INVEXITY AT A POINT: GENERALISATIONS AND CLASSIFICATION

S. MITITELU AND I.M. STANCU-MINASIAN

This paper uses Clarke's generalised directional derivative to describe several types of invexity, pseudoinvexity and quasiinvexity at a point of a nonlinear function. Direct implications of the relations existing between the various types of invexity and generalised invexity are presented, as well as a block diagram of these implications. In particular, similar results in the class of quasiconvex functions are obtained.

1. Introduction

The notion of "invexity of a function" was introduced into optimisation theory by Hanson [7] and the name of "invex function" was given by Craven [2]. Let $X \subseteq \mathbb{R}^n$ be an open and nonempty set, and let $f: X \to \mathbb{R}$.

DEFINITION 1.1: (Global invexity.) The differentiable function f is called invex on X if a vector function $\eta: X \times X \to \mathbb{R}^n$ exists such that

$$\forall x, u \in X \colon f(x) - f(u) \geqslant \eta^t(x, u) \nabla f(u)$$

where $\nabla f(u)$ denotes the gradient vector.

If u is fixed then we obtain invexity at the point u. The study of these aspects was initiated by Craven [2] and more directly presented in the papers of Craven and Glover [4], Kaur and Kaul [10].

For the subdifferentiable case, Craven [3] introduced a "generalised invexity condition" on X for the function f, which was justified by Giorgi and Mititelu [5] as a natural definition of invexity in this case. This new definition is based on Clarke's generalised directional derivative for Lipschitzian functions.

Thus, for the function f Lipschitzian on X, Clarke defined the generalised directional derivative of f at a point $x \in X$ in the direction $v \in \mathbb{R}^n$ by

$$f^{0}(x;v) = \limsup_{\substack{x' \to x \\ \lambda \downarrow 0}} \frac{f(x' + \lambda v) - f(x')}{\lambda}.$$

Received 2 September 1992

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/93 \$A2.00+0.00.

Also, he defined the subdifferential (or generalised gradient) of the function f at a point x by the unique, nonempty, convex and compact set

$$\partial f(x) = \{ \xi \in \mathbb{R}^n \mid f^0(x; v) \geqslant \xi^t v, \forall v \in \mathbb{R}^n \}.$$

The elements of $\partial f(x)$ are called subgradients. Starting from Definition 1.1, Giorgi and Mititelu [6] consider that the Lipschitzian function f is invex at u if a vector function $\eta: X \times X \to \mathbb{R}^n$ exists such that

$$\forall x \in X : f(x) - f(u) \geqslant \eta^t(x, u)\xi, \ \forall \xi \in \partial f(u)$$

or, equivalently,

$$\forall x \in X : f(x) - f(u) \geqslant \max_{\xi \in \partial f(u)} \eta^t(x, u) \xi$$

or once more

(1)
$$\forall x \in X \colon f(x) - f(u) \geqslant f^{0}(u; \eta(x, u))$$

since it is well-known [1] that

(2)
$$f^{0}(u;\eta(x,u)) = \max_{\xi \in \partial f(u)} \eta^{t}(x,u)\xi.$$

For x and u arbitrarily in X, we notice that the inequality (1) is the "generalised invexity condition" as presented by Craven [3].

Mititelu [11] showed recently that instead of Lipschitzian functions we can consider a more general class, namely, that of arbitrary nonlinear functions for which f^0 and ∂f may be defined in a similar manner, and for which the relation (2) exists when $f^0(x;\cdot)$ is finite. Thus, we introduce

DEFINITION 1.2: (Invexity at a point.) The nonlinear function f is said to be invex at $u \in X$ if a vector function $\eta: X \times X \to \mathbb{R}^n$ exists such that

$$\forall x \in X : f(x) - f(u) \geqslant f^0(u; \eta(x, u)).$$

Based on Definition 1.2, several types of invexity, pseudoinvexity and quasiinvexity at a point of a nonlinear function will be pointed out in this paper. These types are presented together using the model of Vial [13], Jeyakumar [8] and Preda [12]. Direct implications of the relations existing between the various types of invexity and generalised invexity are presented, as well as a block diagram of these implications. In particular, the definitions of the various types of convexity, pseudoconvexity and quasiconvexity at u are obtained as well as other similar properties.

