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ABSTRACT. Using the finite-element we have modeled the stress field near the calv-
ing face of an idealized tidewater glacier under a variety of assumptions about submarine
calving-face height, subaerial calving-face height, and ice rheology. These simulations all
suggest that a speed maximum should be present at the calving face near the waterline. In
experiments without crevassing, the decrease in horizontal velocity above this maximum
culminates in a zone of longitudinal compression at the surface somewhat up-glacier from
the face. This zone of compression appears to be a consequence of the non-linear rheology
of ice. It disappears when a linear rheology is assumed. Explorations of the near-surface
stress field indicate that when pervasive crevassing of the surface ice is accounted for in the
simulations (by rheological softening), the zone of compressive strain rates does not devel-
op. Variations in the pattern of horizontal velocity with glacier thickness support the con-
tention that calving rates should increase with water depth at the calving face. In addition,
the height of the subaerial calving face may have an importance that is not visible in
current field data owing to the lack of variation in height of such faces in nature. Glaciers
with lower calving faces may not have sufficient tensile stress to calve actively, while ten-
sile stresses in simulated higher faces are sufficiently high that such faces will be unlikely to

build in nature.

1. INTRODUCTION

On a calving tidewater glacier, the position of the ice front is
determined by a balance between the ice speed and the calv-
ing rate at the terminus. (Herein, and in most discussions of
glacier calving, calving rate includes all processes by which
ice is removed from a calving face, including calving of frag-
ments ranging in size from individual crystals to icebergs
the size of a building, as well as submarine melting) For a
terminus position to remain roughly constant, these two
speeds must obviously be nearly equal. If that equality is
not satisfied at a given time, then the terminus position will
move until changed conditions of water depth against the
calving face, valley geometry and mass input re-establish a
balance.

Of the two rates that control a glacier’s position, only ice
speed 1s reasonably well understood, physically and mathe-
matically: given a geometry, reasonable assumptions about
flow-law parameters and basal shear stress can provide suff-
cient information to estimate flow speeds from a numerical
calculation. No such direct, physical calculation can be done
for the calving rate, perhaps owing to the variety of scales
and types of processes involved. A fundamental tenet of the
above calculation is that glaciers that are thicker at the calv-
ing face move faster. Furthermore, glaciers that are thicker
at the calving face end in deeper water because the subaerial
part of a calving face is of relatively uniform height. Thus, if
we consider a population consisting of a number of tide-
water glaciers. with stable terminus positions, the thicker
ones must have higher calving rates. The empirical relation-
ship of calving speed to water depth at the calving face
found by Brown and others (1982) is an example of such a
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monotonic relationship between water depth and calving
speed, and it has been applied with some success in a pre-
dictive manner on Columbia Glacier, Alaska, U.S.A. (Me-
ler, 1997).

In an earlier paper (Hanson and Hooke 2000, herein-
after referred to as HH), we presented a model of stresses
and flow fields near the face of a grounded, tidewater calv-
ing glacier. In that paper, we investigated the stress field
near and at a vertical calving face under various assump-
tions about the shape of the glacier surface profile and the
basal stress conditions. One fundamental result was that
the highest horizontal speeds at the calving face were in a
zone extending from slightly above to just below the water-
line. This created a tendency for the ice at the waterline to
project out over the ice beneath the water, a result that
might have been anticipated from Hughes (1987). A second
result was that the rate of overhang development (or the dif-
ference between maximum speed near the waterline and
sliding speed at the base) increased with increasing water
depth. The longitudinal deviatoric stress near the bed just
back from the calving face also increased with increasing
water depth, possibly facilitating bottom crevassing. These
effects were not presented as a prediction of calving rate,
but rather as a triggering mechanism. Ice near the calving
face was presumed to be sufficiently crevassed that the only
additional condition needed for calving was a tilt or buck-
ling, creating a larger impetus to fall into the water than to
remain with the glacier. These results may provide a physi-
cally based mechanism for the calving-speed/water-depth
relationship found by Brown and others (1982).

A different paradigm for calving models uses a kine-
matic boundary condition to control the terminus position
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(Van der Veen, 1996, 2002). Van der Veen’s model focuses on
the minimum total glacier thickness needed to avoid flota-
tion. In the modified form used by Vieli and others (2001)
to model terminus changes at Hansbreen on Spitsbergen,
the model is controlled by

hOmin = @ (1 + q)hw 5 (1)
1
where py and p; are densities of water and ice, hy, is the
water depth at the calving face, Agmin 1s the minimum allow-
able total thickness ofthe glacier at the calving face, and g is
a small number (<1) that will vary from glacier to glacier
but presumably be constant with time at a given glacier over
some range of terminus positions. The calving rate, 1, in
this method arises from the change in terminus position
required to maintain the minimum thickness. Although the
apparent dependence of calving rate on water depth is ob-
scured in Equation (1), implementation of this model still
produces a calving rate that varies linearly with water depth
(Vieli and others, 2001, fig. 9).
The change with time in position ofthe terminus of the
glacier (or change in glacier length, L) is given by

L e, (2)
in which g 1s glacier speed at the terminus. Because . can-
not be measured directly, it is always obtained as a residual
in Equation (2) after measuring dL/dt¢ and wy. Normally,
dL/dt < ug, so u. and ug will appear to be well correlated.
The flotation model proposed by Van der Veen (1996)
requires this correlation, and assumes that it is always valid.
No direct, causal connection has been proposed between
calving speed and flow speed. They may be mutually corre-
lated via their common dependence on ice thickness and
hence water depth, as well as via the necessity of ice move-
ment to continually recreate the conditions needed for calv-
ing. The dependence of the patterns noted in HH upon
water depth supports such a connection. Van der Veen
(2002) calls the correlation between calving speeds and
height spurious, implying that they result from sampling
and would vanish if sufficient data were collected. We dis-
agree. Many quantities (speed, overhang rate, various stress
components) increase with either glacier thickness or water
depth (which are themselves strongly correlated), and to
claim that these have no influence on calving rate is un-
founded, given our lack of understanding of calving pro-
cesses such as fracture initiation and propagation and
submarine melt.

