit eigenvalue distribution. This
was considered in considerable generality in the recent paper of Arizmendi, Nechita,
and Vargas [1]. A third regime was considered by Fukuda and Sniady in [6] and a
connection to meander polynomials was found.

The outline of the paper is as follows. In section 2 we establish the notation needed
for our calculations. The main method for computing mixed moments is to expand
the expression as a sum over the symmetric group. This part is presented in Theo-
rem 3.7. In Section 4 we determine which permutations contribute to the limit. The
main result in this section is Proposition 4.7. In Section 5 we consider the limit dis-
tributions of our partially transposed operators in the two regimes. In particular, we
will show that the operators X; and X, mentioned above are free. In Section 7 we
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present our main results, the asymptotic freeness of our partially transposed Wishart
matrices. In Section 8 we consider the situation for real Wishart matrices.

2 Notation and Statement of Results

Suppose Gi,..., Gy, are dy x p random matrices where G; = (gjg;;))]-k and g}(,i)
are complex Gaussian random variables with mean 0 and (complex) variance 1, i.e.,
E(] g](.;c)|2) = 1. Moreover, suppose that the random variables g](.;() }i,j.k are indepen-

dent. Then

(G0

s | o

1

w (Gy

s o L oeeny
...‘Gdl )= dldz(GlGJ),J

is a did, x did, complex Wishart matrix. We write W = dl_l(W(i,j)),-j asad; x d
block matrix with each entry the d, x d, matrix d; 1G,-G;f. From this we get four
matrices { W, WI, WI, WT} defined as follows:

« WT= 2(W(j,i)T)ij is the “full” transpose

e Wl= dil(W( j»i))ij is the “left” partial transpose

© WE=2-(W(i, j)")ij is the “right” partial transpose

Note that the X ~ X! notation conceals the dependence on d; and d,. Thus, as
the size of the matrix grows, these operators might be expected to behave differently,
depending on the way d; and d, grow.

If the random variables { g](.;;) }i,j,k are real Gaussian random variables with mean
0 and variance 1, then W is a real Wishart matrix. For many eigenvalue results there
is no distinction between the real and complex case. In [9] we showed that when it
comes to freeness there is a difference, in particular with respect to the behaviour of
the transpose. In this paper we show that with the partial transpose we continue to
see a difference between the real and complex cases.

If we assume that d;, d, — oo and that ﬁ — ¢, 0 < ¢ < oo, then the eigenvalue
distributions of W and W™ converge to Marchenko-Pastur with parameter c. This is
the distribution on R* that has density \/(b — t)(t — a)/2nt on [a, b] and an atom
of weight (1-c) at0ifc <L wesetb=(1++/c)*anda = (1-+/c)*

Note that we are using what one might call the free probabilists Marchenko-Pastur
law. In our normalization, all the cumulants are equal to c. For the relation between
the two see [10, Ch. 2 Remark 12]. With this normalization we can restate Aubrun’s
theorem.

. P _ . C . . 1 r
Suppose limg, 4, .00 77 = ¢, then the eigenvalue distributions of W= and W* converge
to a shifted semi-circular operator with mean c and variance c.

Our main results are the following theorems.

Theorem 2.1  Suppose limg, 4,00 ﬁ = ¢; then the family {W, WT, WE, WT} is

asymptotically free in the complex case, and the family {W, W'} is asymptotically free
in the real case.
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Theorem 2.2 Suppose d; is fixed and limg, o ﬁ = ¢; then the family {W, W'} is
asymptotically free in the complex case.

In M,(C), let {E; j}?j=1 be the standard matrix units. For convenience of notation
we write E,‘j for E,’j ® Idz € Mz((C) ® Md2 ((C)

Theorem 2.3 Suppose dy = 2, p,d; — oo, and limg, e 75 = c. Then

{W, W' E;;}? _, has alimit joint distribution, {w,w", e;;}} jo1> i @ non-commutative
2
i,j=1

1 ({wy w 1wy w
we= o[ W2 and wl=—[Wn W)
2 \Wa1 W22 2 \Wi2 W

Then X, = (W” 0 ) and X, = ( 0 WO“) are free, X; has a Marchenko-Pastur distri-

0 wy Wiz
bution with parameter 2¢, and X, is an even operator with all even cumulants equal

to 2c.

*-probability space (A, ¢). Relative to the matrix units {e;; } we write

3 A General Formula for Mixed Moments

Let A;,...,A, be N x N matrices. Then

N
(3.1) Tr(A;---A,) = Z O @)

i1,io1 d2,ig ini_p’

where the sum runs over all i: [+#n] — [ N] such that
i(-1)=i(2), i(=2)=1i(3),...,i(-n) =i(1).

Remark 3.1 We wish to use the symmetric group S, of permutations on [n] =
{1,2,3,...,n} to keep track of the partial transposes. So we introduce the follow-
ing notation. Given a permutation ¢ in S,, we extend ¢ to be a permutation on
[xn] = {1,-1,2,-2,3,-3,...,n,—n} by setting 0(-k) = —k for k > 0. We let §
be the permutation of [+n] given by 8(k) = —k for all k € [+n] and y € S, be
the permutation with one cycle: y = (1,2,3,...,n). With our conventions we have
ydy™' = (1,-n)(2,-1)(3,-2)--- (n,—(n — 1)). The condition in (3.1) now becomes
i=ioypdy .

To show that the family { W, WT, W', WT} is asymptotically free, we have to com-
pute the expectation of the trace of arbitrary words in {W, WT, W, WT}. For this
we use the following notation.

Let (e,77) € {-1,1}* = Z3. We set

) =(
Wt if (e,n) = (
Wrif (e, 1) = (1,-1),
Wt if (e, 1) = (-1, -1).

wen _
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Let (e1,71)s...>(€nsfn) € 73, then an arbitrary word in {W, W, WF, WT} is
wlenm) .oy (ennn) and we seek to write limg, 4, oo E(tr( W) ... W (enmn))) a5a
sum of free cumulants.

To achieve this we need to introduce still more notation. We shall suppose that n,
the length of the word, is fixed for the moment. Now given (¢, €5, . . ., €, ) we denote
by e the permutation of [+n] given by e(k) = € k; here k € [+n], but [k > 0, s0 €
means the k*" element of our vector (e, ... ,€,). Similarly given (71, ...,7%,) we get
the permutation # of [+n]. Note that 8, € and # all commute with each other.

