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INVEXITY AT A POINT :
GENERALISATIONS AND CLASSIFICATION

S. MlTITELU AND I.M. STANCU-MlNASIAN

This paper uses Clarke's generalised directional derivative to describe several types
of invexity, pseudoinvexity and quasiinvexity at a point of a nonlinear function. Di-
rect implications of the relations existing between the various types of invexity and
generalised invexity are presented, as well as a block diagram of these implications.
In particular, similar results in the class of quasiconvex functions are obtained.

1. INTRODUCTION

The notion of "invexity of a function" was introduced into optimisation theory by
Hanson [7] and the name of "invex function" was given by Craven [2]. Let X C M™ be
an open and nonempty set, and let / : ^ - » R .

DEFINITION 1.1: {Global invexity.) The differentiable function / is called invex

on X if a vector function TJ : X x X —> Rn exists such that

Vx,u 6 X: f{x) - /(it) > v*(x, «)V/(u)

where V/(u) denotes the gradient vector.

If u is fixed then we obtain invexity at the point u. The study of these aspects
was initiated by Craven [2] and more directly presented in the papers of Craven and
Glover [4], Kaur and Kaul [10].

For the subdifferentiable case, Craven [3] introduced a "generalised invexity con-
dition" on X for the function / , which was justified by Giorgi and Mititelu [5] as
a natural definition of invexity in this case. This new definition is based on Clarke's
generalised directional derivative for Lipschitzian functions.

Thus, for the function / Lipschitzian on X, Clarke defined the generalised direc-
tional derivative of / at a point x £ X in the direction v g Rn by

,o, N ,- f(x' + \v)-f(x')f (x;v) = hmsup — - ——'-.
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Also, he defined the subdifferential (or generalised gradient) of the function / at
a point x by the unique, nonempty, convex and compact set

df(x) = U e i B | f°(x;v) > fv, V» 6 Kn}.

The elements of df(x) are called subgradients. Starting from Definition 1.1, Giorgi
and Mititelu [6] consider that the Lipschitzian function / is invex at u if a vector
function 77: X x X —* Rn exists such that

Vz £ X: f(x) - /(«) > n*{x, v)i, V£ e df(u)

or, equivalently,

VxeX: f{x) - /(«)

or once more

(1) Vz € X : /(x) - /(u) ^ /°(«; ,(a, «))

since it is well-known [1] that

(2) f°(u;ri(x, tt)) =

For a; and u arbitrarily in X, we notice that the inequality (1) is the "generalised
invexity condition" as presented by Craven [3].

Mititelu [11] showed recently that instead of Lipschitzian functions we can consider
a more general class, namely, that of arbitrary nonlinear functions for which f° and df

may be defined in a similar manner, and for which the relation (2) exists when /°(z; •)
is finite. Thus, we introduce

DEFINITION 1.2: {Invexity at a point.) The nonlinear function / is said to be
invex at u £ X if a vector function 77: X x X —* Rn exists such that

Based on Definition 1.2, several types of invexity, pseudoinvexity and quasiinvexity
at a point of a nonlinear function will be pointed out in this paper. These types
are presented together using the model of Vial [13], Jeyakumar [8] and Preda [12].
Direct implications of the relations existing between the various types of invexity and
generalised invexity are presented, as well as a block diagram of these implications.
In particular, the definitions of the various types of convexity, pseudoconvexity and
quasiconvexity at u are obtained as well as other similar properties.
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2. INVEXITY AT A POINT AND SOME OF ITS GENERALISATIONS

In this section we consider new classes of functions, called p-invex, p-pseudoinvex
and p-quasiinvex at a point. The implications between these functions are also pre-
sented.

DEFINITION 2.1: (Invexities at a point.) The function / is said to be p-invex at
the point u £ X (abbreviated as pi), if vector functions i j , l l : l x l - t R n and some
real number p exist such that

(pi) Vx G X: f(x) - / (« ) ^ fO(u;V(x, u)) + p\\8(x, u)\\2 .

If

(la) p > 0, then the function / is called strongly invex at u (Sgl);
(lb) p = 0, then the function / is called invex at u (I);
(lc) p < 0, then the function / is called weakly invex at u (WI);
(Id) Vx 6 X, x ^ u: f(x) - f(u) > f°(u;r)(x, u)), then the function / is

called strictly invex at u (SI).

In the case of differentiate functions we recover the definition of p-invexity at a
point as given by Preda [12] (He used as a model the definition of the global p-invexity
given by Jeyakumar [8].)