The results in HH were robust with respect to assump-
tions regarding basal sliding speed, surface profile, height of
the subaerial calving face, lateral stress shape factor, presence
or absence of crevasses, and ice rheology. All of these factors
affected the rate of overhang development to a greater or les-
ser degree, and hence, presumably, could affect the calving
speed, but none of them obscured the increase of overhang
development with submarine calving-face height (for fa-
milies of simulations in which thickness was varied while all
other factors were held constant). Several other robust fea-
tures that might affect calving were also noted in HH. The
highest values of the longitudinal deviatoric stress, o, were
near the waterline height a few tens of meters back from the
calving face. Also, a small zone of compressive deviatoriclon-
gitudinal stress appeared at the surface of the glacier a short
distance (3040 m) back from the calving face.
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This paper further explores simulated stress fields near a
calving face, expanding on HH by showing the influence of
rheological parameters on both the surface compressive
zone and the tendency of the calving face to bulge out near
the waterline. Additionally, the effects of subaerial calving-
face height variations are explored, whereas HH was pri-
marily concerned with water-depth variations.

2. THE MODEL

As in HH, the model used in this study is the vertical flow-
plane finite-element model described by Hanson (1990). As
used 1n these studies, the model solves steady conservation of
momentum and incompressible conservation of mass:

_60’m Oty Op
0= "oy o 3)
0Ty ag;;/y dp
0=""+ B 8y+pg (4)
ou Ov
0= 55 (5)

in which z is a horizontal coordinate and y 1s directed verti-
cally upward, © and v are their corresponding velocity com-
ponents, o, and J,;y are the corresponding deviatoric
stresses from the diagonal of the stress tensor, 7, = 7, is
the shear stress, g is acceleration of gravity, p is pressure
and p is density (constant at 900 kg m~® in all simulations).
These equations are solved using a Glen (1955)-type power
law,
B .
Ty = G s (6)

where 7;; and €;; are any corresponding elements of the de-
viatoric-stress and strain-rate tensors, and € is the effective

2
ried out with constant B = 200 kPaa'/™, and most were

strain rate, € = 4 /léijéij. All of these simulations were car-
carried out with a constant enhancement factor, £ = 1 ex-
cept as discussed in section 3.2 on near-surface softening.
The flow-law exponent, n, was a constant within any given
simulation, and n = 3 was used in all simulations except
those where variation of n between simulations is specifi-
cally discussed. The equations are solved using Galerkin’s
method on linear quadrilateral elements, in which the non-
linear rheologies (n # 1) require iteration.

The finite-element grids for tidewater calving glaciers
consisted of elements in columns 5 m wide everywhere, with
element heights of 5m at the calving face. The element
height increased back from the calving face in order to span
the increasing glacier thickness with a constant number of
elements. All of the grids for these experiments had per-
fectly flat bottoms and a simulated length up-ice from the
calving face of 2000 m.(The coordinate system and some of
the notation are illustrated in Figure la.) The origin of the
coordinate system is always the bottom of the glacier termi-
nus. In these and some later contour diagrams, a horizontal
axis is labeled as —x, which is equivalent to “distance from
calving face” Use of the negative coordinate within the
model preserved the usual sense of x increasing left-to-right
and positive horizontal velocity, while allowing the con-
venience of = 0 at the calving face. Only the section with-
in a few hundred meters ofthe calving face was analyzed;
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Fag. 1. Contour diagrams of sumulated fields for a run in which
total height of the calving face, hy, ts 200 m, water depth, h,,
15 140 m, and surface softening was not used, Ey,ox = 1. Ar-
rows and notations in (a) point out features that are tabulated
for this and other simulations. Speeds are inm a™ ', stresses in
kPa. Gray bars indicate the walter level against the calving
Jace. (a) Horizontal speed, u. (b) Vertical speed, v ( down-
ward velocities plotted positive here). (¢) Deviatoric longitu-
dinal stress, o, contours dashed when negative. (d) Shear
stress, Tpy. The sense of shear implied by differing signs of Tpy
is schematically tllustrated by diagrams showing the approxi-
mate deformation with time of an initially square piece of the

Slowplane.

the remainder of the simulation was primarily intended to
buffer the calving face from effects of the up-ice boundary
conditions.
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The base of the simulated glacier tongue was subjected
to a mixed boundary condition of velocity and stress. At
each basal node, the vertical component of velocity was set
to zero. Horizontal velocity components at these nodes were
not fixed to particular values by boundary conditions, but
were subjected to a resistive stress. The amount of resistive
stress applied in a given simulation varied with the thickness
at the calving face in that simulation. Basal shear stress 7,
was assumed to increase with margin thickness according
to a linear relation discussed in HH, 7, = a + bhg, where
a = 81kPaand b = 0.668 kPam . That relation was based
on a force-balance analysis of glaciers used by Brown and
others (1982). When applied to glaciers with front thick-
nesses, by, of 100-300 m, this produces basal resistive stres-
ses of 147281 kPa, with a value of 214 kPa at hy = 200 m.
These were applied uniformly as resistive stresses (horizon-
tal stresses against the direction of flow) along the entire
base of the glacier.

Other boundary conditions included a horizontal inflow
of ~1000ma ' at the up-glacier end of the simulated do-
main and a water pressure applied to the submerged portion
of the calving face. The velocity at the up-ice boundary in-
creased slightly with height, following the plane-strain
solution of Nye (1957). As in HH, the inflow boundary con-
ditions turn out to be entirely irrelevant in producing the
stress and deformation fields near the glacier margin. The
subaerial portion of the calving face and the upper surface
of the glacier were free surfaces, mathematically equivalent
to an applied stress boundary condition of zero magnitude.

