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INVEXITY AT A POINT :
GENERALISATIONS AND CLASSIFICATION

S. MITITELU AND I.M. STANCU-MINASIAN

This paper uses Clarke’s generalised directional derivative to describe several types
of invexity, pseudoinvexity and quasiinvexity at a point of a nonlinear function. Di-
rect implications of the relations existing between the various types of invexity and
generalised invexity are presented, as well as a block diagram of these implications.
In particular, similar results in the class of quasiconvex functions are obtained.

1. INTRODUCTION

The notion of “invexity of a function” was introduced into optimisation theory by
Hanson [7] and the name of “invex function” was given by Craven [2]. Let X C R™ be
an open and nonempty set, and let f: X —» R.

DEFINITION 1.1: (Global invezity.) The differentiable function f is called invez
on X if a vector function n: X x X — R™ exists such that

Vz,u € X: f(z) — f(u) = n'(=, v)Vf(u)

where V f(u) denotes the gradient vector.

If u is fixed then we obtain invexity at the point 1. The study of these aspects
was initiated by Craven {2] and more directly presented in the papers of Craven and
Glover [4], Kaur and Kaul [10].

For the subdifferentiable case, Craven (3] introduced a “generalised invexity con-
dition” on X for the function f, which was justified by Giorgi and Mititelu [5] as
a natural definition of invexity in this case. This new definition is based on Clarke’s
generalised directional derivative for Lipschitzian functions.

Thus, for the function f Lipschitzian on X, Clarke defined the generalised direc-
tional derivative of f at a point z € X in the direction v € R™ by

£9(z;) = limsup L& F A;) - f(=")
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Also, he defined the subdifferential (or generalised gradient) of the function f at

a point = by the unique, nonempty, convex and compact set
81(z) = {£ € R™| f*(z;v) > £, Vo € R"}.
The elements of 8f(z) are called subgradients. Starting from Definition 1.1, Giorgi

and Mititelu [6] consider that the Lipschitzian function f is invex at u if a vector
function 7: X x X — R™ exists such that

Vz € X: f(z)— f(u) > n'(=, u)¢, V€ € 8f(u)

or, equivalently,

Vo € X: (=) - f(u) > max n'(e, w)E
or once more
(1) Ve € X f(z) - f(u) > fluin(z, )
since it is well-known [1] that

0
(2) fluin(e, w)) = max 7'(z, u)¢.

For z and u arbitrarily in X, we notice that the inequality (1) is the “generalised
invexity condition” as presented by Craven [3].

Mititelu [11] showed recently that instead of Lipschitzian functions we can consider
a more general class, namely, that of arbitrary nonlinear functions for which f° and 8f
may be defined in a similar manner, and for which the relation (2) exists when f°(z;-)

is finite. Thus, we introduce

DEFINITION 1.2: (Invezity at a point.) The nonlinear function f is said to be
invez at u € X if a vector function 7: X x X — R™ exists such that

Vz € X: f(z) — f(u) > f(u;n(=, u)).

Based on Definition 1.2, several types of invexity, pseudoinvexity and quasiinvexity
at a point of a nonlinear function will be pointed out in this paper. These types
are presented together using the model of Vial [13], Jeyakumar [8] and Preda [12].
Direct implications of the relations existing between the various types of invexity and
generalised invexity are presented, as well as a block diagram of these implications.
In particular, the definitions of the various types of convexity, pseudoconvexity and
quasiconvexity at u are obtained as well as other similar properties.
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2. INVEXITY AT A POINT AND SOME OF ITS GENERALISATIONS
In this section we consider new classes of functions, called p-invex, p-pseudoinvex
and p-quasiinvex at a point. The implications between these functions are also pre-
sented.
DEFINITION 2.1: (Invezities at o point.) The function f is said to be p-invez at

the point uw € X (abbreviated as pI), if vector functions 7,8: X x X — R™ and some
real number p exist such that

(1) Vz € X: f(z) ~ f(u) > f'(u;n(z, u)) + p|l6(z, v)|.

If
(1a) p > 0, then the function f is called strongly invez at u (Sgl);
(1b) p =0, then the function f is called invez at u (I);
(Ic) p <0, then the function f is called weakly invez at u (WI);
(1d) Vz € X,z # u: f(z) — f(u) > f°(u;n(=z, v)), then the function f is
called strictly invez at u (SI).

In the case of differentiable functions we recover the definition of p-invexity at a
point as given by Preda [12] (He used as a model the definition of the global p-invexity
given by Jeyakumar [8].)

