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INTERSECTION THEOREMS FOR
SYSTEMS OF SETS

BY
JOEL SPENCER

ABSTRACT. Let n and k be positive integers, k =3. Denote by
¢(n, k) the least positive integer such that if F is any family of more
than ¢(n, k) sets, each set with n elements, then some k members of
F have pairwise the same intersection. In this paper we obtain a new
asymptotic upper bound for ¢(n, k), k fixed, n approaching infinity.

1. Introduction. We shall say, following [2], that k sets form a A-system if
the sets have pairwise the same intersection. We say a family F does not
contain a k element A-system if no k sets in F form a A-system. Erdés and
Rado [2] proved that to each pair of positive integers n, k, k=3 there
corresponds a least integer ¢(n, k) so that if F is a family of distinct n-element
sets, |F|> ¢(n, k), then F contains a k-element A-system. As the case k=3 is
of particular interest, we shall set ¢(n)= ¢(n, 3). They showed

n—1

L) k=D"=g(n k>5"’<"‘1)"{1‘ Zm}

We shall restrict our attention to asymptotic results for fixed k. Abbott,
Hanson, and Sauer [1] showed

(1.2 e(n)>[J10-o(1)]"
and

—_ 2 _ 1/2\n
(1.3) o(n, k)s(n+l)!{k 1+(k :6" 7) }
So, in particular,
(1.4) e(n)=(n+1)! (12‘/5)"

We shall prove:
THEOREM 1. For fixed k, € >0 there exists C so that

(1.5) o(n, k)=Cn! (1+¢)"

for all n.

Received by the editors February 9, 1976 and, in revised form, June 23, 1976.
249

https://doi.org/10.4153/CMB-1977-038-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1977-038-7

250 J. SPENCER [June

Our proof shall follow the lines of [1]. In [2] Erdés and Rado ask if
¢@(n)< K" for some universal constant K. While our efforts were inspired by
this question, we cannot resolve it.

2. The case k =3. Let ¢(n) be as previously defined. Let y(n) be the least
integer so that if F is a family of n element sets, no two disjoint, |F|> y(n), then
F contains a A-system.

We shall make frequent use of the following reduction principle: Suppose F
does not contain a A-system and X< A;eF, 1=i=m. Then{A, - X:1=i=m}
does not contain a A-system. (If, say, A;—X, A,—X, A;—X formed a
A-system, so would Ay, A,, As in F.) In particular, setting X ={x}, if F does
not contain a A-system at most ¢(n — 1) sets in F can contain a given point x.

LemmAa 1. ¢(n)=<ne(n—1)+y(n).

Proof. Let |F|=¢(n), F not containing a A-system. Fix S€F. At most
¢(n—1) TeF contain any particular x€ S, thus at most ne(n—1) TeF
intersect S. If Ty, T, € F, both disjoint from S, then T; N T, # ¢, as otherwise S,
T;,, T, form a A-system. Hence at most <y(n) TeF are disjoint
from S.

Let F={S;,...,S,}, ¥y =v(n), be a family of non-disjoint n-sets not contain-
ing a A-system. Let ¢t be the average |S;NS;|, 1=i<j=<+. Formally

-1
@.1) t=(’) Y Isns|
2 l=i<j=svy
LEMMA 2.
n
v=7 e(n—1).
Proof.
(2.2) ¢=1i[LZ|snsl]
' yiSily=1327 7
Hence for some i, say i=1,
1
(2.3) —— Y SN S|=t
vy—13
For xe S, let
(2.4) nx)=Kj:xeS, 1=j=v}.
Then
y
(2.5) Y onx) =2 ISiNS|=n+ ) [SiNS|=n+t(y—1) =1ty
x€Sy j=1 j#1
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Hence some n(x) = ty/n. But, by the Reduction Principle,all n(x) < ¢(n—1).

LEmMaA 3. For 1=s=<y,

@7 y= t(;>¢(n—1)+(n—1)‘<p(n—s).
Proof. For Xc{1,..., v}, | X|=s set
2.8) g0 = X Isins)
>
By linearity of expected value the average g(X) is t(;) Formally

0o waw= % wosi(172)-()()- ()0

where 3* runs over X<{1,..., v}, |X|=s. Thus some X has

(2.10) g(X) = t( ;) .

Renumber so that X={1,..., s} for convenience. Set

(2.11) Y= U SnNS, so |Y|= T(ZS)
1=i<j=s

For 1=i=+ either
(i) SiN Y# ¢. There are at most |Y| <p(n—1)st<;)<p(n—1) such i or,

(ii) SiNY=¢. Then there exist (not necessarily unique) xi,...,Xs; %€
SiN(S;—Y) (as SiNS;#¢ and S;NY=¢). These x’s are distinct since the
(S;—Y) are disjoint. There are at most [[j_; |S;— Y|=(n—1)° possible sequ-
ences and at most ¢(n—s) sets with the same sequence (i.e. a common s
points); thus at most (n—1)°¢(n—s) such i.

