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Abstract

We compare two influential ways of defining a generalized notion of space. The first, inspired by Gelfand
duality, states that the category of ‘noncommutative spaces’ is the opposite of the category of C*-algebras.
The second, loosely generalizing Stone duality, maintains that the category of ‘point-free spaces’ is the
opposite of the category of frames (that is, complete lattices in which the meet distributes over arbitrary
joins). Earlier work by the first three authors shows how a noncommutative C*-algebra gives rise to a
commutative one internal to a certain sheaf topos. The latter, then, has a constructive Gelfand spectrum,
also internal to the topos in question. After a brief review of this work, we compute the so-called external
description of this internal spectrum, which in principle is a fibred point-free space in the familiar topos
of sets and functions. However, we obtain the external spectrum as a fibred topological space in the
usual sense. This leads to an explicit Gelfand transform, as well as to a topological reinterpretation of the
Kochen–Specker theorem of quantum mechanics.
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1. Generalized spaces

Gelfand duality is the categorical equivalence

compact Hausdorff spaces' (unital commutative C*-algebras)op, (1)

where the choice of arrows in both categories is implicit (but obvious, that is,
continuous maps and unital ∗-homomorphisms, respectively). For simplicity, we
restrict ourselves to the compact/unital case. Furthermore, given a category C, the
opposite category Cop has the same objects as C, but has all arrows reversed. The

Heunen was supported by the Netherlands Organisation for Scientific Research through a Rubicon grant;
Spitters was supported by the Netherlands Organisation for Scientific Research through the DIAMANT

cluster; Wolters was supported by the Netherlands Organisation for Scientific Research through project
613.000.811.
c© 2011 Australian Mathematical Publishing Association Inc. 1446-7887/2011 $16.00

39

https://doi.org/10.1017/S1446788711001157 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001157


40 C. Heunen et al. [2]

functors implementing the equivalence (1) are, of course, C : X 7→ C(X)≡ C(X, C)
from left to right, with pullback on arrows, and 6 : A 7→6(A) from right to left,
where 6(A) is the Gelfand spectrum of A (realized, for example, as the space of
unital multiplicative linear maps A→ C equipped with the relative weak∗-topology),
and similarly pullback on arrows.

Subsequently, there are (at least) two possible directions to take.
First, the modern approach is to take the quantum jump of defining the category of

‘noncommutative spaces’ up to equivalence by

noncommutative spaces' (C*-algebras)op. (2)

Here a major surprise arises, which is quite unexpected from the categorical setting:
according to the (second) Gelfand–Naimark theorem, a noncommutative space acts
as an operator algebra on some Hilbert space. It is the combination of this Hilbert
space setting deriving from the right-hand side of (2) and the call for geometrical
and topological techniques—adapted to the noncommutative setting—coming from
the left-hand side that gives noncommutative geometry its strength [10, 11].

Second, and more traditionally, one may attempt to generalize the notion of Gelfand
duality to noncommutative C*-algebras A. There have been many such attempts,
which may be grouped according to the specific notion of a Gelfand spectrum that is
used. For example, in the Dauns–Hofmann theorem [14, 15, 29] the Gelfand spectrum
of A is taken to be the Gelfand spectrum of its centre Z(A), on which A is realized
as a sheaf. Akemann, on the other hand, used the space of maximal left ideals of A,
but needed to generalize the notions of topology and continuity [1]. Shultz used the
pure state space of A, equipped with the structure of a transition probability [31], later
refined so as to make the noncommutative Gelfand spectrum a so-called Poisson space
with a transition probability [25, 26]. See also [9, 24]. In all cases, the point is to
realize A in a way that resembles a space of complex-valued continuous functions as
much as possible.