2. Invexity at a point and some of its generalisations

In this section we consider new classes of functions, called ρ -invex, ρ -pseudoinvex and ρ -quasiinvex at a point. The implications between these functions are also presented.

DEFINITION 2.1: (Invexities at a point.) The function f is said to be ρ -invex at the point $u \in X$ (abbreviated as ρI), if vector functions $\eta, \theta \colon X \times X \to \mathbb{R}^n$ and some real number ρ exist such that

$$(\rho I)$$
 $\forall x \in X : f(x) - f(u) \geqslant f^{0}(u; \eta(x, u)) + \rho \|\theta(x, u)\|^{2}$.

If

- (1a) $\rho > 0$, then the function f is called strongly invex at u (SgI);
- (1b) $\rho = 0$, then the function f is called invex at u (I);
- (1c) $\rho < 0$, then the function f is called weakly invex at u (WI);
- (1d) $\forall x \in X, x \neq u: f(x) f(u) > f^0(u; \eta(x, u))$, then the function f is called strictly invex at u (SI).

In the case of differentiable functions we recover the definition of ρ -invexity at a point as given by Preda [12] (He used as a model the definition of the global ρ -invexity given by Jeyakumar [8].)

THEOREM 1. For the function f the following implications hold at u:

- (a) Strongly invex (SgI) and $(x \neq u \Rightarrow \theta(x, u) \neq 0) \Rightarrow$ Strictly invex (SI);
- (b) Strictly invex $(SI) \Rightarrow Invex (I) \Rightarrow Weakly invex (WI)$.

PROOF: (a) For $\rho > 0$ and $\theta(x, u) \neq 0$ $(x \neq u)$ we have

$$f(x) - f(u) - f^{0}(u; \eta(x, u)) \ge \rho \|\theta(x, u)\|^{2} > 0,$$

that is, f is strictly invex at u.

DEFINITION 2.2: (Pseudoinvexities at a point.) The function f is said to be ρ -pseudoinvex at u (ρ PI), if there exist vector functions η , $\theta: X \times X \to \mathbb{R}^n$ and some real number ρ such that

$$(\rho \operatorname{PI}) \qquad \forall x \in X : f^{0}(u; \eta(x, u)) + \rho \|\theta(x, u)\|^{2} \geqslant 0 \Rightarrow f(x) \geqslant f(u).$$

If

- (2a) $\rho > 0$, then the function f is called strongly pseudoinvex at u (SgPI);
- (2b) $\rho = 0$, then the function f is called pseudoinvex at u(PI);
- (2c) $\rho < 0$, then the function f is called weakly pseudoinvex at u(WPI);
- (2d) $\forall x \in X, x \neq u : f^0(u; \eta(x, u)) \geq 0 \Rightarrow f(x) > f(u)$, then the function f is called strictly pseudoinvex at u(SPI).

For the differentiable case, definitions (2a), (2b) and (2c) coincide with those given by Preda [12].

THEOREM 2. For the function f the following implications hold at u

- (a) Strongly pseudoinvex (SgPI) and injective ⇒ Strictly pseudoinvex (SPI).
- (b) Strictly pseudoinvex (SPI) ⇒ Pseudoinvex (PI) ⇒ Weakly pseudoinvex (WPI).

PROOF: (a) Suppose that f is strongly pseudoinvex at u. By virtue of Definition 2.2 (written in a equivalent form) we have

$$\forall x \in X, x \neq u : f(x) < f(u) \Rightarrow f^{0}(u; \eta(x, u)) + \rho \|\theta(x, u)\|^{2} < 0.$$

But $\rho > 0$ implies $-\rho \|\theta(x, u)\|^2 \leq 0$ and then

$$f^{0}(u; \eta(x, y)) < -\rho ||\theta(x, u)||^{2} \leq 0.$$

Hence

$$\forall x \in X, \ x \neq u \colon f(x) < f(u) \Rightarrow f^{0}(u; \eta(x, u)) < 0.$$

It follows that

(3)
$$\forall x \in X, \ x \neq u \colon f^0(u; \eta(x, u)) \geqslant 0 \Rightarrow f(x) \geqslant f(u).$$

Since f is an injective function, it follows from (3) that

$$\forall x \in X, x \neq u : f^{0}(u; \eta(x, u)) \geqslant 0 \Rightarrow f(x) > f(u).$$

Thus, f is (SPI) at u.