3. EFFECTS OF RHEOLOGY ON NEAR-SURFACE
STRESS PATTERNS

3.1. Control run

As abasis for comparison with other simulations, we made a
control run with a glacier thickness of 200 m in water 140 m
deep. Following the procedure described in HH, this glacier
had a parabolic surface profile that provided a constant
driving stress 74 = pgh(z)a(z) = 214kPa, where «(z)
and h(x) represent the slope and height along the surface
(Fig. 1a). The value of 214 kPa comes from the linear rela-
tionship described above. Fields of horizontal velocity, w,

vertical velocity, v, shear stress, 7;,, and deviatoric longitu-
/

xrxd
I. (These are pure flowplane simulations with no param-
eterized lateral strains, so 0;/3/ = 0’ ) The difference from
model runs in HH is primarily in the use of a unit lateral-

stress shape factor.

dinal stress, o7, for this control run are presented in Figure

Near the calving face, the horizontal speed and longitu-
dinal strain rates are highest in a zone extending from
slightly above to somewhat below the waterline, with high-
est strain rates 30—60 m up-ice from, and highest speeds dir-
ectly at, the calving face (Fig. ). This zone of maximum
velocity represents a form of extrusion flow, inasmuch as
the velocity increases from the top of the calving face to
slightly below the waterline (see the shear diagrams in Fig-
ure 1d for the sense of the deformation). All of these simula-
tions show a maximum in 7, just above the waterline,
where the extrusional deformation is strongest.

A puzzling result, clearly present in this control run and
in all simulations discussed in HH, 1s a small area of com-
pressive deviatoric longitudinal stress at the surface near the
calving face that is barely visible in Figure lc. With the
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Fig. 2. Velocity vectors (arrows) and o, fields ( contours in
kPa) for simulations of a 40 m tall vertical column of ice that
is unsupported on the right side, using 2m square elements.
Left sides are fixed at zero horizontal velocity as if this were
the right half of a symmetric, 40 m wide column. Heavy dotted
lines indicale the shape each column would have were it al-
lowed to deform at these velocities for one half-year. Velocity
vectors are shown at every other node in each dimension. (a)
Basal velocity fixed at zero. (b) Basal horizontal velocity free
to slide, with no applied shear resistance.

model formulation used here, the sign of the longitudinal
deviatoric stresses always matches the sign of the corres-
ponding strain-rate tensor component, so compressive
motion is implied. The higher horizontal speeds and longi-
tudinal strain rates at the waterline require, via conserva-
tion of mass, a considerable downward vertical velocity in
the area 50—100 m up-ice from the calving face. The com-
pressional zone at the top near the calving face usually
extends from about 20 m to about 60 m back from the face,
and normally encompasses only the uppermost ~5 m thick
layer of elements.

Situations such as that above, in which velocity increases
with depth, can only occur under special circumstances,
and a vertical wall of ice unsupported by either water or ice
certainly constitutes such a special circumstance. Simply
put, the unsupported wall tends to buckle outward rather
than tip over. This buckling was first noticed during early
development of the finite-element model described by
Hooke and others (1979), which was a precursor to the model
used in the present paper. In those earlier simulations, a rec-
tangular column of ice, unsupported except at the base,
would bulge out near the base while sinking more rapidly
in the center than at the outer edges. Similar simulations
using the current finite-element model show that this buck-
ling occurs whether the column is frozen to the bed or freely
sliding (Fig. 2). The effect is extreme enough that the upper-
most velocity vectors take a very slight backwards direction
(not visible at the scale of Figure 2). The components of the
largest vectors at the top of Figure 2 are roughly v = 6ma '
and v = —0.3m a " In these column simulations, the ele-
ment size was reduced to 2m squares, so the compressive
zone goes deeper than a single layer of elements.
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The compressive zone was present in all simulations cal-
culated for HH. This compressive zone is not removed by
any surface-profile or basal shear-stress assumption that we
have tried. Nor is it removed by including modest depar-
tures from the purely vertical calving face. A variety of
simulations, mostly using the control run heights
(hg =200m, h.=60m), tested non-vertical terminus
faces. Simulations in which the subaerial calving face sloped
backwards linearly from the waterline so that the top posi-
tion was as much as 20 m back from the waterline did not
remove it, nor did less physically justifiable simulations in
which the subaerial calving face leaned outward above the
waterline. Departures from vertical of the face below the
waterline, whether of an overhanging calving face or of an
extending submarine toe, have very little effect on the finite-
element solution above the waterline.

This compressive zone provides a distinct contrast with

percetved reality. Although we lack measurements of surface
strain-rate fields near a calving face, our qualitative obser-
vations and many pictures in Post and LaChapelle (2000)
indicate that tidewater calving glaciers are usually heavily
crevassed near their margins. This would seem to be incom-
patible with compression. However, the compression rates
(negative longitudinal strain rates) obtained in our simula-
tions would not necessarily show up in aerial photography.
In nature, crevasses form well up-glacier from the location,
in our models, of the zone of compression. In order-of-mag-
nitude terms: a compression rate of 0.1a ' (based on our
simulations) acting over a distance of tens of meters on a
glacier that is moving at speeds of meters per day will only
close a large crevasse by a few centimeters before the cre-
vasse becomes (temporarily) the calving face, en route to
becoming an iceberg face. Thus, while we have no evidence
that such a compressive zone exists in any real calving tide-
water glaciers, images of heavily crevassed glacier surfaces
do not rule out the possibility. However, further simulations
modifying the rheology of the ice have shown that it is pos-
sible to remove the compressive zone.

3.2. Surface softening

A finite-element model, used properly, calculates numeri-
cally accurate solutions to the mathematical principles that
we think describe glacier motion. The numerical scheme
and its computer-program implementation used here have
been sufficiently tested in previous studies to ensure that this
is the case for this program. Three mathematically ex-
pressed principles are used in creating the model: a steady,
viscous force balance (Equations (3) and (4)), conservation
of mass for an incompressible fluid (Equation (5)) and the
Glen (1955) power law for flow with constant B and n
(Equation (6)).