Ultimately, what lies behind both directions is the success of Gelfand duality
in capturing (compact Hausdorff) spaces algebraically. What is slightly unnatural,
though, is that this capturing should involve the complex (or, for that matter, the real)
numbers in a fundamental way. This may be avoided in an order-theoretic approach, as
follows [19], [28, Ch. IX]. Instead of the passage X 7→ C(X) from spaces to complex
algebras, we take X 7→O(X), where O(X) is just the topology of X in the defining
sense of its collection of open sets. This has a natural lattice structure under inclusion,
and in fact defines a highly structured kind of lattice known as a frame. This is a
complete distributive lattice such that x ∧

∨
λ yλ =

∨
λ(x ∧ yλ) for arbitrary families

{yλ} (and not just for finite ones, in which case the said property follows from the
definition of a distributive lattice). Indeed, O(X) is a frame with U ≤ V if U ⊆ V .
A frame homomorphism preserves finite meets and arbitrary joins; this leads to the
category of frames and frame homomorphisms.

In order to have an equivalence like (1), we need to cut down both the category
of spaces and the category of frames. To do so, we first define a point of a frame F
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[3] The Gelfand spectrum of a noncommutative C*-algebra 41

as a frame map p∗ : F→ {0, 1}, where as a frame {0, 1} is identified with O(∗), that
is, the topology of a space with a point (so that we identify 0 with ∅ and 1 with ∗).
In fact, if F =O(X), then any point p ∈ X defines a point of F by p∗ = p−1 (that
is, p∗(U )= 1 if and only if p ∈U ). Using this concept, the set Pt(F) of points of a
frame F may be topologized in a natural way, by declaring its open sets to be the sets
of the form Pt(U )= {p∗ ∈ Pt(F) | p∗(U )= 1}, where U ∈ F . We say that a frame F
is spatial if it is isomorphic to O(Pt(F)) in the category of frames. On the other hand,
a topological space X is called sober if it is homeomorphic to Pt(O(X)). Given these
definitions, it is almost tautological that

sober spaces' (spatial frames)op, (3)

where the equivalence is given by O and Pt (seen as functors). Though (3) is true
almost by definition, the nontrivial statement of Stone duality, that is,

(Stone spaces)' (Boolean lattices)op,

is actually a special case of (3). The nontrivial observation—apart from the fact that
Hausdorffness implies soberness—is that although Stone spaces form a subcategory of
sober spaces, Boolean lattices are not a subcategory of frames (for one thing, a Boolean
lattice need not be complete). Hence a special manoeuvre is needed to embed Boolean
lattices in frames, which is done through the so-called ideal completion L 7→ Idl(L);
this is the collection of nonempty lower closed subsets I ⊂ L such that x, y ∈ I
implies x ∨ y ∈ I , ordered by inclusion [19, p. 59]. A Stone space X then defines the
Boolean lattice Oc(X) of closed and open subsets of X , whose ideal completion is the
topology O(X); conversely, a Boolean lattice L defines a Stone space X = Pt(Idl(L)),
with O(X)∼= Idl(L).

Let us note the following, however. It is easily shown that a frame F is spatial if
and only if F ∼=O(X) for some space X , not necessarily sober—in fact, we will later
encounter an example of exactly this situation. In that case, following [19], we may
call

X S
= Pt(O(X)), (4)

which is necessarily sober, the soberification of X (if X is already sober, one has
X S ∼= X ). This construction may be compared to the passage from a compact non-
Hausdorff space X to its Hausdorffication

X H
=6(C(X)). (5)

Now recall that the step from (1)–(2) introduced a certain generalization of the concept
of space by omitting the qualifier ‘unital commutative’ in the characterization of spaces
in the right-hand side of (1). Analogously, we may omit the qualifier ‘spatial’ in
the right-hand side of (3), hoping to arrive at a different generalized notion of space.
Following [19, 22, 28], we therefore write

point-free spaces' (frames)op, (6)
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which, like (2), is no longer a duality theorem, but a statement of the definition of the
category of ‘point-free spaces’ (also known as locales). This definition comes with a
curious piece of notation: any frame is written O(X), whether or not it is spatial, and
the corresponding point-free space is written as X . Furthermore, the symbol C(X, Y )
denotes the object (in whatever category the frames are defined) of frame maps from
O(Y ) to O(X); a ‘continuous’ map f : X→ Y is nothing but a frame map from O(Y )
to O(X), which tends to be written as f ∗ or f −1. This notation is partly motivated
by the case where O(X) are O(Y ) actually the topologies of sober spaces X and Y ,
respectively, for in that case it can be shown (nonconstructively) that any frame map
f ∗ :O(Y )→O(X) is of the form f ∗ = f −1 for a continuous map f : X→ Y in the
usual sense.