THEOREM 1 . For the {unction f the following implications hold at u:

(a) Strongly invex (Sgl) and (z ^ u =>• 8(x, u) ^ 0) => Strictly invex (SI);

(b) Strictly invex (SI) => Invex (I) => Weakly invex (WI).

PROOF: (a) For p > 0 and 6(x, u) ^ 0 (x ^ u) we have

/ (x ) - f(u) - fO(u;r,(x, u)) > p\\0{x, u)\\2 > 0,

that is, / is strictly invex at u.

(b) Obvious. D

DEFINITION 2.2: (Pseudoinvexities at a point.) The function / is said to be p-
pseudoinvex at u (pPI), if there exist vector functions T), 0: X X X —> R" and some
real number p such that

(pPI) Vx 6 X: f°(u; V(x, «)) + p \\${x, u)\\2 > 0 =• f(x) > /(«).

If

(2a) p > 0, then the function / is called strongly pseudoinvex at u (SgPI);
(2b) p = 0, then the function / is called pseudoinvex at u(PI);
(2c) p < 0, then the function / is called weakly pseudoinvex at ii(WPI);
(2d) V i e X . i / u : f°{u;r)(x, u)) > 0 => /(x) > f(u), then the function /

is called strictly pseudoinvex at •u(SPI).
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For the differentiable case, definitions (2a), (2b) and (2c) coincide with those given
by Preda [12].

THEOREM 2 . For the function f the following implications hold at u

(a) Strongly pseudoinvex (SgPI) and injective => Strictly pseudoinvex (SPI).
(b) Strictly pseudoinvex (SPI) => Pseudoinvex (PI) => Weakly pseudoinvex

(WPI).

PROOF: (a) Suppose that / is strongly pseudoinvex at u. By virtue of Definition
2.2 (written in a equivalent form) we have

VxeX,x^u: f(x) < f(u) => f(u;r,(x, «)) + P ||«(*. ")||2 < 0.

But p > 0 implies -p \\9(x, u)\\2 ^ 0 and then

f°(u;r,(x,y))<-p\\e(x,u)\\2^0.

Hence

\/xeX,x^u: /(x) < /(«) =» f°(u;r,(x, «)) < 0.

It follows that

(3) \/xeX,x^u: f°(u;rj{x, u)) > 0 => f(x) 2 /(«).

Since / is an injective function, it follows from (3) that

Vx<EX,Xyt:u: / V ; T , ( X , «)) ^ 0 => /(*) > /(«).

Thus, / is (SPI) at it.

(b) (SPI) => (PI). Obvious.

(PI) => (WPI). We have p < 0 and

Vx € X : /°(«; q(z, u)) ^ 0 => /(x) ^ /(u).

Then, for —p |[5(x, u)||2 > 0, we have

Vx 6 X: f°(u;r,(x, u)) > -p\\0(x, u)f ^ 0 =» /(x) ^ /(ti),

that is, / is (WPI). D

THEOREM 3 . If f is p-invex at u € X, then f is p-pseudoinvex at u. Moreover,

if f is strictly invex at u, then f is strictly pseudoinvex at u.
PROOF: In the relation (pi) we apply
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and we obtain f(x) ^ / ( u ) , that is, / is (pPI) at u. Also, in the definition of (SI) we
apply f°(u;r)(x, u)) ^ 0 and we obtain f(x) > f(u), that is, / is (SPI) at u . D

DEFINITION 2.3: (Quasiinvexities at a point.) The function / is said to be p-

quasiinvex at u £ X (pQI), if there exist vector functions rj, 6: X x X —» R™ and some
real number p such that

(pQI) V ^ e l : f(x) < /(«) => f°(u;ri(x, u)) + p\\0{x, u)\\2 < 0.

If

(3a) p > 0, then the function / is called strongly quatiinvex at u (SgQI);
(3b) p = 0, then the function / is called quasiinvex at u (QI);
(3c) p < 0, then the function / is called weakly quasiinvex at u (WQI);
(3d) Vz G X, x ^ u: f{x) ^ f(u) => f°(u;T)(x, u)) < 0, then the function /

is called strictly quasiinvex at u (SQI);
(3e) V I 6 I , J ; / I I : f(x) < f(u) => /°(U;T?(X) U)) < 0, then the function /

is called semistrictly quasiinvex at u (SSQI).

In the differentiate case, the definition of p-quasiinvexity at u (without the cases
(3d) and (3e)) was given by Preda [12]. The cases (3d) and (3e) were introduced by
Giorgi and Mititelu [6].