Incompressibility on the large scale may be too strong an
assumption for a heavily crevassed glacier surface. While it
would be very easy to specify a smaller p in the top few
layers of elements, doing so only adds another variable that
must be interpreted, and minor reductions in density have
no significant effect on the results shown. Movement deep
in the ice controls the surface motion, and removing a few
tons of ice from the empty crevasses has only a minor effect
on the dynamics of the deeper ice. A more tractable depar-
ture from our fundamental principles is to modify the flow
law in the upper layers of the glacier in response to the cre-
vassing. Once again, we have no specific law to apply, but,
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Table 1. Summary of a series of model runs distinguished by their calving-face thicknesses hy and the maximum degree of surface

softening Eoax. All positions in m, speeds inma

7 .
, Stresses in kPa

Stress maxima near Surface Maximum Departure from Near-surface
waterline within ice minimum speeds Umax average
hO Emux GJ“ at (I, 7/) Try at (I; U) GJ,, at (I) Umax Umax Aubasc Autup GJ,,;I Tay
(y at face) (x at surface)

(a) (b) (c) (d) (e) (f) (g) (h) @)
100 1 213 (28, 28) 71 (23, 69) —47 (28) 1148 (35) —80 (55) 30 57 144 12
100 5 232 (23,28) 42 (43,82) 9 (13) 1206 (35) 106 (50) 41 56 102 3
100 10 242 (23, 28) 32 (38, 86) 16 (8) 1239 (40) —123 (45) 49 52 86 0
150 1 220 (48, 80) 75 (23,114 —36 (28) 1205 (75) —158 (60) 105 76 169 18
150 5 235 (43,80) 46 (28,109) 0 (13) 1268 (85) —196 (50) 133 67 118 7
150 10 243 (43, 80) 35 (38,110) 15 (8) 1303 (85) —219 (45) 151 58 98 4
200 1 221 (53,130) 76 (23,164) —59 (28) 1236 (125) —236 (60) 223 81 181 20
200 2 227 (53,130) 5 (23, 164) -39 (28) 1261 (130) —253 (55) 240 76 156 15
200 5 235 (53,130) 49 (28,159) 2 (18) 1304 (135) 283 (50) 270 66 126 9
200 10 242 (48,130) 38 (38,160) 15 (8) 1341 (135) —312 (40) 296 55 105 6
200 20 249 (53,130) 29 (43, 160) 19 (8) 1383 (140) —348 (30) 327 38 87 3
250 1 221 (58, 180) 78 (23, 214) —61 (28) 1275 (175) —315 (60) 392 79 187 21
250 5 235 (53,180) 50 (28, 209) -3 (13) 1349 (185) —370 (45) 454 61 130 10
250 10 242 (53,180) 40 (43, 210) 15 (8) 1390 (190) —403 (35) 489 49 109 6
300 1 222 (63, 231) 9 (23, 264) —61 (28) 1336 (230) —401 (55) 640 72 192 22
300 5 236 (58, 230) 52 (33, 259) -2 (13) 1418 (235) —464 (40) 715 52 134 11
300 10 242 (58, 230) 42 (43, 260) 15 (8) 1463 (240) —502 (30) 756 39 112 7

Notes: For all runs, he = 60m, so hy, = hy — 60 m. Near-surface averages of o/, , and U;y were taken at 10 m depth along the range 100-300 m from the calving
face. Positions of the maxima and minima are indicated by coordinates in parentheses; if an (x, y) pair is not given, then one of the coordinates is fixed at

on a sufficiently large scale (larger than the scale of seracs),
ice will be softened by the presence of cracks and crevasses.
This is not an actual softening of the ice; rather it reflects the
fact that stress can be relieved by motions along pre-existing
cracks more easily than in uncrevassed ice. This softening
can be introduced into the model by means of an enhance-
ment factor, I in Equation (6), such as is traditionally intro-
duced to simulate the effects of preferred crystal orientation.
Reducing the viscosity to simulate pervasive cracking may
not be common for glacier modeling. However, in sea-ice
modeling, a plastic rheology or other stress-limited rheology
is commonly used to account for the fact that once cracking
has been initiated, the ability of ice to sustain stress is se-
verely reduced (e.g. Sammonds and Rist, 2000).

In the surface-softened simulations used here, a certain
enhancement factor is chosen for the topmost layer of ele-
ments. In layers below the top, the enhancement factor is
reduced linearly until it is back to unity in the ninth element
layer. Thus, the upper 40 m of ice are at least partially soft-
ened near the calving face, and the thickness of the softened
layer increases slightly as element thicknesses increase back
from the calving face. The pattern of softening was extended
back from the calving face uniformly for 500 m.

A series of simulations using the same geometry as the
control simulation (Ey,x = 1) were generated with values
of Enax of 2, 5,10 and 20, respectively (Table 1). Following
through the 200 m thick simulations, as the softening in-
creased, the maximum in o’,, (Table 1, column a) slightly
below the waterline and up-ice from the calving face in-
creases in magnitude, without significantly changing posi-
tion (Table 1, column a). The region of compressive
(negative) o’,, (Fig. 3; Table 1, column c) gets smaller with
Enax = 2, becomes very small for Ep,x = 5, and becomes
undetectable with higher softenings.