The surprising role of Hilbert spaces in the theory of noncommutative spaces has
a counterpart for point-free spaces: these turn out to be related to logic, especially
to intuitionistic propositional logic. (Perhaps this is less surprising in view of
Stone duality and the well-known connection between Boolean lattices and classical
propositional logic.) Indeed, a frame is a complete Heyting algebra, where a Heyting
algebra is a distributive lattice L with a map→ : L× L→ L satisfying x ≤ (y→ z)
if and only if x ∧ y ≤ z, called implication [17, 28, 34]. Unlike in a Boolean lattice,
negation is now a derived notion, defined by ¬x = (x→⊥).

Every Boolean algebra is a Heyting algebra, but not vice versa; in fact, a Heyting
algebra is Boolean if and only if ¬¬x = x for all x , which is the case if and only if
¬x ∨ x => for all x ; not necessarily granting this is the essence of intuitionistic logic.
The point, then, is that a complete Heyting algebra is essentially the same thing as a
frame, for in a frame one may define y→ z =

∨
{x | x ∧ y ≤ z}, and conversely, the

infinite distributivity law in a frame is automatically satisfied in a Heyting algebra.
In principle, noncommutative spaces and point-free spaces (that is, locales) appear

to be totally different generalizations of the notion of a topological space. However,
a close connection arises if we return to Gelfand duality. To explain this, note that
the usual proofs of Gelfand duality are nonconstructive; for example, if the Gelfand
spectrum is realized as the maximal ideal space of A, one needs Zorn’s lemma.
However, a typical situation in constructive mathematics now arises: Gelfand duality
is nonconstructively equivalent to a result that is constructively valid (that is, provable
without using the axiom of choice or the exclusion of the middle third) [2–4, 12, 13].
Hence the constructive version of the key ingredient of classical Gelfand duality,
namely the isomorphism

A ∼= C(6(A), C) (7)

of commutative C*-algebras, is formally the very same statement, but now
reinterpreted according to the notation for frame maps just explained. Thus the
Gelfand spectrum 6(A) and the complex numbers C are now objects of the category
of point-free spaces, that is, they are really frames O(6(A)) and O(C), which are
not necessarily spatial, and C(6(A), C) denotes the object (in the ambient category)
of frame maps from O(C) to O(6(A)). (Technically, O(6(A)) is required to be
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compact and completely regular [4], which are frame-theoretic properties replacing
the combination compact Hausdorff for topological spaces [19].)

The choice between the constructive version of Gelfand duality (in terms of point-
free spaces) and its familiar nonconstructive counterpart (in terms of topological
spaces) is not a matter of philosophical taste. In set theory, the usual version is
perfectly acceptable to us. The point is that constructive Gelfand duality holds
in arbitrary topoi (with natural numbers objects, so that internal C*-algebras can
be defined). We refer to [20, 21] for an encyclopaedic treatment of topos theory,
to [6, 17, 28] for (complementary) book-length introductions, to [34] for a shorter
treatment, and finally to the appendix of [8] for a very brief survey of exactly what
is needed below. The notion of a C*-algebra in a topos with natural numbers object,
including the statement and proof of Gelfand duality in the commutative case, is due
to Banaschewski and Mulvey [4]. See also [18] for a review of this theory, including a
reformulation along the lines of [12, 13].