We shall think of W, W, WT, and WT as random elements of My, (C) ® M, (C).
On this algebra we have a trace Tr ® Tr; we also have the normalized trace tr®tr =
%@ Tr® Tr.

Lemma 3.2  With the notations above, we have that

(32) E(TreoTr(wlem .. wlnm)y) -

(dids)” "Z Y E<g53;~ gUn U0 gl

FETIPPN Jan Stlreees Sin tseens

where the summation is subject to the conditions that j = jo eydy~'e, s = s o nydy~'n.
Proof We have
Tr@Tr (Wierm) ... yienm))

S S T((WE) e (W), )

=d" Z Te (W), (W), )

=di" Y T (Wi i)™ W jon) ™).
j=joeydy'e

To achieve the last step we let j = i o . Also we have adopted the convention that for
A amatrix in My, (C) welet A1) = Aand A = AT,
Next we must expand Tr(W (ji, j_1) ) - W (j,, j_n) ™))

Te (W (jts jor) ™ W (s jon) )

dy
= 2 (WG i)™ (Wi i) ™),

= Z (W(jl’j—l))slsq”'(W(jn’j_n))snsfn

s=sonydy~ln
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=" ¥ (661,),,,(GLGL,), .,

Stlseees Sin
e G G0 G
_ qJ-n 1 -1 n —n
- dz Z Z st gS—lll “.gSnt,, gs,nt,, .
SilseeesSin Esenns t,=1
Hence the conclusion follows. |

Next we need to compute E(gs(ljtll) = gs(’}') gs(i’t‘l) - gs(f;tn) ). We shall use the com-
plex form of WicK’s rule that says that if g;, . .., g, are independent N(0,1) random
variables and a1, ..., &y, B1, ..., B € [m], then E(gu(1)*+* Sa(n)8B(1) - &p(n) ) is the
number of permutations o € S,, such that for all k € [n] we have (k) = a(o(k)); see
Janson [7, p. 13].

Thus, we let go(x) = gs(k];‘k) and gg(xy = gs(f;’t‘k) Soifo € S, and (k) = a(o(k)), we
have

s(-k) =s(a(k)) fork>0,
(33 (k) = o (k) fork >0,
t=t(o(k)) fork>0.

We wish to write the first two conditions as an equation involving functions on [+n].

Lemma 3.3 Leto €S, and j:[£n] — [d]. We have j(-k) = j(a(k)) forall k > 0 if
1

andonlyif j=joodo™.
Proof Suppose that for k > 0 we have j(-k) = j(o(k)). Then for k > 0 we have
joada (k) = j(-a7'(k)) = j(-1) = j(a(l)) = j(k), where I = 67(k) > 0. Also
joado ' (-k) = j(a(k)) = j(~k). Thus, j= jogdo ™.

Now suppose that j = jo 0do~". For k > 0, we have that j(-k) = jo o8 '(-k) =
j(a(k)), as claimed. [ |

Lemma 3.4 We have

E (g gUn U)oU)y o

{0€S,|j=jocdo™,s=s00807 , t=toa}|

Proof By Lemma 3.3 and equation (3.3) we have to count the number of permuta-
tions o such that j = jo ¢80~ on the set [d;], s = s o 00c~" on the set [d,], and
t = t o ¢ on the set [p]. [ |

Remark 3.5 In the proposition below we use the notation #( o) to denote the num-
ber of cycles in the cycle decomposition of ¢. If o and 7 are permutations, we let
o v 7 be the partition obtained by regarding ¢ and m as partitions where the blocks
of the partition are the cycles of the permutation. Now ¢ v 7 denotes the supremum
of the two partitions in the lattice of partitions. Recall that the function o — #(0) is
a central function on S,,, so #(77'o7) = #(¢) for all  and .
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Proposition 3.6  Subject to the conditions j = joeydy ‘e ands =sonydy 'y,

DY Z E(g()...gUn) U ooy

D df(eﬂy’le v 050")(13("751"1'1 v Gﬁa’l)p#(a)_

o€S,

Proof According to Lemma 3.4, subject to the conditions j = jo epdy ‘e and s =

sonydyn,
N N R sl g0
Jaloeeosjaen St1seeosStn thenns

=Y |{oes |] joodo !, s=s00807", and t = toc}

Jlseees Jin

Stlreees Stn
Iseees tn

=Y {(psst)|j=joodo ", s=s00d0™", and t = too}
o€eS,

_ Z df(sy&y_levoda_l)d#(qyéy qva&a_l)p#(a).

o€eS,

To get the last equality we recall that the condition on j is that it must simultaneously
satisfy j = joeydy'eand j = jo 0do'. Then j must be constant on the cycles of
eydy e and of 0807 '; so j must be constant on the blocks of eydy ‘e v 0da~!. The
same argument applies to s. The only condition on ¢ is that t = t o . ]

Theorem 3.7 We have

#() .
(3.4)  EB(tretr(wWlm...wlewm)y) = 3 (—df;z) 4@ af,

o€S,

where fe(0) = #(eydy~'evado)+#(0) - (n+1) and f,(0) = #(nydy 'nvodo™") +
#(0) = (n+1).

Proof According to equation (3.2) and Proposition 3.6 we have

E ( tr®tr(W(el,m) ... W(en,r/,.)))

1 n+l #(epdylevada™) J#(nydy'nvedo")  #(o
) gy

o€eS,

L) #(G)d#(e)'&)’_le Vv 807" )+#(0)-(n+1)
dyd, !

% d;‘(ny&y_lnv o8 ) +#(a)—-(n+1)

_ P NFD L f0) s o)
- (dldz) 4@ g, m
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Asymptotics of Permutations

Theorem 3.7 gave us an expansion of mixed moments of { W, W1, W, WT} asa sum
over the symmetric group. We now have to determine which permutations contribute
to the limit. We shall show that for all € and all g, f.(¢) < 0 and determine for which
o equality is achieved. Our first goal is to show that f;(¢) < 0 unless € is constant on
the cycles of ¢. Since € is arbitrary, whatever we show for € will apply to #.

There is a fundamental equation that we shall frequently use in what follows. Given
a subgroup, G, of the group S, of permutations of 1], we shall say that the subgroup
acts transitively on [n] if given k, | € [n] we can find p € G such that p(k) = I.