(b) (SPI) \Rightarrow (PI). Obvious.

(PI) \Rightarrow (WPI). We have $\rho < 0$ and

$$\forall x \in X : f^0(u; \eta(x, u)) \geqslant 0 \Rightarrow f(x) \geqslant f(u).$$

Then, for $-\rho \|\theta(x, u)\|^2 \geqslant 0$, we have

$$\forall x \in X : f^{0}(u; \eta(x, u)) \geqslant -\rho \|\theta(x, u)\|^{2} \geqslant 0 \Rightarrow f(x) \geqslant f(u),$$

that is, f is (WPI).

THEOREM 3. If f is ρ -invex at $u \in X$, then f is ρ -pseudoinvex at u. Moreover, if f is strictly invex at u, then f is strictly pseudoinvex at u.

PROOF: In the relation (ρI) we apply

$$f^{0}(u; \eta(x, u)) + \rho \|\theta(x, u)\|^{2} \geqslant 0$$

and we obtain $f(x) \ge f(u)$, that is, f is (ρPI) at u. Also, in the definition of (SI) we apply $f^0(u; \eta(x, u)) \ge 0$ and we obtain f(x) > f(u), that is, f is (SPI) at u.

DEFINITION 2.3: (Quasiinvexities at a point.) The function f is said to be ρ -quasiinvex at $u \in X$ (ρQI), if there exist vector functions η , $\theta: X \times X \to \mathbb{R}^n$ and some real number ρ such that

$$(\rho \operatorname{QI}) \qquad \forall x \in X : f(x) \leqslant f(u) \Rightarrow f^{0}(u; \eta(x, u)) + \rho \|\theta(x, u)\|^{2} \leqslant 0.$$

Ιf

- (3a) $\rho > 0$, then the function f is called strongly quasiinvex at u (SgQI);
- (3b) $\rho = 0$, then the function f is called quasiinvex at u (QI);
- (3c) $\rho < 0$, then the function f is called weakly quasinvex at u (WQI);
- (3d) $\forall x \in X, x \neq u : f(x) \leq f(u) \Rightarrow f^0(u; \eta(x, u)) < 0$, then the function f is called strictly quasiinvex at u (SQI);
- (3e) $\forall x \in X, x \neq u : f(x) < f(u) \Rightarrow f^0(u; \eta(x, u)) < 0$, then the function f is called semistrictly quasiinvex at u (SSQI).

In the differentiable case, the definition of ρ -quasiinvexity at u (without the cases (3d) and (3e)) was given by Preda [12]. The cases (3d) and (3e) were introduced by Giorgi and Mititelu [6].

The following lemma will be used in proving direct implications between the various types of quasiinvexity.

LEMMA. Suppose that $f^0(u;\cdot)$ is finite on X. If f is lower semicontinuous (l.s.c.) and $\eta(\cdot, u)$ is bounded on X, then a number $\lambda_0 > 0$ exists such that

$$\forall x \in X : f^0(u; \eta(x, u)) > 0 \Rightarrow f(u + \lambda \eta(x, u)) > f(u), \forall \lambda \in (0, \lambda_0).$$

PROOF: $f^0(u; \eta(x, u)) > 0$ yields

$$\limsup_{\substack{y \to u \\ \lambda \downarrow 0}} \frac{f(y + \lambda \eta(x, u)) - f(y)}{\lambda} > 0.$$