The following lemma will be used in proving direct implications between the various
types of quasiinvexity.

LEMMA . Suppose that f°(u; •) is Unite on X . It f is lower semicontinuous (l.s.c.)

and 7)(-, u) is bounded on X, then a number Ao > 0 exists such that

VxeX: f°{U;T)(X, u)) > 0 => f(u + \V(x, «)) > f(u), VA G (0, Ao).

PROOF: /°(K;TJ(X, U)) > 0 yields

y—»ti

Then, there exists a neighbourhood V of u and a number Ao > 0, sufficiently
small, such that for any y 6 V and any A € (0, Ao) we have

or once more

f(y + Xr,(x, u)) > f(y), Vy £ V, V 6 (0, Ao).
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In particular, for y = u, since / is l.s.c. and TJ(-, U) is bounded on X, we have

/ (« + A^z, «)) > /(«), VA e (0, Ao).

D
Now, we establish direct implications of the relations existing between the various

types of quasiinvexity at a point.

THEOREM 4 . For the function f the following implications hold at u:

(a) Strongly quasiinvex (SgQI) and (x ^ u => 0(x, u) ^ 0) =>• Strictly quasi-
invex (SQI),

(b) Strictly quasiinvex (SQI) => Semistrictly quasiinvex (SSQI),

(c) Semistrictly quasiinvex (SSQI) and lower semicontinuous on X and r)(-\ u)
bounded on X =$• Quasiinvex (QI),

(d) Quasiinvex (QI) =» Weakly quasiinvex (WQI).

PROOF: (a) For p > 0 and (z ^ u => 0(x, u) ^ 0) we have - p ||0(sc, u)||2 < 0 and
then

° u)||2 < 0.

It follows from this implication that the function / is (SQI) at u.

(b) Obvious.

(c) We must show that / is (QI) at u, that is,

(4) V x e l : /(*) ^ /(«) => /°(«;r,{x, u)) ^ 0.

Since / is (SSQI) at u it follows that

yXeX,x^u: f(x) < /(«) => f°{u;r,{x, u)) < 0 ^ 0.

Hence, (4) is true.

We now have to prove that

(5) Vx e X: f(x) = /(«) => /°(ii;i,(*> «)) < 0.

Assume by reductio ad absurdum, that (5) is not true. Then,

(6) 3teX: f{t) = fin) and / > ; ,,(*, u)) > 0.

According to the previous lemma, a number Ao > 0 exists such that

(7) fin + XVit, u)) > / («) , VA G (0, Ao).
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[7] Invexity at a point 123

Consider A £ (0, Ao) and x — u + A^i, U). Then (7) becomes f(x) > f(u).
Denote

f{x) - /(«) = a (> 0).

Because / is lower semicontinuous at x it follows that for any e > 0, there is Se > 0
such that for any x 6 X for which ||x — x~|| < 8e one has f(x) > /(x) —e. In particular,
for x = u one gets that [|u — x~|| < 6e implies /(u) > /(x) — £• Choosing e = a it
follows that /(u) > /(u) , which is contradictory.

In this proof we supposed that ||u — a;|| < 6C which is equivalent to A \\r)(t, u)\\ < Sc

or \\T)(t, u)\\ < Se/X. From this it follows that the function ?;(•, u) must be bounded on
X.

(d) p < 0 mean that 0 < -p\\6(x, u)\\2 and (QI) yields

Vx G X: f{x) ^ fin) => fiu^x, u))^Q^ - p | | t f ( z , u)f .

Therefore,

V x e l : fix) ^ fin) => /•(«;^(x, «)) + p ||0(z, U)||2 ^ 0,

that is, / is (WQI) a tu . D

The implications between the various types of pseudoinvexity and quasiinvexity at
a point are established through the following theorem.

THEOREM 5 . For function f the following implications hold at u:

(a) Strongly pseudoinvex (SgPI) =S> Strongly quasiinvex (SgQI),
(b) Strictly pseudoinvex (SPI) =?- Strictly quasiinvex (SQI),
(c) Weakly pseudoinvex (WPI) => Weakly quasiinvex (WQI),

(d) Pseudoinvex (PI) => Semistrictly quasiinvex (SSQI).

PROOF: (a) Equivalently, / is (SgQI) at u (p > o) when

(8) VxeX: f°iu-T,(x, u)) + p ||0(z, u) | | 2 > 0 => / ( x ) > / ( « ) .