Given two permutations 7 and o of S,, such that the subgroup generated 7 and o
acts transitively, there is a non-negative integer g such that

(4.0) #(m)+#(n o) +#(0) =n+2(1-g);

see [10, Theorem 5.9] and [5, p. 14] for a discussion.

Recall that a pairing of [n] is a partition 7 of [n] with all blocks of size 2; note this
implies that # is even. The set of all pairings of ] is denoted P, (n). We shall also
regard such a 7 as the permutation whose cycles are the blocks of 7. In this case, w
has no fixed points and 7* = id. In [8, Lemma 2] we proved the following lemma.

Lemma 4.1 Let m,0 € P,(n) be pairings and (i, iz, ..., i) a cycle of mo. Let j, =
o(i,;). Then (jk, jk-1>---»j1) is also a cycle of no, and these two cycles are distinct;
{i,.... ik 1, jk} is a block of w v o and all are of this form; 2#(n v o) = #(n0o).
The cycle decomposition of o can be written cic|--- cxc}, where ¢i = oc;'o. With this
notation, the blocks of m v o are ¢c; U c|.

Lemma 4.2 Leto € S, and € € 7} be given; then e is constant on the cycles of o if
and only ifedada~'e[n] = [n].

Proof We begin by recalling (Remark 3.1) that ¢ acts trivially on [-#] and do 8 acts
trivially on [n], and thus noting that for k > 0

(4.2) edada'e(k) = edodo™'(k) ex=1 _ Jesyo (k) ex=1
. edo (k) € = -1, —ea(k)a(k) € = —1.

Suppose € is constant on the cycles of 0. Then

o l(k) e=1,

ok ep=-1, LMk

edodote(k) = {

Conversely, suppose that e§ado'e[n] = [n]. Then for k > 0 by equation (4.2),

60—1(]()0'_1(]() € =1,

edodote(k) =
() {—ea(k)ﬂ(k) ex = -1,

and thus €4(x) and €, have the same sign. [ |

Lemma 4.3 Leto €S, and € € 7} be given; then f.(0) < 0 unless € is constant on
the cycles of 0.
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Proof Suppose € is not constant on the cycles of ¢; then by Lemma 4.2 we have that
edo80"e[n] meets [-n]. Both eydy~'e and 680" are pairings and as permutations
0 and e commute. Thus, by Lemma 4.1,

2#(eydylev adat) = #(eydyteado) = #(ySy '8 edada'e)
= #((ed07"'60¢)'ydy~'s).

Now #(y8y~18) = 2 and #(edodo7'€) = #(80d07') = #(808) + #(o7') = 2#(0).
Hence, by equation (4.1) there is g > 0 such that

#(edo ' 00¢€) + #( (edo ' 80€) ydy ') + #(ydy'8) =2n+2(1- g),
and thus,

fo(a) =#(eydylevado™) +#(0) - (n+1) = —(g+1) < -1 [

Lemma 4.4  Supposethat o € S, and € € Z% and € is constant on the cycles of 0. Then
there is a permutation o € S, such that edo8o~'e = §0.80.". Moreover, if 6 = ¢; -+ ¢
is the cycle decomposition of o, then o, = c{‘l --~c£", where A; is the (constant) value of

€ on the cycle c;.

Proof In the proof of Lemma 4.2 we showed that when ¢ is constant on the cycles of
o, we have that for k > 0

o '(k) ifer=1,

8ada"e(k) =
ed0d0 " e(k) {a(k) ifep = -1

Thus on a cycle of ¢ on which € = 1 we have 0! and e§o80 '€ agree and on a cycle
on which € = —1 we have g, and edo 80 '€ agree. ]

Definition 4.5 Let 7w € S, be a permutation of [n] and y = (1,2,3,...,n). We say
that 7 is a non-crossing permutation if #(7) + #(n~'y) = n + 1. We shall denote by
Snc(n) the non-crossing permutations of [#].

Remark 4.6  We have already used the idea of taking a permutation of [n] and
regard it as a partition of [n] by using the decomposition of the permutation into
disjoint cycles and making these the blocks of a partition. Biane [4] showed that the
permutations that satisfy #(7) + #(77'y) = n + L; i.e, g = 0 in equation (4.1), are
exactly those whose cycles form a non-crossing partition of [n].

Proposition 4.7 Let 0 € S, and € € Z5. Suppose that € is constant on the cycles of 0.
Then f.(0) < 0 with equality only if o, is a non-crossing permutation.
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Proof Letedodo 'e = §0.00," asin Lemma 4.4. As in the proof of Lemma 4.3 we
have that

fe(0) = 3#(ydy '6ed0d07"€) + #(0) — (n +1)
= 1#(y8y'880:80, ") + #(0e) — (n+1)
= 1#(0; 'y 8y ' 0:0) + #(0) — (n +1)
=#(0) +#(0.'y) = (n+1).

By equation (4.1), we have f,(¢) < 0, and, according to Definition 4.5, o is a non-
crossing permutation if and only if f.(¢) =0 [ |

Remark 4.8 As an illustration let us consider two examples: € =1 and € = —1. First
suppose € = I; then #(eydy'e v 0d0™") = 1#(ydy'odo!) = #(07'y), 5001 = ¢
and fi(0) = #(0) + #(07'y) — (n + 1) = 0 only if 0 is non-crossing. When ¢ = -1,
we have that #(eydy~'e v 0d0™") = 1#(8ydy'60607") = #(c7'y),s0 0, = 0" and
fa(o) =#(o7") +#(oy) — (n+1) = 0 only if ™" is non-crossing.

5 Limit Distributions

We assume that d;d, — oo and that ﬁ — ¢, for some 0 < ¢ < oo. Since W and
WT are Wishart matrices, their eigenvalue distributions converge to the Marchenko—
Pastur law with parameter c. Setting b = (1++/c)? and a = (1 - \/c)?, this is the
distribution on R* that has density /(b — t)(¢t — a)/2nt on [a,b] and an atom of
weight (1-c)at0ifc <L

The asymptotic eigenvalue distributions of W and W' were described by G. Au-
burn (see [2]) for the case when d}, d, — oo, respectively by T. Banica and I. Nechita
for the case when d, — oo (see [3]). The calculations below give another proof of
these results and give some more insight on the limit distributions.