The value of 0/, must approach zero at the upper corner
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of the calving face. (Stress tensor components and pressures
are calculated as constants within each element in this finite-
element formulation, so 0’ , is not precisely zero in the upper
corner element because that element is an almost square 5 m
by 5 m region — small but not infinitesimal.) Once the soft-

ening is adequate to prevent the formation of a compressive

y (m)
200

150

100
200

150

150 100 50

0150 100 50 0
—x (m)

Fig. 3. Contour diagrams of 0, for simulations in which the
crevasse softening factor, E, varies. Softening increases lin-
early from Emax =1 at 40 m depth to the given maximum
E\ox at the surface. All simulations were 200 m thick at the
margin; only the top 100 m is shown. Gray bars indicate the
level of water against the calving face. Contour interval is
20kPa. (a) Epax =2 (0) Emax =55 (¢) Emax = 10;
(d) Emax =20. (Compare with Figure Ic for Enax =1.)
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Fig. 4. Contours of u, v, 0',,.and Ty, for simulations of a 40 m tall vertical column of ice ( symmetric about the left side, as in Figure
2) using 2 m square elements. Each column presents fields from a different simulation, with the only variation between simulations
being the value of the flow-law exponent, n. A no-slip basal boundary condition was used. The sense of shear of Ty, is tllustrated
schematically with deforming squares, as in Figure 1d. ( All vertical velocities, v, are downward but are plotted with positive, solid

contours to clarify the graphs.)

zone (B¢ > 10), the pattern ofafm, near thesurfacebecomes
quite simple. Up-ice from a position 100 m or so back from the
calving face, near-surface deviatoric longitudinal stresses
have values nearly independent of z (contours become more
parallel to the surface as softnesses increase in Figures Ic and

3). Moving upward in the first column of elements at the calv-
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ing face, o7, decreases monotonically and nearly linearly to-
ward the corner element. The value of ¢’ in the upper partof
the glacier decreases with increased softening ('Table 1, col-
umn a), as should be expected, but this decrease is not nearly
asgreat, proportionally, asthe changein enhancement factor.
However, as the softening increases, the position of the onset
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of softening at approximately 40 m depth becomes well deli-
neated by a strong gradient in contours of o/, (Fig. 3c and d in
particular).

Shear stresses 7, also change as the softening increases.
Consider the maximum shear stress maintained in the
region of the glacier above the waterline. As softening in-
creases, these shear stress maxima decrease in magnitude
and move back from the calving face (Table 1, column b).
While the shear stress (and implied slumping-out rotation)
decreases with increased softening, it remains significant, so
the tendency for the calving face to buckle outward at the
waterline is not removed in these simulations.

A primary result of HH was that increasing submarine
calving-face height (with a constant A, = 60m) produced
an increasing rate of overhang development near the water-
line. Sets of runs at each of five terminus thicknesses (hg
varying from 100 to 300 m in 50 m increments) were carried
out with three different maximum FE\,,, values: 1, 5 and 10.
For any given softening as the ice got thicker, both ¢« and
Umax generally got larger (Table 1, columns d and e). The
fundamental results from HH are thus maintained at all
softnesses.

The differences between the maximum speed at the
calving face and the speeds at the top and base of the ice
front serve as measures of the rate of overhang development.
Let us define two departures Atgop = Umax — Utop and
AUpase = Umax — Ubase, Where all u values are at the calving
face (i.e. x = const =0 and only y varies between the
points considered). Looking at these departures (Table 1,
columns fand g) the increase in overhang development with
height indicated by the Aupage values is large at all soft-
nesses, and the effect increases with increasing Fy,¢. The
Auyep values show that buckling-out behavior is reduced
with the softening, which again correlates well with the re-
moval of the compressive zone.

3.3. Effects of varying the flow-law exponent

Our objective in this subsection is to explain the compressive
zone at the surface. To focus on this zone, experiments were
carried out with the column model described earlier. The
bed was assumed to be frozen, as in the simulation shown
in Figure 2a.

The pressure in the center of the column (left edge of
panels in Fig. 4) increases with depth, roughly linearly as
cryostatic pressure is the dominant effect. However, the
pressure along the free face (rightedge of panels in Fig. 4) is
atmospheric. Thus, the size of the horizontal pressure gradi-
ent from the center to the edge ofthe column increases (lin-
early) with depth and, as in any fluid, this results in an
increase in u with depth along the free surface. This increase
in v with depth is nearly linear in the upper part of the col-
umn, but close to the bed it is modified by basal drag.

In a power-law fluid, the viscosity decreases as effective
stress increases, whereas in a Newtonian fluid (n = 1) the
viscosity 1s independent of stress. High stresses in these col-
umns are concentrated near the bottom (third and fourth
rows of Fig. 4). Therefore, lower viscosities will also be con-
centrated near the bottom of the columns for which n > 1,
and the higher the value of n, the more the softening near
the bottom.

However, the horizontal pressure-gradient field will be
approximately the same in all cases, increasing linearly
with depth. When this pressure-gradient field is applied to
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material that is softer on the bottom and stiffer on top, the
greater response at the bottom causes a net counterclock-
wise rotation of the column. The changing sense of the de-
formation is visible in the changing slope of the vertical
velocity contour lines near the bottom of each column (Fig.
4, second row). The downward flow in the Newtonian case
(n =1) 1s relatively even across the column, indicated by
nearly horizontal contour lines. As n increases, the concen-
tration of downward flow near the left side (symmetric axis)
of the column (at the top of the column) increases, indicated
by a higher slope of the contour lines of v. With this in-
creased concentration of vertical flow near the symmetry
axis, u near the surface becomes negative as ice falls back-
ward into the area of maximum downward flow.

3.4. Discussion

In the previous subsections, the compressive zone near the
top of the glacier could be removed by relative softening in
two different ways: (1) direct viscous modification via en-
hancement factors, and (2) reducing the power-law expo-
nent. The experiments with varying n show how this
phenomenon can arise in ice. The softer bottom and stiffer
upper ice in a power-law fluid provide a weak analogy to the
pratfall of slipping on a banana peel (or on a glacier after a
fresh rain) in which the feet slip out so rapidly that the head
moves backwards.