Then, there exists a neighbourhood V of u and a number $\lambda_0 > 0$, sufficiently small, such that for any $y \in V$ and any $\lambda \in (0, \lambda_0)$ we have

$$\frac{f(y+\lambda\eta(x, u))-f(y)}{\lambda}>0, \ \forall y\in V, \ \forall \lambda\in(0, \lambda_0),$$

or once more

$$f(y + \lambda \eta(x, u)) > f(y), \forall y \in V, \forall \in (0, \lambda_0).$$

Π

In particular, for y = u, since f is l.s.c. and $\eta(\cdot, u)$ is bounded on X, we have

$$f(u + \lambda \eta(x, u)) > f(u), \forall \lambda \in (0, \lambda_0).$$

Now, we establish direct implications of the relations existing between the various types of quasiinvexity at a point.

THEOREM 4. For the function f the following implications hold at u:

- (a) Strongly quasiinvex (SgQI) and $(x \neq u \Rightarrow \theta(x, u) \neq 0) \Rightarrow$ Strictly quasiinvex (SQI),
- (b) Strictly quasiinvex $(SQI) \Rightarrow Semistrictly quasiinvex (SSQI)$,
- (c) Semistrictly quasiinvex (SSQI) and lower semicontinuous on X and $\eta(\cdot; u)$ bounded on $X \Rightarrow Quasiinvex (QI)$,
- (d) Quasiinvex $(QI) \Rightarrow Weakly quasiinvex (WQI)$.

PROOF: (a) For $\rho > 0$ and $(x \neq u \Rightarrow \theta(x, u) \neq 0)$ we have $-\rho \|\theta(x, u)\|^2 < 0$ and then

$$\forall x \in X, x \neq u : f(x) \leqslant f(u) \Rightarrow f^{0}(u; \eta(x, u)) \leqslant -\rho \left\|\theta(x, u)\right\|^{2} < 0.$$

It follows from this implication that the function f is (SQI) at u.

- (b) Obvious.
- (c) We must show that f is (QI) at u, that is,

$$(4) \qquad \forall x \in X : f(x) \leqslant f(u) \Rightarrow f^{0}(u; \eta(x, u)) \leqslant 0.$$

Since f is (SSQI) at u it follows that

$$\forall x \in X, \, x \neq u \colon f(x) < f(u) \Rightarrow f^{0}(u; \eta(x, u)) < 0 \leqslant 0.$$

Hence, (4) is true.

We now have to prove that

(5)
$$\forall x \in X : f(x) = f(u) \Rightarrow f^{0}(u; \eta(x, u)) \leq 0.$$

Assume by reductio ad absurdum, that (5) is not true. Then,

(6)
$$\exists t \in X : f(t) = f(u) \text{ and } f^{0}(u; \eta(t, u)) > 0.$$

According to the previous lemma, a number $\lambda_0 > 0$ exists such that

(7)
$$f(u + \lambda \eta(t, u)) > f(u), \ \forall \lambda \in (0, \lambda_0).$$

П

Consider $\overline{\lambda} \in (0, \lambda_0)$ and $\overline{x} = u + \overline{\lambda} \eta(t, u)$. Then (7) becomes $f(\overline{x}) > f(u)$. Denote

$$f(\overline{x}) - f(u) = a \ (>0).$$

Because f is lower semicontinuous at x it follows that for any $\varepsilon > 0$, there is $\delta_{\varepsilon} > 0$ such that for any $x \in X$ for which $||x - \overline{x}|| < \delta_{\varepsilon}$ one has $f(x) > f(\overline{x}) - \varepsilon$. In particular, for x = u one gets that $||u - \overline{x}|| < \delta_{\varepsilon}$ implies $f(u) > f(\overline{x}) - \varepsilon$. Choosing $\varepsilon = a$ it follows that f(u) > f(u), which is contradictory.

In this proof we supposed that $||u - \overline{x}|| < \delta_{\varepsilon}$ which is equivalent to $\overline{\lambda} ||\eta(t, u)|| < \delta_{\varepsilon}$ or $||\eta(t, u)|| < \delta_{\varepsilon}/\lambda$. From this it follows that the function $\eta(\cdot, u)$ must be bounded on X.