Lemma 5.1 Leto €S, and suppose that both ¢ and o™ are non-crossing in the sense
of Definition 4.5. Then o can have only cycles of size 1 or 2.

Before proving Lemma 5.1, we need to recall some standard facts about permu-
tations and pairings. We recall that [+n] = {1,-1,2,-2,...,n,-n}. If 6 € S, isa
permutation of [n], then 08o ™! is a pairing of [+n]; moreover if (,s) is a pair in
this pairing, then r and s have opposite signs. We let P3(+n) be the set of pairings
of [+n] that only pair a positive number to a negative number. There is a standard
bijection from S, to P4 (+n) that we will use. For o € S, we have 08a~! € PJ(xn).
If 7 € P§(+n) then 78 leaves [n] invariant and so 76|[,] € S,. These two maps are
inverses of each other.

For example, consider y = (1,2,...,n) € S,,. Then

yoy™ = (- 1)(-1,2)(-2,3)-+ (= (n-1),n) € P2(xn) and  (y&y™)3lpu = ».
Also the permutation y§ has the one cycle (1,-1,2,-2,...,n,-n).

Inside P4 (+n) we have the non-crossing pairings of [+#1], which only connect a
positive number to a negative number; we shall denote this subset by NCJ (+n).
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Lemma 5.2 'The map o ~ 8o~ is a bijection from Syc(n) to NC3 (xn).

Proof We have to check that ¢ € Syc(n) if and only if 080! € NCS(+n). Note
that 080" is a pairing so that #(c80™") = n. Also #((dd07')"'y8) = #(80807'y) =
#(808) +#(07'y) = #(0) + #(o7'y), because 80§ acts trivially on [n] and o'y acts
trivially on [-n] (cf. Remark 3.1). Thus, #(c8c™!) + #((0807")'yd) = n + #(0) +
#(07'y). By Remark 4.6 we have that ¢ is non-crossing if and only if 08¢ is non-
crossing. |

Proof of Lemma 5.1 Suppose that ¢ € Syc(n) and i; < iy < i3 are distinct with
o(i1) = iy and 0(iy) = i3. Then yé visits {i;, —iy, ip, —ia, i3, —i3 } and (i1, —i,) and
(iy, —i3) are pairs of 0~'80. Thus, 0780 is not in NCJ (+n), and hence by Lemma 5.2
07! ¢ Syc(n). Thus, the only permutations o € Syc(n) for which 67" € Syc(n) are
those where o = 67%; i.e., all cycles are singletons or pairs. ]

Theorem 5.3 ([2, Thm.1]) Ifd),d, — oo, then the limit distributions of W' and W'
are semi-circular with mean c and variance c.

Proof Welete = 1and = —1; then W(evm) ... wenm) = (Whyr Also f.(0) =
filo) =#(o7'y) +#(0) - (n+1) and f, (o) = f-1(0) = fi(¢7"). So by equation (3.4)
we have .
ryny _ P\ 450 g Ale™
E(tr(WH)") =% (dldz) 4/ @),

Thus, by Definition 4.5 and Lemma 5.1, the only ¢’s that contribute to the limit are
those for which ¢ is non-crossing and has only blocks of size 1 or 2. Let us denote
the set of such ¢’s by NCy (). We have shown that the moments of W' converge to
those of an element w' in a non-commutative probability space (A, ¢) with

pW))= 3 O,

0eNCy,2(n)

oeS,

By the moment-cumulant formula [10, Definition 2.8], we have just computed the
cumulants of w'. Moreover, we have shown that the only non-vanishing cumulants
of wl are x; = x, = ¢. Thus, the limiting distribution is semi-circular. |

Remark 5.4 The measure on R whose free cuamulants are k1 = k, = c and k,, = 0 for
n > 3 is the shifted semi-circle law. It has density 7-—/4c? — (¢ - ¢)? on the interval
[c = 2\/c, ¢ +2+y/c]. We have used a different normalization for W than Aubrun (we
used -+- and he used %); the advantage of ours is that the free cumulants are very

aid;
simple with this normalization.

Next, we discuss the case when only one of the parameters d;, d, approaches in-
finity and the other one is fixed.
The following remarkable result is due to T. Banica and I. Nechita [3, Lemma 1.1].

Lemma 5.5 Suppose that o is a non-crossing permutation and that T is a cycle of
length nin S,,. Then #(o1) = 1+ e(0), where e(0) is the number of cycles of o of even
length.
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Let us recall the main result of [3, Theorem 3.1], which computes the free cumulants
of the limit distribution of dy W™ as p/(d,d,) — ¢ while keeping d, fixed.

Theorem 5.6 Suppose that dy is a fixed positive integer, and o d — cwith0 < ¢ < oo.

The free cumulants of the limit distribution of iy W' are x,, = cd for n even and x,, =
cdy for n odd. This limit distribution is the free difference of two Marchenko-Pastur
laws, one with parameter cd, =, 4l and the other cdl%

Proof Lete = 1and # = -1 in Theorem 3.7. By Remark 4.8, f.(¢) < 0 unless
0 € NC(n). For 0 € NC(n) and # = -1 we have by Remark 4.8 and Lemma 5.5,
fn(0) —#(0) + n = e(0). Hence Theorem 3.7 gives

hm E(trotr((dWhH)™) = > c#(”)dlf*‘(")” -y (dlc)#(o)dle(")-
e 0eNC(n) oeNC(n)

Note that if we set k, = dic when n is even and k,, = d;c when 7 is odd, then
Kg = (dlc)#(”)df (%) This shows that the limit distribution of d; WT has the claimed
cumulants. Since k,, = (dlc)% + (-1)"(dic) dlz_l , we have the claim about the dis-
tribution being a free difference of Marchenko-Pastur laws. ]

Remark 5.7 If in Theorem 3.7 we let € = —1 and # = 1, the coefficients d; and d,
switch roles, hence the argument above also gives an analogous statement for holding
d, fixed. More precisely, if d, is fixed and p/(d1d») — c, then the free cumulants of the
limit distribution of d, W' are given by «,, = d?c for n even and «,, = d,c for n odd.
This distribution is also the free difference of two Marchenko-Pastur distributions
one of parameter d,c“4— 42+1 3nd one of dzcd2 1