2. Internal Gelfand spectrum

In order to define Gelfand spectra for noncommutative C*-algebras, we proceed
as follows [18]. Let A be a unital C*-algebra, and let C(A) be the poset of unital
commutative C*-subalgebras of A (ordered by set-theoretic inclusion), equipped with
the Alexandrov topology. (The open sets U of the Alexandrov topology on a poset
P are the upward closed sets (if x ∈U and x ≤ y, then y ∈U ). The sets Ux = ↑x =
{y ∈ P | y ≥ x}, x ∈ P , form a basis of the Alexandrov topology.) Thus we have the
topos Sh(C(A)) of sheaves on C(A). We now define a specific sheaf A on C(A) by

A(↑C)= C, ∀C ∈ C(A). (8)

This formula defines A on the basic open sets UC = ↑C of C(A) in the Alexandrov
topology. On an arbitrary open set U =

⋃
C∈0 UC , the sheaf property gives A(U )=

limC∈0 A(UC ). Under the identification of Sh(P) with SetsP (where the poset P is
seen as a category in the usual way) through the correspondence F(↑x)↔ F(x) [17],
the sheaf A corresponds to the tautological functor C 7→ C in SetsC(A). If C ⊆ D,
then ↑D ⊆ ↑C , and the map A(↑C)→ A(↑D), that is, C→ D, is simply given by
inclusion. This sheaf turns out to be a commutative C*-algebra A in Sh(C(A)) under
natural operations, so that it has an internal Gelfand spectrum 6(A). With A fixed,
we will henceforth simply call this spectrum 6; it is a point-free space in the topos
Sh(C(A)). The functorial properties of the map A 7→6(A), as well as of the map
A 7→6(A) to be introduced below, have been studied in [33].

The explicit computation of 6 was initiated in [18], and was completed in [35]. To
state the result (that is, Theorem 1 below), topologize the disjoint union

6 =
∐

C∈C(A)
6(C), (9)
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where 6(C) is the usual Gelfand spectrum of C ∈ C(A) (that is, the set of pure states
or characters on C with the relative weak∗-topology) by saying that U ∈O(6) if and
only if the following two conditions are satisfied for all C ∈ C(A) (with the notation
UC ≡ U ∩6(C)).
(1) UC ∈O(6(C)).
(2) For all D ⊇ C , if λ ∈ UC and λ′ ∈6(D) such that λ′

|C = λ, then λ′ ∈ U D .

For each U ∈O(C(A)), we also introduce the space

6U =
∐

C∈U

6(C), (10)

with relative topology inherited from 6. Then we obtain the following theorem.

THEOREM 1. Let A be a unital C*-algebra A. The frame O(6) in Sh(C(A)) that
underlies the internal Gelfand spectrum 6 ≡6(A) of the internal commutative C*-
algebra A defined by (8) is given by the sheaf

O(6) :U 7→O(6U ), (11)

where U ∈O(C(A)); if U ⊆ V , the map O(6V )→O(6U ) is given by U 7→ U ∩6U .

The proof of this theorem is rather lengthy, requiring familiarity with constructive
mathematics, as well as with the closely related technique of internal reasoning in
topos theory. Besides the general theory of internal Gelfand duality in Grothendieck
topoi due to Banaschewski and Mulvey [4] looming in the background, the proof of
Theorem 1 consist of three main steps:

(1) the lattice-theoretic description of general constructive Gelfand spectra [12, 13];
(2) the specific application of this description to the commutative C*-algebra A in

the topos Sh(C(A)) [18];
(3) the insight that this application yields the explicit form (11) [32, 35].

We now give a summary of these steps, referring to the papers just cited for further
details. In fact, the third step can be carried out in two rather different ways, of which
the approach of [35] is easier to explain to operator algebraists. Hence in what follows
we use the latter. The techniques in [32] will be further explored in future work in
collaboration with Vickers, whom we wish to thank for his insightful comments on an
earlier version of this paper. In what follows, A is a commutative C*-algebra with unit
in some topos (with natural numbers object), while C is a commutative C*-algebra
with unit in the usual sense, that is, in the topos Sets of sets and functions.