But since / is (SgPI) at u, the relation (pPI) holds with p > 0. But this latter
implication (pPI) is stronger than implication (8).

(b) If / is (SPI) at u, then Definition 2.2 written in a equivalent form yields

VxEX-x^u: f(x) < fin) => /°(«; 7?(x, «)) < 0.

Thus, / is (SQI) at u.
(c) Can be proved in a similar manner to (a).
(d) If / is (PI) at u, then Definition 2.2 written in a equivalent form yields

Vx 6 X: fix) < fin) =* / " ( u ; ^ , «)) < 0.

https://doi.org/10.1017/S0004972700015525 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015525


124 S. Mititelu and I.M. Stancu-Minasian [8]

Hence x ^ u and then / is (SSQI) at u. D

Direct implications of the relations existing between the various types of quasiin-
vexity at a point, according Theorems 1-5, are given in the following block Diagram

weakly invex > weakly pseudoinvex weakly quasiinvex

1
quasiinvex

-p / i...c, \

invex pseudoinvex semistrict quasiinvex

I
strictly invex strictly pseudoinvex strictly quasiinvex

+(injective)

strongly invex strongly pseudoinvex strongly quasiinvex

Block Diagram 1

3. TYPES OF QUASICONVEXITY AT A POINT

In the particular case of T)(X, U) = x — u and 8(x, u) = x — u we obtain the types
of convexities, pseudoconvexities and quasiconvexities at a point as follows:

DEFINITION 3.1: (Convexities at a point.) The function / is said to be p-convex
at u 6 X (abbreviated pC), if there exists some real number p such that

(PC) : f(x) - f(u) >f°(u;x-u) \\x - u\\

If

( l 'a) p > 0, then the function / is called strongly convex at u (SgC);
( l 'b) p = 0, then the function / is called convex at u (C);
(l 'c) p < 0, then the function / is called weakly convex at u (WC);
(I 'd) V i G l . i ^ u : f(x) - f{u) > f°(u;x- u), then the function / is called

strictly convex at u (SC).

DEFINITION 3.2: (Pseudoconvexities at a point.) The function / is said to be
p-pseudoconvex at u € X (pPC), if there exists some real number p such that

Vx G X: f°(u;x - u) + p\\x -u\\2 > 0 =* / (*) ^ / ( « ) .
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If

(2'a)
(2'b)
(2'c)
(2'd)

p > 0, then the function / is called strongly pseudoconvex at u (SgPC);
p = 0, then the function / is called pseudoconvex at u (PC);
p < 0, then the function / is called weakly pseudoconvex at u (WPC);
Vz e X, x ^ u: f°(u; x - u) ^ 0 => /(x) > f(u), then / is called strictly
pseudoconvex at u (SPC).

DEFINITION 3.3: (Quasiconvexities at a point.) The function / is said to be p-
quasiconvex at u £ X (pQC), if there exists some real number p such that

2 < 0(pQC)

If

(3'a)
(3'b)
(3'c)
(3'd)

(3'e)

f°(u;x - u ) + p||x — ti||

p > 0, then the function / is called strongly quasiconvex at u (SgQC);
p = 0, then the function / is called quasiconvex at u (QC);
p < 0, then the function / is called weakly quasiconvex at u (WQC);
Vx £ X, x ^ u: f(x) ^ f(u) => f°{u\x — u) < 0, then the function / is
called strictly quasiconvex at u (SQC);
V J £ I , I / U : f(x) < f(u) => f°(u; x - u) < 0, then the function / is
called semistrictly quasiconvex at u (SSQC).

Similarly, we can define global convexity, global pseudoconvexity and global quasi-
convexity, which in the differentiable case were formulated by Jeyakumar [9]. However,
strict quasiconvex, and similarly strict pseudoconvex, semistrict quasiconvex and strict
convex were not treated by Jeyakumanr.

weakly convex

convex

strictly convex

strongly convex

weakly pseudoconvex

pseudoconvex

T
strictly pseudoconvex

I
strongly pseudoconvex

Block Diagram 2

weakly quasiconvex

I
quasiconvex

1
semistrict quasiconvex

strictly

strongly

i
quasiconvex

1
quasiconvex
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The implications which exist between the types of convexity and generalised con-
vexity at a point, based on f° , are given in Block Diagram 2. Moreover, any type of
convexity at a point, simple or generalised, implies the corresponding type of invexity
at a point (for instance, weakly convex => weakly invex, convex =>• invex et cetera).
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