Remark 5.8  Since taking transposes preserves eigenvalue distributions Theorem 5.6
and Remark 5.7 also gives us the free cumulants of the limit distribution of d; W' and
W'

6 A Natural Free Decomposition of d,W* when d, =

In [3] it was shown that the limit distribution of d; W7 can be written as the free
difference of two Marchenko—-Pastur laws. The operators so obtained are not related
to the operator d; W7, though. In this section we shall show that there is a natural
decomposition of d; W7 when d; = 2, namely the diagonal and off diagonal blocks,
into free summands. More precisely, we let w be the limit distribution of W, which

we can write w as a 2 x 2 matrix
1 (wn wi
w=— .
2 \wa1 was

Relative to this block decomposition, 2W ™ converges to

wn wa
2wl = .
Wiz W22
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We consider the two operators

_["n 0 _ 0 Wa1
X = ( 0 sz) and X, = (W12 0 )
The diagonal summand X; has the Marchenko-Pastur distribution and the off di-

agonal summand X, is even and has the same even cumulants as the diagonal sum-
mand. Our main result in this section is that X; and X, are free.

Notation 6.1 Letd, =2, and suppose p/(did,) converges to ¢ with 0 < ¢ < co. Let
{Ew, Ex2, Ea1, Ea» } be the standard matrix units in M, (C), but viewed as elements of
Mz((C) ® Md2 ((C)

Lemma 6.2 'There is a *-non-commutative probability space (A, ¢) with elements
W, e11, €12, €1, €22 € A such that w has the Marchenko-Pastur distribution with pa-
rameter ¢ and { ey, €12, €21, €22 } are matrix units in A free from w. Moreover, the joint
distribution of {W, Eq1, Exa, E21, Ea2 } converges to that of {w, en, €12, €21, €22}

Proof As W, our Wishart matrix, is unitarily invariant, it is asymptotically free from
our matrix units (see [10, Theorem 4.9]). This is exactly the claim of the lemma. W

Notation 6.3 Thus, we can write the matrix of w with respect to the matrix units

{611, €12, €21, 622} as
_ L fwy wi
w=— .
2 \Wa W2

We will let ¢; be the state on ey Aey given by ¢1(x) = 2¢(x). The elements

{wi1, w12, a1, w22 } are in ejpAey, so their cumulants must be computed relative to

the state ¢;. When necessary, we will denote these relative cumulants by KS,I).

Lemma 6.4 Each of wn and way has the Marchenko-Pastur distribution with
parameter d;c.

Proof By construction, wy; = e;;2wey;. By [11, Theorem 14.18],

Ksll)(wu, coown) = 2"k, (enwen, . .., enwen) = 2'k, (w, ..., w) = 2c. [ |

Remark 6.5 Elements {a;;}};_, in a non-commutative probability space (A, ¢),

they are called R-cyclicif, whenever iy, ji, ..., iy, j1 € [n], wehavex;(ayj,,..., aij,) =
0 unless ji = i,...,jnu1 = iy and j, = i. By [11, Example 20.4], the elements
{w11, Wiz, w1, wa } are R-cyclic. Moreover, x;(2w,...,2w) = 2k (w,...,w) = 2lc.

So by [11, Example 20.4], we have K;l)(wiljl, Wisiar s Wipjy) =27 (2w, ..., 2w) =

2¢, when j; = ip,..., ju-1 = iy and j, = i.
Let X; = (W“ 0 )andXz = ( 0 WO“). Then 2wT = X; + X5.

0wy Wiz

Lemma 6.6 X, and X, are self-adjoint. The cumulants of X; are all equal to 2¢; i.e.,
Xy is a Marchenko-Pastur operator with parameter 2c, and X, is an even operator in
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that it is self-adjoint and all of its odd moments are 0. The even cumulants of X, are all
equal to 2c.

Proof We have ¢(X!) = ¢ (w))), so X; and wy; have the same cumulants, which
by Remark 6.5 are all 2c. Because X is off diagonal and self-adjoint, it is an even
operator. By [11, Proposition 15.12] the cumulants of X, are the *-cumulants of w;.
In Remark 6.5, we observed that these are all 2c. |

Our next goal is to show that X; and X, are free in (A, ¢). This is somewhat
surprising in that X; and X are not free. By X3, we mean the matrix ( WOZI "2 ) To see
this note that (X, X; X3 X1) = 2¢+3(2¢)?+(2¢)?, whereas if X; and X, were free, we
would have ¢(X; X7 X} X;) = (2¢)? + (2¢)?. This gives another unexpected instance
where a partial transpose produces freeness, but this time at the level of operators.

Now let us turn to the freeness of X; and X,. Let

wy, O 01
Y, = X, YZ:( 31 le) and 1/3:(1 0).

Then X, = Y,Y;. Let iy, ..., i, bein [3]. Welet ker(i) be the partition of [#] such that
rand s are in the same block of ker(i) ifand only if i, = i;. Welet1, be the partition of
[n] with one block. Then ker (i) =1, if and only if i is the constant function. Suppose
that ker(i) < 1,,. Let r be the number of times i = 2, and g = n + r. Then there are
Jisjas- s jq € {1,2,3} such that X;, --- X;, = Yj, ---Yj,. We now apply the formula
for cumulants with products as entries [11, Theorem 11.12]. Then

Kn(Xis o> Xi) = D0 ka(Yjo.o s Y5,),

neNC(q)

where the sum runs over all non-crossing partitions in NC(q) such that 7vp =1, and
p is the non-crossing partition whose blocks are have either 1 or 2 elements, and the
singletons are where j; = 1 appears in the string Y} ---Y;,, and the pairs are (I, ] +1)
where j; = 2 and j;4; = 3. Since ker(i) < 1,, there must both singletons and pairs.
Let us consider a 7 € NC(q) that is such that 7 v p = 15; we will show that by the
R-cyclicity of w, we have «,(Yj,,...,Yj,) = 0. Summing over all such 7, we get that
kn (X5 ..., X;,) = 0. This shows that all mixed cumulants vanish and hence that X;
and X, are free, as claimed.

Lemma 6.7 Given py,..., ps € [3], we have ¢(Yp, --- Y, ) = 0 unless Y3 appears an
even number of times.