(d) $\rho < 0$ mean that $0 \le -\rho \|\theta(x, u)\|^2$ and (QI) yields

$$\forall x \in X \colon f(x) \leqslant f(u) \Rightarrow f^{0}(u; \eta(x, u)) \leqslant 0 \leqslant -\rho \|\theta(x, u)\|^{2}.$$

Therefore,

$$\forall x \in X : f(x) \leqslant f(u) \Rightarrow f^{0}(u; \eta(x, u)) + \rho \|\theta(x, u)\|^{2} \leqslant 0,$$

that is, f is (WQI) at u.

The implications between the various types of pseudoinvexity and quasiinvexity at a point are established through the following theorem.

THEOREM 5. For function f the following implications hold at u:

- (a) Strongly pseudoinvex (SgPI) ⇒ Strongly quasiinvex (SgQI),
- (b) Strictly pseudoinvex (SPI) ⇒ Strictly quasiinvex (SQI),
- (c) Weakly pseudoinvex (WPI) \Rightarrow Weakly quasiinvex (WQI),
- (d) Pseudoinvex (PI) ⇒ Semistrictly quasiinvex (SSQI).

PROOF: (a) Equivalently, f is (SgQI) at u ($\rho > o$) when

(8)
$$\forall x \in X : f^{0}(u; \eta(x, u)) + \rho \|\theta(x, u)\|^{2} > 0 \Rightarrow f(x) > f(u).$$

But since f is (SgPI) at u, the relation (ρ PI) holds with $\rho > 0$. But this latter implication (ρ PI) is stronger than implication (8).

(b) If f is (SPI) at u, then Definition 2.2 written in a equivalent form yields

$$\forall x \in X; x \neq u: f(x) \leqslant f(u) \Rightarrow f^{0}(u; \eta(x, u)) < 0.$$

Thus, f is (SQI) at u.

- (c) Can be proved in a similar manner to (a).
- (d) If f is (PI) at u, then Definition 2.2 written in a equivalent form yields

$$\forall x \in X \colon f(x) < f(u) \Rightarrow f^{0}(u; \eta(x, u)) < 0.$$

Hence $x \neq u$ and then f is (SSQI) at u.

Direct implications of the relations existing between the various types of quasiinvexity at a point, according Theorems 1-5, are given in the following block Diagram

3. Types of quasiconvexity at a point

In the particular case of $\eta(x, u) = x - u$ and $\theta(x, u) = x - u$ we obtain the types of convexities, pseudoconvexities and quasiconvexities at a point as follows:

DEFINITION 3.1: (Convexities at a point.) The function f is said to be ρ -convex at $u \in X$ (abbreviated ρC), if there exists some real number ρ such that

$$(\rho C) \qquad \forall x \in X \colon f(x) - f(u) \geqslant f^{0}(u; x - u) + \rho \|x - u\|^{2}.$$

If

- (1'a) $\rho > 0$, then the function f is called strongly convex at u (SgC);
- (1'b) $\rho = 0$, then the function f is called convex at u (C);
- (1'c) $\rho < 0$, then the function f is called weakly convex at u (WC);
- (1'd) $\forall x \in X, x \neq u: f(x) f(u) > f^0(u; x u)$, then the function f is called strictly convex at u (SC).

DEFINITION 3.2: (Pseudoconvexities at a point.) The function f is said to be ρ -pseudoconvex at $u \in X$ (ρ PC), if there exists some real number ρ such that

$$(\rho PC) \qquad \forall x \in X \colon f^{0}(u; x - u) + \rho \|x - u\|^{2} \geqslant 0 \Rightarrow f(x) \geqslant f(u).$$

If

- (2'a) $\rho > 0$, then the function f is called strongly pseudoconvex at u (SgPC);
- (2'b) $\rho = 0$, then the function f is called pseudoconvex at u (PC);
- (2'c) $\rho < 0$, then the function f is called weakly pseudoconvex at u (WPC);
- (2'd) $\forall x \in X, x \neq u : f^0(u; x u) \ge 0 \Rightarrow f(x) > f(u)$, then f is called strictly pseudoconvex at u (SPC).