Step 1. As already mentioned, the constructive approach to Gelfand duality
emphasizes the frame O(6) rather than the set 6 ≡6(A). To construct O(6), take
the usual positive cone A+ := {a ∈ Asa | a ≥ 0} of A (where Asa is the selfadjoint part
of A), and define a 4 b if and only if there exists n ∈ N such that a ≤ nb. Define a ≈ b
if and only if a 4 b and b 4 a. The lattice operations on Asa (defined with respect
to the usual partial order ≤) respect ≈ and hence L A = A+/≈ is a lattice under the
descent of ≤ to the quotient, which we denote by ≤.
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If A is finite-dimensional, the constructive Gelfand spectrum of A is simply (iso-
morphic to) the ideal completion Idl(L A) of L A (see the paragraph following (3)). In
general, one needs to refine this construction. First, define a surjective map Asa→ L A,
a 7→ Da ≡ [a+], where a = a+ − a−, a± ∈ A+, and [a+] is the equivalence class of
a+ in L A with respect to ≈. Second, write Db� Da if and only if Db ≤ Da−q for
some q > 0, q ∈Q. Third, we refine the down-set ↓Da = {Db ∈ L A | Db ≤ Da} to�

Da = {Db ∈ L A | Db� Da}, and declare an ideal I ∈ Idl(L A) to be regular if I ⊇

�

Da
for some Da ∈ L A implies Da ∈ I (in other words, if Db ∈ I for all Db� Da , then
Da ∈ I ). This yields the frame RIdl(L A) of regular ideals of L A, ordered by inclusion
(like Idl(L A), of which RIdl(L A) is a subframe). The constructive Gelfand spectrum
of A, then, turns out to be (isomorphic to) just this subframe, that is,

O(6(A))∼= RIdl(L A). (12)

There is a natural map f̃ A : L A→ Idl(L A), Da 7→ ↓Da , which may be refined to
a map f A : L A→ RIdl(L A) that sends Da to the smallest regular ideal containing
f̃ A(Da)= ↓Da ; explicitly, one has

f A(Da)= {Dc ∈ L A | Db� Dc⇒ Db ≤ Da, Db ∈ L A}.

If one thinks of O(6) as the ‘topology’ of the Gelfand spectrum (in the appropriate
point-free sense), the ‘open sets’ f A(Da) (or, less accurately, the elements Da of L A
themselves), comprise ‘basic open sets’ for the topology, in terms of which general
‘open sets’ U ∈ RIdl(L A) may be expressed as

U =
∨
{ f A(Da) | Da ∈ L A, f A(Da)≤U }.

Applying this to ordinary unital commutative C*-algebras C , one finds that the
frame O(6) is spatial, being related to the usual Gelfand topology O(6(C)) by the
frame isomorphism RIdl(LC )→O(6(C)) that on basic open sets is given by

fC (Da) 7→Da ≡ {ϕ ∈6(C) | ϕ(a) > 0} ∀a ∈ Csa.

In particular, the map

fC : LC →O(6(C)), Da 7→Da (13)

is well defined (that is, independent of the choice of a); see [35, Lemma 2.14].

Step 2. Internalizing the above construction of O(6) to the topos Sh(C(A)) and
applying it to the internal C*-algebra A yields a lattice L A in Sh(C(A)), given by [18,
Theorem 20]

L A(↑C)= LC . (14)

Interpreting RIdl in the topos Sh(C(A)) with Kripke–Joyal semantics [28] shows that
the internal frame RIdl(L A) in Sh(C(A)) is given by the sheaf (see [18, Theorem 29])

RIdl(L A) :U 7→ {F ∈ Sub(L A|U ) | F(↑C) ∈ RIdl(LC ) for all C ∈U }. (15)
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Here L A|U :O(U )op
→ Sets is the restriction of the sheaf L A :O(C(A))op

→ Sets to
O(U ), where U ∈O(C(A)), and Sub(L A|U ) is the set of subsheaves of L A|U ; note
that F(↑C)⊆ LC by (14), so F(↑C) ∈ RIdl(LC ) in (15) is well defined. If U ⊆ V ,
then the map RIdl(L A)(V )→ RIdl(L A)(U ) is given by restricting F ∈ Sub(L A|V )

to O(U ).