THEOREM 1. For the function f the following implications hold at u:

(a) Strongly invex (SglI) and (z # u = 6(z, u) # 0) = Strictly invex (SI);
(b) Strictly invex (SI) = Invex (I) = Weakly invex (WI).
PRrRoOOF: (a) For p > 0 and 0(z, u) # 0 (z # u) we have
f(=) = f(x) = f*(uwin(z, w)) > p[16(z, )| >0,
that is, f is strictly invex at u.

(b) Obvious. 0

DEFINITION 2.2: (Pseudoinvezities at a point.) The function f is said to be p-
pseudoinvez at u (pPI), if there exist vector functions 7, 8: X x X — R™ and some
real number p such that

(pPI) Vz € X: f(uin(z, w) + o [16(z, w)l|* > 0= f(z) > f(u).

If
(2a) p >0, then the function f is called strongly pseudoinvez at u (SgPI);
(2b) p =0, then the function f is called pseudoinvez at u(PI);
(2¢) p <0, then the function f is called weakly pseudoinvez at u(WPI);
(2d) Vze X,z # u: f(u;n(z, v)) = 0= f(z) > f(u), then the function f
is called strictly pseudoinvez at u(SPI).
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For the differentiable case, definitions (2a), (2b) and (2¢) coincide with those given
by Preda [12].

THEOREM 2. For the function f the following implications hold at u

(a) Strongly pseudoinvex (SgPI) and injective = Strictly pseudoinvex (SPI).
(b) Strictly pseudoinvex (SPI} = Pseudoinvex (PI) = Weakly pseudoinvex
(WPI).

PROOF: (a) Suppose that f is strongly pseudoinvex at u. By virtue of Definition
2.2 (written in a equivalent form) we have

Ve e X,z #u: f(z) < f(u) = fu;n(z, ) + o |0(=, v)||* < 0.
But p > 0 implies —p ||6(z, u)||? < 0 and then

F(uin(=, y)) < —p16(=, v)||* <O.
Hence
Vz € X,z #u: f(z) < f(u) = f*(u;n(=z, v)) <0.
1t follows that
) Vo€ X,z #us Pluin(z, u)) >0 £(2) > f(w)

Since f is an injective function, it follows from (3) that
Vz € X,z #u: fOlu;n(z, u)) 2 0= f(z) > f(u).

Thus, f is (SPI) at u.
(b) (SPI) = (PI). Obvious.
(PI) = (WPI). We have p < 0 and

Ve € X: foun(z, v)) 2 0= f(z) > f(uw).
Then, for —p ||8(z, u)||* > 0, we have
Ve e X: fO(un(z, u)) 2 —p16(=, w)I* > 0= f(=) > f(u),

that is, f is (WPI). 0

THEOREM 3. If f is p-invex at u € X, then f is p-pseudoinvex at u. Moreover,
if f is strictly invex at u, then f is stricily pseudoinvex at u.

PROOF: In the relation (pI) we apply

Folusn(z, w)) + p16(z, w)i* >0
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and we obtain f(z) > f(u), that is, f is (pPI) at u. Also, in the definition of (SI) we
apply f°(u;n(z, u)) > 0 and we obtain f(z) > f(u), that is, f is (SPI) at u. 1

DEFINITION 2.3: (Quasiinvezilies at e point.) The function f is said to be p-
quasiinvez at u € X (pQI), if there exist vector functions 7, §: X x X — R™ and some
real number p such that

(pQI) Vz € X: f(2) < f(u) = f(uin(z, w)) + p16(=, v)|* <O.

If

(3a) p >0, then the function f is called strongly quasiinvez at u (SgQI);

(3b) p =0, then the function f is called quasiinvez ot u (QI);

(3¢) p <0, then the function f is called weakly quasiinvez at u (WQI);

(3d) Vz e X,z # u: f(z) < f(u) = f°(u;n(=, u)) <0, then the function f
is called strictly quasiinvez at u (SQI);

(3e) Vz e X,z #u: f(z) < f(u) = f°(u;n(z, u)) <0, then the function f
is called semistrictly quasiinvez at u (SSQI).

In the differentiable case, the definition of p-quasiinvexity at u (without the cases
(3d) and (3e)) was given by Preda [12]. The cases (3d) and (3e) were introduced by
Giorgi and Mititelu [6].

The following lemma will be used in proving direct implications between the various

types of quasiinvexity.