Proof Y; and Y, are diagonal, so Y}, --- Y, will be 0 on the diagonal unless Y3 ap-
pears an even number of times. ]

Lemma 6.8 Given py,...,ps € [3], we have ks(Yy,, ..., Yp,) = 0 unless Ys appears
an even number of times.

Proof We write

ks (Yoo s Yp ) = > u(m1)@a(Yps-.os Yp,).
neNC(s)
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Given 7, we have by Lemma 6.7 that each block of 7 must contain an even number
of Y3s, or else ¢ (Yy,,...,Yp,) = 0. Summing over all blocks of 7, we get that the
number of Y3’s is even. [ |

Definition 6.9 Let iy, ..., i, € [3], we say that the s-tuple has the property (nvc)
if each non-zero entry of Y;, ---Y;, is of the form wy,,, --- Wy, ,,, where v = uz, v, =
Uz, ..., Vg1 = vk. Note that we do not require vy = u; as in R-cyclicity. We say that
the string has property (vc) if it does not have property (ncv).

Remark 6.10 We now describe the generic sequences with property (nvc). First, we
have any power of Y;. The product of two or more Y,’s does not have property (nvc).
No power of Y3 has property (nvc), because all its entries are either 0 or 1.
Now suppose we start with a Y. We can only follow with a ¥; or a Y3. So our basic
reduced sequence is (with the possibility that k = 0)
Y- YsY,.

—
k

We can enhance this by putting an even power of Y3 between any two letters above.
Note that there cannot be an odd number of Y3’s between two Y;’s, as

0 W11W22)

hyh = (W22W11 0

So the most general string starting and ending with a Y5 is
Y2 Y311 Ylkl Y;z Ylkz . Ylkr Y;r+l YZ

with [, ..., I, even and [,,; odd.

Lemma 6.11 Let iy, ..., ix be a string with property (nvc) that starts and ends with
Y, and has no other Y,’s. Then the number of Y35 is odd.

Proof We just observed that the number of Y3’sis [y +---+ 1, + 1,1, whichisodd. W

Lemma 6.12 Ifne NC(q)andnv p =1, and k,(Y;,,...,Y;,) # 0, then each block
of m must contain the same number of Y»'s as Y3, and both numbers are even.

Proof We have just observed that the number of Y3’s between Y,’s is odd. Thus, to
go all the way round a cycle, the number of Y3’s is equal to the number of Y>’s plus an
even number that might be 0. However, in our whole string the number of Y5’s and
Ys3’s is the same. If one cycle had an excess of Y3s, then another cycle would have a
deficit. Thus, all cycles must be balanced. Since we already know that each cycle has
an even number of Y3s it also has an equal even number of Y3’s. [ |

Lemma 6.13 Letiy,...,iq € [3] be such thatker(i) <14 and let m e NC(q) be such
that mv p =14. Then k,(Y;, ..., Y;,) = 0.

Proof Let V be a block of 7 that contains a [ such that j; = 1. Then (I) is a block
of p. Since we are assuming that 7 v p = 1, there must be [, € V with j;, € {2,3}.
If the contribution of this block to k,(Yj,, ..., Y;,) is not 0, then there must be a ¥
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followed by a Y3. So we can assume that we have a I and I’ such that j; = 1, j;» = 3,and
I’ follows I in V. We have that 7 restricts to a non-crossing partition of [ +1,1" —1].
Each block in this restriction contains the same number of Y’s as Y3’s by Lemma 6.12.
However, this is impossible, because in the original string Y; ,..., Y;,, a Y, is always
followed by a Y3, and we have removed one Y;. Thus, k,(Y;,...,Y;,) = 0. [ |

Theorem 6.14 X, and X, are free in (A, ¢).

Proof We have just shown that by the formula for cumulants with products for en-
tries we have that mixed cumulants vanish. Thus, X; and X, are free. |

Remark 6.15 The distribution of w” in (A, ¢) is the limit distribution of W that
is the same as WT. Thus, the distribution of dyw! is the same as that of d;w.

Theorem 6.16 For d, = 2 and p/(d\d,) — c, the limit distribution of 2W7 is the
free additive convolution of a Marchenko-Pastur law with parameter 2¢ and an even
operator with all even cumulants equal to 2c.

7 Asymptotic Freeness

Since W is unitarily invariant, a consequence of the results from [9] is that W and wT
are asymptotically free if d,d, — oco. In this section we will present the main results of
the paper, which, using the relation form Theorem 3.7, improves the result mentioned
above.

Theorem 71 Ifd; — oo and dy — oo, then the family {W, WT, WE, W1} is asymp-
totically free.

Proof By Theorem 3.7, we have that

#(0) ,
E(trotr(wem . .oylenmy) - 3 %) FCEIC)
142

oeS,
and by Lemma 4.3 and Proposition 4.7, we have that
* fe(0), fy(o) <0forall g,¢ and #;
* fe(0), fy(0) < 0 unless € and  are constant on the cycles of o;
* f.(0) < 0 unless o, is non-crossing.

Thus, when d;, d, — oo and ﬁ — ¢, we need only consider ¢’s for which

(a) eand # are constant on the cycles of o;
(b) both o, and o, are non-crossing.

Note that, as partitions, o, 0., and 0, are the same, since the only possible difference
between them is whether we reverse the order of elements in a cycle of ¢. Thus, we
have shown that the limit when d;,d, — oo of an arbitrary mixed moment can be
written as a sum over non-crossing partitions; that means that the terms that appear
are the free cumulants of the mixed moment we are considering. However, by (a), the
blocks of ¢ only connect W (¢-:) to W{€11) if (¢;, 11;) = (€, ;). This means we have
shown that mixed cumulants vanish and this implies the conclusion. ]
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Theorem 7.2 () Ifd, — oo and d, is fixed, then the family {W, W'} is asymp-
totically free from the family {WT, W1}, but W is not asymptotically free from WT,
noris WT from W1,

(i) Ifd, is fixed and d, — oo, then the family {W, W1} is asymptotically free from
the family {WT, W'} but W is not asymptotically free from W, noris WT from W',

Proof Suppose first that d; — oo and d; is fixed. Hence, in the summation from
Theorem 3.7 only the terms where f.(0) = 0 will contribute to the limit. As in the
proof of Theorem 7.1, the last condition is equivalent to o, being non-crossing and &
being constant on the cycles of ¢. Since the partitions ¢ and o, are the same, it follows
that the limit as d; — oo of an arbitrary mixed moment is written as a sum over non-
crossing partitions, so the terms in the right-hand side are in fact free cumulants. The
condition that ¢ is constant on the cycles of ¢ gives that only free cumulants in ele-
ments from only one of the families from part (i) do not vanish, hence the asymptotic
freeness is proved.