As discussed above, we cannot rule out the possibility
that such a compressive zone occurs in nature. However,
emulating pervasive crevassing via direct modification of
the viscosity removed the compressive zone near the sur-
face, but did not change any of the other essential results of
HH. Softening the near-surface ice is not a direct simulation
of the effect of crevassing, of course. The softened ice has the
mass and hence driving force of uncrevassed ice, and hence
overstates the driving force. It is also less compressible than
crevassed ice. As a result of these differences between model
and reality, and the subtle character of the effects, we have
no way of knowing whether the compressive zone should be
expected in real tidewater calving glaciers. However, we be-
lieve we have shown: (1) that it is not a numerical artifice,
and (2) that the presence or absence of such a compressive
zone does not affect the basic conclusions of HH, and may
actually enhance the development of the submarine over-
hang.

4. EFFECTS OF SUBAERIAL CALVING-FACE HEIGHT
4.1. Subaerial calving faces above water

In all of the runs discussed in section 3, we used a subaerial
calving-face height, h., of 60 m. On the glaciers studied by
Brown and others (1982), h. ranged from 30 to 92 m with a
mean of 61 m; only 4 of their 17 glaciers had subaerial calv-
ing-face heights outside the range 48-70 m. Brown and
others (1982) could not find any statistical relation between
calving speed and he.

Because simulations in HH did not test the u vs h rela-
tionship, we report here a set of experiments designed to do
that. The simulations with varying h. were carried out with
two forms of variation: for a water depth, hy, of 100m, A,
was allowed to vary from 20 to 100 m, and for a constant
total face height, hy = 200 m, h. was allowed to vary from
30 to 100m (Fig. 5; see Fig. la for notation). Water levels
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were, in some cases, near, but never above, flotation level.
(Simulations with water levels above flotation produce
physically unreasonable results because the basal boundary
conditions — vertical velocities specified at zero — do not
allow the glacier to float. Our interest herein is in tidewater
glaciers, not ice shelves, so this limitation is not a concern.)
These runs were repeated with near-surface softening of
Enox =1 and Epx = 10. Softening did not affect the
results discussed here, so only the Fy,x = 10 results are
shown because of the simpler stress pattern that results
when the compression zone is removed.

In these simulations, all of the following increase with
subaerial calving-face height, h.: the maximum speed at
the calving face, Umay; the slumping-out rate, Augp; the
overhang rate, Aupage; O';m at the maximum behind the
waterline; and 7., at the maximum behind the waterline
(Fig. 5). Of these parameters, only Auypage varies appreciably
with hy, as shown by the fact that the points for a given h,
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Fig. 6. Variation of velocity and stress indices with face height

Jor water-free, zero basal velocity sumulations listed in Table 2.
(a) Speeds, including Umax and Aoy, along with the height
at which Upax occurs on the face, read against the upper axis.
(b) Maximum values of 0, and Ty, in the flowplane.

but with different i are indistinguishable, or almost so, in
the other curves in Figure 5.

We cannot calculate calving speed, u,, directly with the
finite-element model because this model does not simulate
failure. However, if we are correct in relating u. to Aupage
as in HH, the increase in Aupage with he suggests that u,
should be positively correlated with h. This effect is more
pronounced for the situation in which h. increases with hg
held constant (i.e. in the left branch of the curves for Aupage
in Figure 5, water depth, hy, is constant at 100 m so the slope
of the curve indicates a positive relationship between h. and
Apage). Brown and others (1982) may not have found this
correlation owing to the limited range of h. in their dataset
and the influence of other factors.

The change in o/, with h (Fig. 5b) may indicate that A,
has an important role as a limiting factor. The tensile stress
necessary to induce crevassing in a real glacier is not known,

Table 2. Summary of a series of model runs with no water at the face, distinguished by face heights, ho. All positions inm, speeds in

1 .
ma °, stresses in kPa

Maximum speeds

Departure from

Umax at (Y) Upay at () Umax al face Stress maxima
ho (at face) (at surface) Aupase JANTISS o, at(z,y) Tay 0t (2,Y)
Runs with basal sliding set to zero:
20 0.01 (6) -0.01 (6) 0.01 0.00 56 (1,3) 19 (5,13)
30 0.05 (8) -0.03 (10) 0.05 0.02 93 (1,3) 28 (9,19)
40 0.15 (10) -0.10 (14) 0.15 0.05 132 (1, 3) 38 (11, 23)
50 0.36 (12) 0.24 (16) 0.36 0.12 175 (1, 3) 48 (15, 31)
60 075 (16) -0.50 (20) 0.75 0.25 219 (1, 3) 58 (17, 38)
70 1.39 (18) -094 (24 1.39 047 266 (1, 3) 67 (19, 44)
80 2.37 (20) —-1.60 (28) 2.37 0.80 314 (1, 3) 77 (28, 50)
100 5.80 (26) —3.92 (34) 5.80 1.94 416 (1, 3) 96 (29, 62)
Runs with basal stress set equal to driving stress:
20 0.12 (0) -0.01 (16) 0.00 0.02 60 (7,1) 22 (5,9)
40 1.58 (0) 0.20 (32) 0.00 0.29 120 (15,1) 45 (11, 19)
60 6.81 (0) —1.01 (40) 0.00 148 180 (21, 1) 67 (17,29)
80 1891 (0) —2.95 (40) 0.00 465 241 (29, 3) 90 (23, 38)
100 4143 (0) —6.60 (40) 0.00 11.34 301 (37,3) 113 (29, 48)

Notes: The two groups of runs listed differ only in the indicated basal boundary-condition assumptions. Runs in this set had 2 m wide elements.
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Fig. 7. Variation in o', (conlours, 10 kPa interval) and
velocity (vectors) for water-free, zero basal velocity simula-
tions, where ho(= h.) varies from 20 m to 80 m in 20 m in-
crements. Velocity vectors are shown at every other node for
clarity. Scale of the velocity vectors varies dramatically with
ho: maxima given in Table 2 are scaled to a common length.