We now prove Theorem 1 (for k =3) using Lemmas 1, 2, 3. Let C be such
that (1.5) holds for n=<n, where no=ne(e) shall be determined later. We
assume (1.5) holds for all n'<n and proceed by induction. By Lemmas 1, 2

(2.12) e(n)=< mp(n—l)(1+%>

so that if 1=¢7" (1.5) follows by induction. We therefore assume t<¢~. From
Lemmas 1, 3

(2.13) <p(n)_<_mp(n—1)+t(;)<p(n—1)+(n—1)s<p(n—s)
2.149) smp(n—1)+e'1(;)<p(n—1)+(n-—1)’<p(n—s).
T7A
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By induction
(2.15) o(n)=C(+e)"'n!' y(n, ¢ s)

where

2.16) ¥(n e s)=(1+e) "+ s'l(;)(l +e) n (14 e) " (n—1)/(n),
For ¢, s fixed

(2.17) lim y(n, e, s)=1+e) ' +(1+e)".

Fix s =s(¢) so that (1+¢) "+ (1+£)~* <1. Then select no= no(e, s) = ne(e) so
that ¢(n, ¢, s)<1 for n>ny. Then by (2.15), our induction is complete.
By a more careful analysis one can show, using only Lemmas 1, 2, 3, that

(2.18) (I)(N-')< n! exp[n0.75+0(1)]

3. The general case. In this section we prove Theorem 1. As the proof is
basically a generalization of the case k =3, we shall be somewhat sketchy. The
term ‘“‘A-system” shall refer to ‘“k-element A-system.”” We note that the
reduction principle applies to k-element A-systems.

DEFinITION. For 2=i=K let ¢;(n, k) denote the least integer so that if Fis a
family of n element sets, no i pairwise disjoint, |F|> ¢:(n, k), then F contains a
A-system.

We observe
(3.1 @2(n, k)= @a(n, k)= - = @r(n, k)= ¢(n, k).
For k=3, ¢,=1, ¢3= ¢ in the notation of §2.

LEMMA 5. For 2<i<k, n=1 there exists t so that
(3.2) @iln, k)s? e(n—1,k)
and such that for all integral s < ¢;(n, k)
G3) ank)= t(;)<p(n—- 1, k) +(n—1 ¢(n—s k) +se._i(n, k)

(where for i=2, ¢i(n, k) is interpreted as zero).

Proof. Let F be a family of ¢;(n, k) n-sets, no i pairwise disjoint, not
containing a A-system. Set ¢ equal the average |SN T| where S, TeF, S# T.
Then (3.2) follows as in Lemma 2. For any s < ¢;(n, k) we find (as in Lemma 3)
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S1,...,Ss€ F so that, setting

(3.4 Y= U S.NnS,
l=sp<vss
we have
s
(3.5) |Y]|= t(2>

All sets in F either
(i) intersect Y; at most |Y|@(n—1, k)= t(;)qo(n— 1, k) such sets, or

(i) are disjoint from Y but intersect Sy, ..., S;; at most (n—1)°¢(n—s, k)
such sets, or

(iii) are disjoint from S, for some 1=p =<s. For fixed p there are at most
¢@i—1(n, k) such sets (as if those sets contained i —1 pairwise disjoint sets with S;
there would be i pairwise disjoint sets); at most s¢;—;(n, k) such sets.

The remainder of the proof is purely analytic using Lemma 5.

Select C;, Cs,...,C.=C; s2, 83, ..., S positive integers such that
0<C1<[CG—-C(+¢e)]s,, 3=is<k
(3.6) 0<[C—C(1+¢&)"]s,

(E.g., select C,=C arbitrarily; having chosen C; choose s; so that C —
C(1+¢€e) >0 and C,_, satisfying (3.6)). Let K be such that

3.7 oi(n, k)< KC(1+¢)"n!

for 2=i=k and all n < ny(e) where ny(e) shall be determined. We show (3.7)
holds for all n by a double induction on n and i. Assume (3.7) holds for all
n'<n and for n with i’'<i. By (3.2)

(3.8) @i(n, k)=K(C/t)yn! (1+¢&)" ' <KC(1+¢)"n!

if t> C/C.. Now assume t=< C/C,. By (3.3), with s=g;

(3.9) ¢i(n, k)< Kn!(1+¢)"¢(n, s, €)
where
(3.10) llfi(n, Siy 8)=(_C‘L§l)n(ﬂg+ C(1+E)_s‘-£-r2;)—1)5(+sici_1

(for i=2, C;=0). Then

(3.11) lim ll/i(na Siy €)= C(1+€)_s‘+sici—l<Ci
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by (3.6). We choose no(¢) so that
(3.12) Ui(n, s;, )< G for 2=isk,n=ny(e).

(Note that the C, s; depended only on &.) Then (3.7) holds for n, i by (3.10),
(3.12) and (1.5) holds with constant KC.
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