For the second part of (i), we will use the expansion of E o tr @ tr(W - W) from
Theorem 3.7 in the case ¢ = (1,1) and # = (1,-1). Note that S, contains only two
permutations, y = (1,2) and o = (1), (2), both non-crossing. Also, since ¢ is constant,
it is constant on the cycles of o and y. It follows that f;(0) = f:(y) = 0. Moreover, 1
is constant on the cycles of 0 and 0, = ¢ is non-crossing, hence f; (o) = 0. Therefore,
Theorem 71 gives that

Eotr@tr(W- WT) - Cz+c~d£"()))_

As d; —» oo, the first moment of W approaches ¢, and from Theorem 5.6, so does the
first moment of W', hence

lim (W, W) = c-d"™ 4o

dy—oo

The same argument also shows that W’ and W7 are not asymptotically free, since

wT=(wnhT.
Finally, part (ii) also follows from the argument for part (i), since the relation from
Theorem 3.7 is symmetric in (dy, ¢) and (d,, 77). [ |

8 The Case of Real Wishart Matrices

In this section we examine the case of real Wishart matrices. More precisely, W will
denote now the symmetric dyd, x dyd, random matrix

i,j=1’

1 d
W= ——(G;G*)%
d]dz( ])

where {G; : 1 < i < di} is a family of d, x p random matrices whose entries are
independent Gaussian random variables of mean 0 and variance 1.

Since W = W' and W' = W' we shall only work with W and W. For this reason
we shall use slightly different notation that in the previous sections. For € € Z, =
{-1,1}, we let
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Thus, our goal will be to consider, W) ... W() an arbitrary word in W and W'
and find its limiting expectation.

Theorem 8.1 With the notations from above, we have that

#(md)/2
) g ggtem,

E(tretr(WE . ..weE))) = 3 P
nePy(£n) did,

where
g(m) =#(ydy ' v ) +#(n8) /2~ (n+1)
and € € S(xn) is, as before, given by

_Jk few =1
(k) = {—k if€|k‘ =-L

Proof We have
Treo Tr(Ww) ... wien))

dy
= > Tr(W(i, i) W(ii,) )
igtseeerizn=1
i=ioydy~!
dy
= > (Wi i) )k, - (W(ini-n) ),
. . e
LES PYPPH Tin kil ----- kin=1
k=koydy!
d>
= Z Z W(ilr i—l)j]j—l T W(I“ i‘”)jnj—n
ix1eesizn Jalseen jen=1
j=joeydyle
)4
. ) ) G) (i) (i)
=(d@d)™ Y Y &GkSiak &Sk
Txlreens izn kiyeeskp=1
Jatseeosjan

In line 3 we momentarily break with our previous convention about W (€) indicating
whether or not we take a partial transpose; in this case W (i, i_, )" means take the
transpose of the d, x d, matrix W (i,,i_,). In passing from line 3 to line 4 above, we
let j=koe.
Now
(i) (i) (i) (i) _ (ir) ,(is)
E(gjlklgjflkl jnkngj—nkn) - Z H E(g'rkrg]'sks).
neP,(£n) (r,s)em

On the right-hand side in the expression above we are extending k as a function from
[n] to [p] to a function on [+n] by requiring k, = k_,. This means k = k o §. Now

E(gj(:;c)g](:;i) = 0 unless i, = is, j, = js, and k, = k;, in which case it is 1. Thus,

E( T1’®T1‘(W(El) . W(e"))) _ Z df(ygy-lvﬂ)—nd;(eyay—levn)—np#(ms)/z.

neP,y(£n)
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Since we require k = ko w and k = k o § we must have k = k o 76. Now as noted in
Lemma 4.1 the cycles of 7 appear in pairs where one part of a pair is the conjugate
by & of the other. Since k is a function on [n], #(78) double counts the degrees of
freedom. Hence the exponent of p is #(78)/2. Thus,

E( tr@ tr( W ...W(en)))

( p ) #(”6)/2d#(y&y’an)+#(ﬂ5)/2*(”+1)
\ did; '

nePy(£n

Xd;‘(eydy*levn)w%(n&)/Z—(n+1).
Finally, note that
1
#(eydylev ) + #(nd)2 - (n+1) = 5#()/6)/_167[6) +#(emde)[2 - (n+1)

= g(eme),
hence the conclusion. ]
Next we shall show that g(77) < 0 and g(eme) < 0 for all € and 7, and find for which

pairings m we have equality.

Lemma 8.2 Let m € Py(xn) be a pairing such that there is (r,s) € n with the same
sign. Then g(m) < 0.

Proof Since 7 connects two elements with the same sign, 76 connects two elements
with opposite signs. Then the subgroup generated by y8y~'8 and 76 acts transitively

n [+n]. Thus,
#(nd) + #( (718)_1)/6)1_16) +#(pdy 1) <2(n+1).
We have
2#(pSy' v ) = #(ySy~'m) = #(ydy ' 60m) = #((nd) ydy~1o).
Thus, g(7) = #(ySy~t v i) + #(nd)/2 - (n +1) < -1 [

Lemma 8.3 Suppose m € Py(x£n) and n only connects elements of opposite sign.
Then 78 leaves [n] invariant and g(rr) < 0 with equality only if |, is a non-crossing
permutation.

Proof Since both 7 and & switch signs, 78 preserves signs. Thus, 776 leaves [#] in-
variant. By Lemma 4.1 we have #(78) = 2#(nd|[,1). Also,
2#(p0y~ v i) = #(ydy ' 80m) = #( (m) 'ySy'8) =2#((nd|() 'y)-
Hence,
g(m) =#(ydyva) +#(n8) /2 - (n+1) <0
with equality only if 778|[, is a non-crossing permutation. ]
Lemma 8.4 Lete € 7} and m € P,(£n). Then g(eme) < 0 unless ende leaves [n]

invariant. If ende leaves [n] invariant, then g(eme) < 0 with equality only if ende|[ ) is
a non-crossing permutation.
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Proof By Lemma 8.3 we have g(eme) < 0 unless ezred = ende leaves [n] invariant. If
ende leaves [n] invariant, then again by Lemma 8.3, we have g(ene) < 0 with equality
only if e7rdel[,,] is a non-crossing permutation. ]

Lemma 8.5 Lete € Z) and m € P,(xn). Suppose nd leaves [n] invariant. Then ende
leaves [n] invariant if and only if € is constant on the cycles of 7d.