DEFINITION 3.3: (Quasiconvexities at a point.) The function f is said to be ρ -quasiconvex at $u \in X$ (ρQC), if there exists some real number ρ such that

$$(\rho \operatorname{QC})$$
 $\forall x \in X : f(x) \leqslant f(u) \Rightarrow f^{0}(u; x - u) + \rho ||x - u||^{2} \leqslant 0.$

If

- (3'a) $\rho > 0$, then the function f is called strongly quasiconvex at u (SgQC);
- (3'b) $\rho = 0$, then the function f is called quasiconvex at u (QC);
- (3'c) $\rho < 0$, then the function f is called weakly quasiconvex at u (WQC);
- (3'd) $\forall x \in X, x \neq u : f(x) \leq f(u) \Rightarrow f^0(u; x u) < 0$, then the function f is called *strictly quasiconvex at u* (SQC);
- (3'e) $\forall x \in X, x \neq u : f(x) < f(u) \Rightarrow f^0(u; x u) < 0$, then the function f is called semistrictly quasiconvex at u (SSQC).

Similarly, we can define global convexity, global pseudoconvexity and global quasiconvexity, which in the differentiable case were formulated by Jeyakumar [9]. However, strict quasiconvex, and similarly strict pseudoconvex, semistrict quasiconvex and strict convex were not treated by Jeyakumanr.

Block Diagram 2

The implications which exist between the types of convexity and generalised convexity at a point, based on f^0 , are given in Block Diagram 2. Moreover, any type of convexity at a point, simple or generalised, implies the corresponding type of invexity at a point (for instance, weakly convex \Rightarrow weakly invex, convex \Rightarrow invex et cetera).

REFERENCES

- [1] F.H. Clarke, 'A new approach to Lagrange multipliers', Math. Oper. Res. 1 (1976), 165-174.
- B.D. Craven, 'Invex functions and constrained local minima', Bull. Austral. Math. Soc. 24 (1981), 357-366.
- [3] B.D. Craven, 'Nondifferentiable optimization by smooth approximation', Optimization 17 (1986), 3-17.
- [4] B.D. Craven and B.M. Glover, 'Invex functions and duality', J. Austral. Math. Soc. (Ser. A) 39 (1985), 1-20.
- [5] G. Giorgi and S. Mititelu, 'Invexity in nonsmooth programming', in Atti del Tredicesimo Convegno A.M.A.S.E.S., Verona, 13-15 Settembre 1989 (Pitagora Editrice Bologna), pp. 509-520.
- [6] G. Giorgi and S. Mititelu, 'Convexités généralisées et properietés', Rev. Roumaine Math. Pures Appl. 38 (1993), 125-172.
- [7] M.A. Hanson, 'On sufficiency of the Kuhn-Tucker conditions', J. Math. Anal. Appl. 80 (1981), 545-550.
- [8] V. Jeyakumar, 'Strong and weak invexity in mathematical programming', Methods Oper. Res. 55 (1985), 109-125.
- [9] V. Jeyakumar, '\rho-Convexity and second order duality', Utilitas Math. 29 (1986), 71-85.
- [10] R.N. Kaul and S. Kaur, 'Optimality criteria in nonlinear programming involving nonconvex functions', J. Math. Anal. Appl. 105 (1985), 104-112.
- [11] S. Mititelu, 'Conditions Kuhn-Tucker et dualité Wolfe dans la programation non Lipschitzienne', Bull. Math. Soc. Sci. Math. Roumanie 37 (85) (1993).
- [12] V. Preda, 'Generalized invexity for a class of programming problems', Stud. Cerc. Mat. 42 (1990), 304-316.
- [13] J.-P. Vial, 'Strong and weak convexity of sets and functions', Math. Oper. Res. 8 (1983), 231-259.

Department of Mathematics Institute of Civil Engineering Bucharest Romania Centre of Mathematical Statistics The Romanian Academy Bd Magheru 22 RO-70158 Bucharest 22 Romania