LEMMA. Suppose that f°(u;-) is finite on X . If f is lower semicontinuous (Ls.c.)
and n(-, u) is bounded on X, then a number Aq > 0 exists such that

Ve € X: fOu;n(z, u)) > 0= flu+ An(z, u)) > f(u), YA € (0, Xo).

PrOOF: f(u;n(z, u)) >0 yields

lim sup fy + M(z, v)) — f(y) 5 0.

y—u A
210

Then, there exists a neighbourhood V of v and a number )y > 0, sufficiently
small, such that for any y € V and any A € (0, Ag) we have

f(y + Mn(z, ) - f(y)

) > 0, Vy € V, v € (0, A0)7

Oor once more

fly+ Az, u)) > f(y), Yy € V, V € (0, Xo).
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In particular, for y = u, since f is ls.c. and 75(-, u) is bounded on X, we have
f(u+ An(=z, u)) > f(u), VA € (0, Xo).

0

Now, we establish direct implications of the relations existing between the various
types of quasiinvexity at a point.

THEOREM 4. For the function f the following implications hold at u:

(a) Strongly quasiinvex (SgQI) and (¢ # u = 8(=z, u) # 0) = Strictly quasi-
invex (SQI),

(b) Strictly quasiinvex (SQI) = Semistrictly quasiinvex (SSQI),

(c) Semistrictly quasiinvex (SSQI) and lower semicontinuous on X and n(-;u)
bounded on X = Quasiinvex (QI),

(d) Quasiinvex (QI) = Weakly quasiinvex (WQI).

PROOF: (a) For p> 0 and (z # u = 6(z, u) # 0) we have —p [|6(z, u)||* <0 and
then
Ve € X,z # u: f(z) < f(u) = f(usn(z, w)) < —p16(z, W) <0.

It follows from this implication that the function f is (SQI) at u.
(b) Obvious.
(c) We must show that f is (QI) at u, that is,

(4) Vz € X: f(2) < fu) = f(uin(z, u)) < 0.
Since f is (SSQI) at u it follows that
Ve e X,z #u: f(z) < f(u) = fO(u;n(z, u)) <0 <0.

Hence, (4) is true.

We now have to prove that
(5) Ve X: f(z) = f(u) = f(uin(z, ) < 0.
Assume by reductio ad absurdum, that (5) is not true. Then,
(6) 3te X: f(t) = f(u) and fO(u;n(t, v)) > 0.
According to the previous lemma, a number Ay > 0 exists such that

(7 flu+ An(t, u)) > f(u), VA€ (0, Ao).
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Consider X € (0, Ag) and T = u + Ag(t, u). Then (7) becomes f(Z) > f(u).

Denote

f@) - f(u)=a(>0)
Because f is lower semicontinuous at z it follows that for any € > 0, thereis 6. > 0
such that for any z € X for which ||z — Z|| < §. one has f(z) > f(Z)—¢. In particular,
for z = u one gets that ||[u —Z|| < 6, implies f(u) > f(T) —e. Choosing € = a it
follows that f(u) > f(u), which is contradictory.

In this proof we supposed that ||u — Z|| < §. which is equivalent to X ||7(%, u)|| < &,
or ||n(t, u)|| < 8./A. From this it follows that the function 7(-, ) must be bounded on
X.

(d) p < 0 mean that 0 < —p||8(z, u)||* and (QI) yields

Ve € X: f(2) < f(u) = f(uin(e, v)) <O < —p[|6(=, w)|’.
Therefore,

Vz e X: f(z) € f(u) = f(u;n(z, v)) + p|0(=, »)|* <0,

that is, f is (WQI) at u. 0
The implications between the various types of pseudoinvexity and quasiinvexity at

a point are established through the following theorem.
THEOREM 5. For function f the following implications hold at u:

(a) Strongly pseudoinvex (SgPI) => Strongly quasiinvex (SgQI),
(b) Strictly pseudoinvex (SPI) = Strictly quasiinvex (SQI),

(c) Weakly pseudoinvex (WPI) = Weakly quasiinvex (WQI),
(d) Pseudoinvex (PI) = Semistrictly quasiinvex (SSQI).

PRrOOF: (a) Equivalently, f is (SgQI) at u (p > o) when
(8) ¥z € X: fO(uin(z, u) + p[|6(z, w)|* > 0= f(2) > f(u).

But since f is (SgPI) at u, the relation (pPI) holds with p > 0. But this latter
implication (pPI) is stronger than implication (8).
(b) If f is (SPI) at u, then Definition 2.2 written in a equivalent form yields

Vo € Xz #u: f(2) < f(u) = fu;n(z, w) <O.