but Iken (1978) used 100 kPa as a rule of thumb for onset of
crevassing, and similar numbers have been used as yield
stress in plastic-flow models (Paterson, 1994). While the tensile
strength of pure ice can be three times to more than ten times
higher than this (Higashi, 1969; Hobbs, 1975), Keneally (2003)
found that a tensile stress of 100 kPa produced crevasses of
reasonable depths (~30 m) whereas 250 kPa produced maxi-
mum crevasse depths of >70m in a theoretical calculation
involving plastic deformation. Within this model, longitudin-
al deviatoric stresses are used rather than full tensile stresses,
but these are near the surface of the ice. We see that with h¢ of
20 m, near-surface values of ¢’,, are around 40 kPa, and o7,
reaches 96 kPa only at a the local maximum (see Fig. Ic foran
example of the spatial variation in ¢, ). General (as opposed
to maximum) near-surface longitudinal stress deviators do
not approach 100 kPa until k. is about 60 m.

https://doi.org/10.3189/172756503781830476 Published online by Cambridge University Press

These simulations raise the possibility that calving rates
are indeed influenced by h. in a way that the Brown and
others (1982) dataset cannot show. Simply put, a glacier
with a low calving face, h. < 40 m or so, would be less sus-
ceptible to deep crevassing and would have a low calving
rate. A glacier with h. near the high end of these simula-
tions, approaching 100 m, has very high ¢’,, and would pre-
sumably be very weak. Higher h. also leads to a rapidly
increasing slumping rate, Auy,, (note the concave upward
shape of the Auy,, graph and logarithmic abscissa in Figure
5a). A potential implication that subaerial calving-face
heights are limited in both minimum and maximum height
by ¢’,, is explored further in section 4.2.

4.2. Subaerial calving faces without water

As an additional check on this result, simulations were per-
formed on glaciers with vertical faces that do not terminate
in water. These simulations were partly inspired by Antarc-
tic dry-valley glaciers, which in some cases have vertical
calving faces from which bergs spall off without apparent
buckling (personal communication from B. Hallet, 1999).
These glaciers are frozen to their beds (temperatures every-
where below —20°C) and are much thinner and slower
(Chinn, 1988) than the tidewater glaciers that have been
the topic so far.

For these simulations, element thicknesses were reduced
to 2 m to accommodate the much smaller overall thickness
of the glaciers. The driving-stress/thickness relation derived
in HH cannot be expected to hold under these circum-
stances, so the surface slope at and just up-glacier from the
calving face was set at 0.03, and a parabolic surface profile
was calculated to hold driving stress constant. The tempera-
ture-dependent viscosity factor B was set to 575 kPaa'",
consistent with a constant temperature of —20°C and the
equation for B given in Hooke (1981). Glacier thickness in
these simulations ranged from 20 to 100 m (Table 2 upper
group; Fig. 6).

A second set of waterless glacier simulations was per-
formed in which the glacier was allowed to slide freely with
an applied basal stress equal to the driving stress (Table 2
lower group). These produce substantially higher speeds
than the simulations in which the ice is frozen to the bed,
but the nature of the variation with height is the same, in-
cluding the increase in bulging rate with thickness.

As with conventional tidewater glaciers, these simula-
tions produce bulging in the lower part of the (subaerial)
face. However, the bulging rate (Auy,p) is negligible for the
thinnest glaciers, so the toppling character of calving events
on dry-valley glaciers is reasonable. In these simulations,
the tendency of the glacier to produce a bulge low in the
calving face is demonstrated at all thicknesses, with a max-
imum velocity at about a quarter of the total height (the
Y(Umax ) curve in Fig. 6).

From these waterless simulations, we learn that: (1) the
results of section 4.1 regarding variation of h. are not unique
to glaciers that terminate in water, and (2) the “slumping”
results of the column-model simulations illustrated in Fig-
ures 2 and 4 are not unique to a collapsing column with in-
significant horizontal extent. For a low value of h. = hy in
the waterless simulations, say 20—40 m, the character of the
velocity field near the margin is mostly established only
within a few tens of meters of the margin (Fig. 7). These
simulations also show that the increase ofogm, with A, (Table
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2; Fig. 6b) does not depend dramatically on either the pres-
ence of water or the presence of an underlying sliding or de-
formation speed beneath the ice cliff’ (compare o).
values in Figures 5b and 6b, also visible in Figure 7). Simu-
lations herein show that the majority calving faces in Brown
and others (1982) have h. values in the range for which
0l max 18 in the range 150-300 kPa (Figs 5 and 6). This range
should not be thought of as a measure of the tensile strength
of the ice before crevassing ensues, so much as an index that
increases rapidly with h. and which presumably also corre-
lates with tensile stresses close to the calving face. However,
these simulations reinforce the fact that extensional stresses
increase rapidly with subaerial calving-face height, raising
the possibility that ice-cliff faces are limited by their exten-
sional stress fields. Cliffs <40 m high may have difficulty
producing extensive, deep crevassing, while ice faces
>80 m high may be so pervasively subject to crevassing well
up-glacier of the margin that they are unlikely to persist.

5. CONCLUSIONS

This paper should be seen, in part, as a sequel to Hanson
and Hooke (2000) in which we proposed some plausible phy-
sical explanations for the relation between calving rate and
water depth. Both the previous paper and this one show that
in a tidewater calving glacier, development of a speed max-
imum at the calving face near the waterline is a persistent
feature of finite-element models under a variety of reason-
able assumptions about basal stress, surface profile and ice
rheology. In this paper we focused on the stress patterns
generated near a vertical calving face. The pattern of longi-
tudinal deviatoric stress produced by the subaerial calving
face includes a tensile maximum up-ice from the calving
face and below the waterline. This stress decreases towards
the surface, becoming negative (compressive) at the surface
near the calving face. For a subaerial calving face in excess
of 40 m high, the maximum o7, is typically >200 kPa, and
near-surface values are >100kPa, depending on surface
rheology (crevassing) assumptions.