Step 3. To prove (15), it can be shown that the transformation θ : RIdl(L A)→O(6),
defined by its components

θU : {F ∈ Sub(L A|U ) | F(↑C) ∈ RIdl(LC ) for all C ∈U } →O(6U ),

F 7→
∐

C∈U

⋃
Da∈F(↑C)

Da,
(16)

is a natural isomorphism (since RIdl(L A) and O(6) are internal frames, it suffices
to prove that θC(A) is an isomorphism of frames in Sets; see [35, Theorem 2.17]).
Note that θU (F) indeed lies in O(6U ) by the property ρ−1

DC ◦ fC = fD ◦ ιC D for
all C, D ∈ C(A) such that C ⊆ D, where ρ−1

DC :O(6(C))→O(6(D)) is the inverse
image map of the restriction ρDC :6(D)→6(C), λ 7→ λ|C , and ιC D : LC → L D
is the obvious embedding Da 7→ Da (where a ∈ C in the first Da and a ∈ D in the
second). 2

We illustrate Theorem 1 when A = Mn(C), the set of n × n complex matrices. We
then have a frame isomorphism O(6(C))∼= P(C) for any C ∈ C(A) [8], where P(C)
is the projection lattice of C (and similarly, P(A) below is the projection lattice of A).
Hence

O(6)∼= {S : C(A)→ P(A) | S(C) ∈ P(C), S(C)≤ S(D) if C ⊆ D}, (17)

where the right-hand side is equipped with the pointwise partial order ≤ with respect
to the usual partial ordering≤ of projections, that is, S ≤ T if and only if S(C)≤ T (C)
for all C ∈ C(A). To obtain (17) we identify U =

∐
C∈C(A) UC as an element of O(6)

with S : C(A)→ P(A) on the right-hand side of (17), where S(C) ∈ P(C) is the
image of UC ∈O(6(C)) under the isomorphism O(6(C))→ P(C) just mentioned.
Similarly, for U ∈O(C(A)), the frame O(6U ) may be identified with a collection of
maps S :U → P(A) satisfying the conditions in (17).

3. External Gelfand spectrum

It is not so easy for C*-algebraists to deal with point-free spaces in a sheaf topos
Sh(X). Fortunately, such spaces have a so-called external description in ordinary
set theory [16, 21, 22]. In fact, a point-free space Y in Sh(X) may be represented
by a continuous map π : Y → X , where Y is a point-free space in the usual sense
(that is, in Sets), with frame O(Y )=O(Y )(X); here O(Y ) is the internal frame in
Sh(X) associated to Y . The reader will now have become used to the idea that the
notation π : Y → X really denotes a frame map π∗ :O(X)→O(Y ), nothing being
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implied about the possible spatiality of the frames in question. In terms of π∗, one
may reconstruct Y from π : Y → X as the sheaf

O(Y ) :U 7→ {V ∈O(Y ) | V ≤ π∗(U )} ∀U ∈O(X). (18)

Furthermore, if Y 1 and Y 2 are two point-free spaces in Sh(X), with external
descriptions πi : Yi → X , i = 1, 2, then an internal continuous map f : Y 1→ Y 2 is
given externally by a continuous map f : Y1→ Y2 satisfying π2 ◦ f = π1.

Applying this to X = C(A) and Y =6 we obtain the following result.

THEOREM 2. The external description of the point-free Gelfand spectrum 6 may be
identified with the canonical projection

π :6→ C(A), (19)

where6 is seen as an ordinary (rather than a point-free) topological space, as is C(A).

We remark that π is the canonical projection in the sense that, if σ ∈6(C)⊂6,
then π(σ)= C . From this point of view, O(6) is actually the weakest topology
making this projection continuous with respect to the Alexandrov topology on C(A).

PROOF. Taking X = C(A) and Y =6, we see from (11) that O(6)(C(A))=O(6),
which frame is obviously spatial. To be precise, in point-free topology a notation
like (19) is typically used for a map between point-free spaces, which by definition
is the frame map π−1

:O(C(A))→O(6). In this case, however, the frame map π−1

is actually the inverse image map of the continuous map (19), interpreted in the usual
topological way.