Thus, f is (SQI) at u.
(c) Can be proved in a similar manner to (a).
(d) If f is (PI) at u, then Definition 2.2 written in a equivalent form yields

Vz € X: f(z) < f(u) = f(u;n(=, u)) <0.

https://doi.org/10.1017/50004972700015525 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700015525

124 S. Mititelu and I.M. Stancu-Minasian (8]

Hence z # u and then f is (SSQI) at u. 0

Direct implications of the relations existing between the various types of quasiin-
vexity at a point, according Theorems 1-5, are given in the following block Diagram

—_ Lweakly pseudoinvex] —_— | weakly quasiinvex |
T T |7 quasiinvex l
l.s.c.,
T+ (n(~,u)bounded)
E— L pseudoinvex —‘ —_ |semistrict quasiinvex]

strictly invex| —— istrictly pseudoinve?l —_ | strictly quasiinvex |

T+(0(:,u);ﬁ0) T+(injective) ‘[+(9(z,u);é0)

strongly invex| —— lstrongly pseudoinva —_— Fstrongly quasiinvex |

Block Diagram 1

3. TYPES OF QUASICONVEXITY AT A POINT
In the particular case of n(z, v) =z — v and 6(z, uv) = z — u we obtain the types
of convexities, pseudoconvexities and quasiconvexities at a point as follows:

DEFINITION 3.1: (Convezities at a point.) The function f is said to be p-convez
at v € X (abbreviated pC), if there exists some real number p such that

(pC) Vz e X: f(z) = f(u) 2 folu;z —u) +pllz —u|.

If

(1'a) p> 0, then the function f is called strongly convez at u (SgC);

(1'b) p =0, then the function f is called convez at u (C);

(1'c) p <0, then the function f is called weakly convez at u (WC);

(1'd) Vee X,z #u: f(z)— f(u) > f(u;z — u), then the function f is called
strictly convez at u (SC).

DEFINITION 3.2: (Pseudoconvezities at ¢ point.) The function f is said to be
p-pseudoconvez at u € X (pPC), if there exists some real number p such that

(pPC) Vze X: fo(u;:c—-u)+p||:c—u||2>O:f(z)2f(u).
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If

(2'a) p >0, then the function f is called strongly pseudoconvez at u (SgPC);

(2'b) p =0, then the function f is called pseudoconvez at u (PC);

(2'c) p <0, then the function f is called weakly pseudoconvez at u (WPC);

(2'd) VzeX,z#u: folu;z—u) 2 0= f(z) > f(u), then f is called strictly
pseudoconvez at u (SPC).

DEFINITION 3.3: (Quasiconvezities at a point.) The function f is said to be p-
quasiconvez at u € X (pQC), if there exists some real number p such that

(,QC) Vz € X: f(z) < f(u) = f'(u;z —u) +plz —u|® <0.

If

(3'a) p >0, then the function f is called strongly quasiconvez at u (SgQC);

(3'b) p =0, then the function f is called quasiconvez at u (QC);

(3'c) p <0, then the function f is called weakly quasiconvez at u (WQC);

(3'd) Vze X,z +#u: f(z) < f(u) = f(u;jz —u) < 0, then the function f is
called strictly quasiconvez at u (SQC);

(3'e) VzeX,z#u: f(z) < f(u) = f°(u;jz —u) <0, then the function f is
called semistrictly quasiconvez at u (SSQC).

Similarly, we can define global convexity, global pseudoconvexity and global quasi-
convexity, which in the differentiable case were formulated by Jeyakumar [9]. However,
strict quasiconvex, and similarly strict pseudoconvex, semistrict quasiconvex and strict

convex were not treated by Jeyakumanr.

——— | weakly pseudoconvex| —— l weakly quasiconvex I

T T [ quasiconvex I

I

—_ l pseudoconvex | _— Isemistrict quasiconvexl

I | I

lstrictly convex| —_ lstrictly pseudoconvexl _— I strictly quasiconvex l

I I I

Istrongly convex] Istrongly pseudoconve;l —_— l strongly quasiconvex l

Block Diagram 2
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The implications which exist between the types of convexity and generalised con-
vexity at a point, based on f°, are given in Block Diagram 2. Moreover, any type of
convexity at a point, simple or generalised, implies the corresponding type of invexity

at a point (for instance, weakly convex = weakly invex, convex = invex et cetera).
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