The compressive strain-rate zone in the near-surface ice
just up-glacier from the calving face found by HH can be
removed by a pervasive near-surface softening of the ice that
loosely emulates the crevassing that is common on tidewater
calving glaciers, or by reducing n, at least in our column
models. Depending on the role of crevasses and the ice
rheology, we see no reason why this compressive zone may
not exist in at least some real glaciers.

The relationship between overhang development and
submarine calving-face height is stronger with the softened
ice than without. Hence, these simulations strengthen our
argument that the rate of overhang development is a key
physical element in explaining the u. vs hy relation.

The tensile-stress maximum up-ice from the calving face
and below the waterline leads to development of bulging,
owing to a velocity maximum that is below the ice surface
at the calving face. This feature appears in all variations in
the models of tidewater calving glaciers, and also appears in
water-free simulations, either frozen to the bed or freely slid-
ing. It appears to be a natural and unavoidable consequence
of a vertical free surface behind which there is a cryostatic
pressure that increases with depth.

Finally, we present a tenuous but intriguing idea that the

consistency of h. =60+ 10m on tidewater glaciers is
caused by limiting factors related to the longitudinal devia-
toric-stress field. Longitudinal deviatoric stresses near the
calving faces increase dramatically with A, and we can pre-

sume the existence of an uncertain lower limit of O';zmdx

below which crevassing is unlikely to happen, and a higher

limitofo’ . above which a calving face becomes too weak

from crevassing to maintain itself. Lower calving faces are
stronger because they would lack pervasive crevassing, and
higher faces are unstable because of the weakening effect of
the crevassing. The lack of a relation between calving-face
height and calving rate found by Brown and others (1982)
may be a consequence of the fact that only a few calving-face
heights deviated significantly from the median value of
60 m in their dataset.

ACKNOWLEDGEMENTS

This paper has benefited from discussions withT. J. Hughes
and from helpful comments by A. Vieli, H. Blatter and
J. Meysonnier. This project also benefited from U.S. Nation-
al Science Foundation grant OPP-9818643.

REFERENCES

Brown, C.S., M. . Meier and A. Post. 1982. Calving speed of Alaska tide-
water glaciers, with application to Columbia Glacier. U.S. Geol. Surv. Prof-
Pap. 1258-C.

Chinn, T. J. 1988. The ‘Dry Valleys’of Victoria Land. U.S. Geol. Surv. Prof. Pap.
1386-B.

Glen, J.W. 1955. The creep of polycrystalline ice. Proc. R. Soc. London, Ser. A,
228(1175), 519-538.

Hanson, B. 1990. Thermal response of a small ice cap to climatic forcing. 7.
Glaciol., 36(122), 49-56.

Hanson, B. and R. LeB. Hooke. 2000. Glacier calving: a numerical model of
forces in the calving-speed/water-depth relation. 7. Glaciol., 46(153), 188—194.

Higashi, A.1969. Mechanical properties of ice single crystals. /n Riehl, N.,
B. Bullemer and H. Engelhardt, eds. Physics of ice. New York, N'Y, Plenum
Press, 197-212.

Hobbs, P. V. 1975. Ice physics. Oxford, Clarendon Press.

Hooke, R. LeB. 1981. Flow law for polycrystalline ice in glaciers: compari-
son of theoretical predictions, laboratory data, and field measurements.
Rev. Geophys. Space Phys., 19(4), 664—672.

Hooke, R. LeB., C. F. Raymond, R. L. Hotchkiss and R. J. Gustafson. 1979.
Calculations of velocity and temperature in a polar glacier using the
finite-element method. 7. Glaciol., 24(90), 131-146.

Hughes, T. J. 1987. Ice dynamics and deglaciation models when ice sheets
collapsed. /n Ruddiman, W. F. and H. E. Wright, Jr, eds. North America
and adjacent oceans during the last deglaciation. Boulder, CO, Geological So-
ciety of America, 183-220.

Iken, A. 1978. Movement of a large ice mass before breaking off. 7. Glaciol.,
19(81), 595-605.

Keneally, J. P. 2003. Crevassing and calving of glacial ice. (Ph.D. thesis,
University of Maine,)

Meier, M. F. 1997. The iceberg discharge process: observations and infer-
ences drawn from the study of Columbia Glacier. Byrd Polar Res. Cent.
Rep., 15,109-114.

Nye, J. F. 1957. The distribution of stress and velocity in glaciers and ice
sheets. Proc. Roy. Soc. London, Ser. A, 239(1216), 113—133.

Paterson, W. S. B. 1994. The physics of glaciers. Third edition. Oxford, etc., Else-
vier.

Post, A. and E. R. LaChapelle. 2000. Glacier ice. Revised edition. Seattle, WA,
University of Washington Press and International Glaciological Society.

Sammonds, T. R. and M. A. Rist. 2000. Sea ice fraction and friction. In
Dempsey, J. P., H. H. Shen and L. H. Shapiro, eds. [UTAM scaling laws
in ice mechanics and ice dynamics. Potsdam, NY, Clarkson University, De-
partment of Civil and Environmental Engineering.

Van der Veen, C. J. 1996. Tidewater calving. J. Glaciol., 42(141), 375-385.

Van der Veen, C. J. 2002. Calving glaciers. Prog. Phys. Geogr., 26(1), 96—122.

Vieli, A., M. Funk, and H. Blatter. 2001. Flow dynamics of tidewater gla-
ciers: a numerical modelling approach. 7 Glaciol., 47(159), 595-606.

MS received 14 January 2002 and accepted in revised form 3 December 2003

586

https://doi.org/10.3189/172756503781830476 Published online by Cambridge University Press


https://doi.org/10.3189/172756503781830476