Conversely, from (18) and (19) we immediately recover (11). 2

Theorem 2 has a number of interesting applications. We first turn to the Gelfand
transform. Unlike other approaches to Gelfand duality for noncommutative C*-
algebras, our aim is not to reconstruct A, but rather its ‘Bohrification’ A, since it is
the latter that carries the physical content of A, at least according to Bohr’s ‘doctrine
of classical concepts’ [5] as reformulated mathematically in [27].

The Gelfand isomorphism (7) holds internally in Sh(C(A)), that is, one has

A ∼= C(6, C) (20)

as an isomorphism of sheaves respecting the C*-algebraic structure on both sides.
(Recall that isomorphisms of sheaves in sheaf topoi are simply natural isomorphisms
of functors [28].) Here C is the point-free space of complex numbers in Sh(C(A))
with associated frame O(C) (not to be confused with the complex numbers object in
Sh(C(A)), given by the sheaf U 7→ C(U, C)), defined by the sheaf

O(C) :U 7→O(U × C) ∀U ∈O(C(A)). (21)

It follows from [8, Section 5, (5.12)] and (11) that as a sheaf one has

C(6, C) :U 7→ C(6U , C), (22)
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where6U =
∐

C∈U 6(C); if U ⊆ V , the map C(6V , C)→ C(6U , C) is given by the
pullback of the inclusion 6U ↪→6V (that is, by restriction). It then follows from (8)
and (22) that the isomorphism (20) is given by its components

A(U )∼= C(6U , C). (23)

In particular, the component of the natural isomorphism in (20) at U = ↑C is

C ∼= C(6↑C , C). (24)

A glance at the topology of 6 shows that the Hausdorffication (5) is given by 6H
↑C
∼=

6(C), so that the isomorphism (24) comes down to the usual Gelfand isomorphism

C ∼= C(6C , C). (25)

At the end of the day, the Gelfand isomorphism (20) therefore turns out to simply
assemble all isomorphisms (25) for the commutative C*-subalgebras C of A into a
single sheaf-theoretic construction. Incidentally, taking C = C · 1 in (24) shows that
6H is a point, which is also obvious from the fact that any open set containing the
point 6(C · 1) of 6 must be all of 6.

Second, we give a topological reinterpretation of the celebrated Kochen–Specker
theorem [23]. It was the sheaf-theoretic reformulation of the Kochen–Specker theorem
by Butterfield and Isham [7] that originally got the the use of topos theory in the
foundations of quantum physics going. What follows is a simplification of [8,
Section 6], which was written when the spatial nature of 6 was not yet understood.
See also [18, Theorem 6] for an internal proof of the equivalence between the first two
bullet points below.

We say that a valuation on a C*-algebra A is a nonzero map λ : Asa→ R that
is linear on commuting operators and dispersion-free, that is, λ(a2)= λ(a)2 for all
a ∈ Asa. If A is commutative, the Gelfand spectrum 6(A) consists precisely of the
valuations on A. Physically, a valuation corresponds to a so-called noncontextual
hidden variable, which assigns a sharp value to each observable a per se. A
contextual hidden variable gives a sharp value to a seen in a specific measurement
context in which it, in particular, may be measured. See, for example, [30]. In
our mathematization, measurement contexts are identified with commutative C*-
subalgebras of some ambient noncommutative C*-algebra A, so that a contextual
hidden variable assigns a value to a pair (a, C) where a ∈ C . Hence Theorem 3
below identifies noncontextual hidden variables with continuous cross-sections of
π :6→ C(A), and contextual hidden variables correspond to possibly discontinuous
cross-sections.

The mathematics neatly fits the physics here, but it should be realized that specific
examples of C*-algebras A may suggest coarser natural topologies on C(A) than the
Alexandrov topology (like the Scott topology), which in turn may imply stronger
continuity conditions. We thank the referee for this comment.

THEOREM 3. There is a bijective correspondence between the following:
• valuations on A;
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• points of 6(A) in Sh(C(A));
• continuous sections σ : C(A)→6 of the bundle π :6→ C(A) of Theorem 2.
In particular, this bundle admits no continuous cross-sections as soon as A has no
valuations, as in the case where A = B(H) with dim(H) > 2.