Proof Suppose (i,..., i) is a cycle of 8. All these elements must have the
same sign. The corresponding cycle of ende is (€(i1),...,€(ix)). The elements of
ende is (e(i1),...,€e(ix)) have the same sign if and only if € is constant on ende is

(e(ir),-..,e(ix)). n

The following theorem is the main result of this section. Recall from Lemma 4.4
that if € is constant on the cycles of o, then we obtain o, from ¢ by reversing the cycles
on which e = -1

Theorem 8.6 We have

lim E(tr®tr(W(€1)...W(en))): 3 ),

di,dz—>o00 geSnc(n)

where the sum runs over all non-crossing permutations o such that € is constant on the
cycles of o and o, is also non-crossing.

Proof In the formula from Theorem 8.1, only the pairings 7 such that g(7) =
g(eme) = 0 will contribute to the summation when d;, d, — oo.

Recall that P$ (+7) denotes the pairings 7 of [+#] such that 78 leaves [#] invariant.
For such a 7 we let o = 7d|[,;] be the corresponding permutation. We already noted
that this is a bijection from P (+n) to S, and 78 = do~'80. From Lemma 8.3, the
condition g(7) = 0 implies that o = §0" 80 ,,] is noncrossing.

According to Lemmas 8.4 and 8.5, the condition g(eme) = 0 implies that € is con-
stant on the cycles of . As in Lemma 4.4, ede = 0, ' §o,. Therefore,

#(eydylevm) = —#(y8y ' 8(ende) ™)

N = N =

#( (806_1805)_1)/8)/_18) = #(05_1)/),

which gives
g(eme) = #(o.) +#(a'y) — (n+1),

hence the formula (4.1) gives that g(eme) < 0 with equality if and only if ¢, is non-
crossing. |

An immediate consequence of Theorem 8.6 is part (i) of the following result.
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Theorem 8.7  Suppose that p/(did,) — c.

(i) Ifdi,dy — oo, then W is asymptotically a shifted semi-circular operator with
K1 =Ky =¢C.

(i) Ifd, > oo and dy > 2 is fixed, then the asymptotic distribution of dy W', equals
the distribution of the difference of two free variables with Marchenko-Pastur laws, the
first of parameter cd, d22+1 and the second of parameter cd, d22—1.

(iil) Ifd, is fixed and d, — oo, then the asymptotic distribution of dy WY, equals the
distribution of the difference of two free variables with Marchenko-Pastur laws, the first

of parameter cd; d‘;l and the second of parameter cd; %.

Proof Lettinge; = —1forall j=1,...,n in Theorem 8.1, we obtain that

#(md)/2
) dlg(")d§(5"5)_

(8.1) Eotretr(WH)") = > (p

neP,(£n) did;

Suppose first that d;, d, — oo. Then, in the summation from (8.1), only terms with
g(m) = g(8n8) = 0 will contribute to the limit. From Theorem 8.6, this is equivalent
to both ¢ and o5 be noncrossing. But g5 = 6~' so Lemma 5.1 implies that ¢ has only
cycles of length 1 or 2, hence part (i) is proved.

Suppose now that d; — oo and d, is fixed. Then only 7 such that g(7) = 0 will
contribute to the limit in the summation (8.1). Applying Lemma 8.3 again, this is
equivalent to 7 = 68c™!, for o a non-crossing permutation on [#]. In this case, we
have that g(8768) = g(8080716).

Also, #(ydy™' v 8n8) = 1#(ydy~'00807'8), and, if k € [n], we have that

y8y'80807'8(k) = pdy'da (k) = yo(k),
y8y'80807'8(~k) = ydy 180807 (k) = ySy ' So(~a7'(k))
=8y (07(k)) =y (07! (K)) = (0 0y) (k).
Moreover,
#((618)8) = #(0m) = #((nd)™") =2#(0),
hence, Lemma 5.5 gives that
g(6nd) =#(yo) +#(0) - (n+1) =#(0) +e(0) —n,
so equation (8.1) becomes

lim Eotr®tr((Wr)") = Z C#(U)dS(U)Jr#(v)—n_
oo oeSne(n)

Thus,
lim Eotr®tr((d2Wr)")= Z (Cdz)#(o)dze(a): Z Ko»

di—e0 oeSnc(n) oeSnc(n)

where «,, = cd, for n odd and «,, = cd? for n even. The conclusion follows, because
Ky = (cdz)% + (—1)"(cd2)% (see the proof of Theorem 5.6). The case d; fixed
and d, — oo is similar. [ |

https://doi.org/10.4153/CJM-2018-002-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-002-2

680 J. A. Mingo and M. Popa
Theorem 8.8 Ifboth dy,d, — oo, then {W, W'} is an asymptotically free family.
Proof The result is a consequence of Theorems 8.6 and 8.7. ]

Remark 8.9 For W a real Wishart random matrix, W' is not asymptotically free
from W if d, is fixed or if d, is fixed.

Indeed, for n = 2 and €; = 1 and €, = -1, the formula from Theorem 8.1 gives

)
Eotrotr(Ww') = S (-2 )#(" 2 g gsene)

neP,y(£2) did,

There are only 3 pairings in P,(£2): m = (1,-1),(2,-2), m» = (1,2),(-1,-2), and
m3 = (1,-2), (-1,2). Direct calculations give that 7,8 = id, 71,8 = (1,-2), (-1,2) and
m8 = (1,2), (-1,-2).

Moreover, eme = 7, while €ry¢ = 73 and emze = 7; also, for n = 2, we have that
ydy~' = (1,-2), (~1,2). Therefore, g(m;) = g(m;) = 0and g(m3) = 1, so

Eowetr(ww') = (L) + (L) (L+1),

— + —
did didy/ \dy  dy
and the second term in the equation above does not cancel asymptotically unless both
dy, dy — oo.
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