The case where A = B(H) with dim(H) > 2 is the content of the original Kochen–
Specker theorem [23].

PROOF. To prove this, we first give the external description of points of a point-
free space Y in a sheaf topos Sh(X). The subobject classifier in Sh(X) is the
sheaf � :U 7→O(U ), in terms of which a point of Y is a frame map O(Y )→�.
Externally, the point-free space defined by the frame � is given by the identity map
idX : X→ X , so that a point of Y externally corresponds to a continuous cross-section
σ : X→ Y of the bundle π : Y → X (that is, π ◦ σ = idX ). In principle, π and σ are
by definition frame maps in the opposite direction, but in the case at hand, namely
X = C(A) and Y =6, the map σ : C(A)→6 may be interpreted as a continuous
cross-section of the projection (19) in the usual sense. Being a cross-section simply
means that σ(C) ∈6(C). As to continuity, by definition of the Alexandrov topology,
σ is continuous if and only if the following condition is satisfied:

for all U ∈O(6) and all C ⊆ D, if σ(C) ∈ U then σ(D) ∈ U .

Hence, given the definition of O(6), the following condition is sufficient for
continuity: if C ⊆ D, then σ(D)|C = σ(C). However, this condition is also necessary.
To explain this, let ρDC :6(D)→6(C) again be the restriction map. This map is
continuous and open. Suppose that ρDC (σ (D)) 6= σ(C). Since 6(D) is Hausdorff,
there is an open neighbourhood U D of ρ−1

DC (σ (C)) not containing σ(D). Let UC =

ρDC (U D) and take any U ∈O(6) such that U ∩O(6(C))= UC and U ∩O(6(D))=
U D . This is possible since UC and U D satisfy both conditions in the definition of O(6).
By construction, σ(C) ∈ U but σ(D) /∈ U , so that σ is not continuous. Hence σ is a
continuous cross-section of π if and only if

σ(D)|C = σ(C) ∀C ⊆ D. (26)

Now define a map λ : Asa→ C by λ(a)= σ(C∗(a))(a), where C∗(a) is the
commutative unital C*-algebra generated by a. If b∗ = b and [a, b] = 0, then
λ(a + b)= λ(a)+ λ(b) by (26), applied to C∗(a)⊂ C∗(a, b) as well as to C∗(b)⊂
C∗(a, b). Furthermore, since σ(C) ∈6(C), the map λ is dispersion-free.

Conversely, a valuation λ defines a cross-section σ by complex linear extension of
σ(C)(a)= λ(a), where a ∈ Csa. By the criterion (26) this cross-section is evidently
continuous, since the value λ(a) is independent of the choice of C containing a. 2

The contrast between the pointlessness of the internal spectrum6 and the spatiality
of the external spectrum 6 is quite striking, but easily explained: a point of 6 (in
the usual sense, but also in the frame-theoretic sense in the case where 6 is sober)
necessarily lies in some 6(C)⊂6, and hence is defined (and dispersion-free) only
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in the ‘context’ C . For example, for A = Mn(C), a point λ ∈6(C) corresponds
to a map

λ∗ :O(6)→ {0, 1}, S 7→ λ(S(C)), (27)

where O(6) is realized as in (17). Thus λ∗ is only sensitive to the value of S at C .
To close, we examine the possible soberness of 6 [32, Theorem 8], [35,

Theorem 2.25].

PROPOSITION 4. The space 6 is sober if A satisfies the ascending chain condition:
every chain C1 ⊆ C2 ⊆ · · · of elements Ci ∈ C(A) converges, in that Cn = Cm for all
n > m.

The proof is straightforward, relying on the identification of points of 6 with
irreducible closed subsets of S and the ensuing condition that 6 is sober if and only if
every irreducible closed subset of S is the closure of a unique point [28, Section IX.3].

For example, this proposition implies that 6 is sober for A = Mn(C), and, more
generally, for all finite-dimensional C*-algebras.
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