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Hypercyclic Abelian Groups of Affine
Maps on Cn

Adlene Ayadi

Abstract. We give a characterization of hypercyclic abelian group G of affine maps on Cn. If G is finitely
generated, this characterization is explicit. We prove in particular that no abelian group generated by
n affine maps on Cn has a dense orbit.

1 Introduction

Let Mn(C) be the set of all square matrices of order n ≥ 1 with entries in C and
GL(n,C) be the group of all invertible matrices of Mn(C). A map f : Cn −→ Cn is
called an affine map if there exist A ∈ Mn(C) and a ∈ Cn such that f (x) = Ax + a,
x ∈ Cn. We let f = (A, a), and we call A the linear part of f . The map f is invertible
if A ∈ GL(n,C). Denote by MA(n,C) the vector space of all affine maps on Cn and
GA(n,C) the group of all invertible affine maps of MA(n,C).

Let G be an abelian affine subgroup of GA(n,C). For a vector v ∈ Cn, we consider
the orbit of G through v: G(v) = { f (v) : f ∈ G} ⊂ Cn. Denote by E the closure of a
subset E ⊂ Cn. The group G is called hypercyclic if there exists a vector v ∈ Cn such
that G(v) = Cn. For an account of results and bibliography on hypercyclicity, we refer
to the book [3] by Bayart and Matheron.

Let n ∈ N0 be fixed, denote by:

• C∗ = C\{0}, R∗ = R\{0} and N0 = N\{0};
• B0 = (e1, . . . , en+1) the canonical basis of Cn+1 and In+1 the identity matrix of

GL(n + 1,C).

For each m = 1, 2, . . . , n + 1, denote by

• Tm(C) the set of matrices over C of the form

(1.1)


µ 0

a2,1 µ
...

. . .
. . .

am,1 · · · am,m−1 µ

 ;

• T∗m(C) the group of matrices of the form (1.1) with µ 6= 0.
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Let r ∈ N and η = (n1, . . . , nr) ∈ Nr
0 such that n1 + · · · + nr = n + 1. In particular,

r ≤ n + 1. Write

• Kη,r(C) := Tn1 (C)⊕ · · · ⊕ Tnr (C). In particular if r = 1, then Kη,1(C) = Tn+1(C)
and η = (n + 1);

• K∗η,r(C) := Kη,r(C) ∩ GL(n + 1,C);
• u0 = (e1,1, . . . , er,1) ∈ Cn+1 where ek,1 = (1, 0, . . . , 0) ∈ Cnk , for k = 1, . . . , r,

so u0 ∈ {1} × Cn;
• p2 : C × Cn −→ Cn, the second projection, defined by p2(x1, . . . , xn+1) =

(x2, . . . , xn+1);
• e(k) = (e(k)

1 , . . . , e(k)
r ) ∈ Cn+1 where

e(k)
j =

{
0 ∈ Cn j if j 6= k

ek,1 if j = k
for every 1 ≤ j, k ≤ r;

• exp : Mn+1(C) −→ GL(n + 1,C) is the matrix exponential map; set exp(M) = eM ,
M ∈ Mn+1(C).

Define the map Φ : GA(n,C) −→ GL(n + 1,C),

f = (A, a) 7−→
[

1 0
a A

]
.

We have the composition formula[
1 0
a A

] [
1 0
b B

]
=

[
1 0

Ab + a AB

]
.

Then Φ is an injective homomorphism of groups. Write G = Φ(G), which is an
abelian subgroup of GL(n + 1,C).

Define the map Ψ : MA(n,C) −→ Mn+1(C),

f = (A, a) 7−→
[

0 0
a A

]
.

We can see that Ψ is injective and linear. Hence Ψ
(

MA(n,C)
)

is a vector subspace
of Mn+1(C). We prove (see Lemma 2.8) that Φ and Ψ are related by the following
property

exp
(

Ψ
(

MA(n,C)
))

= Φ
(

GA(n,C)
)
.

Let us consider the normal form of G: By Proposition 2.1, there exists a P ∈
Φ
(

GA(n,C)
)

and a partition η of (n + 1) such that

G ′ = P−1GP ⊂ K∗η,r(C) ∩ Φ
(

GA(n,C)
)
.

For such a choice of matrix P, we assume the following:
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• v0 = Pu0. So v0 ∈ {1} × Cn, since P ∈ Φ
(

GA(n,C)
)

.
• w0 = p2(v0) ∈ Cn. We have v0 = (1,w0).
• ϕ = Φ−1(P) ∈ GA(n,C).
• g = exp−1(G) ∩

(
P
(
Kη,r(C)

)
P−1
)

. If G ⊂ K∗η,r(C), we have P = In+1 and

g = exp−1(G) ∩Kη,r(C).
• g1 = g ∩ Ψ

(
MA(n,C)

)
. This is an additive subgroup of Mn+1(C) (because by

Lemma 3.2, g is an additive subgroup of Mn+1(C)).
• g1

u = {Bu :B ∈ g1} ⊂ Cn+1, u ∈ Cn+1.
• q = Ψ−1(g1) ⊂ MA(n,C). Then q is an additive subgroup of MA(n,C) and we

have Ψ(q) = g1. By Corollary 2.12, we have exp
(

Ψ(q)
)

= Φ(G).
• qv = { f (v), f ∈ q} ⊂ Cn, v ∈ Cn.

For groups of affine maps on Kn (K = R or C), the study of their dynamics was
recently initiated for some classes from a different point of view (see for instance,
[2, 4–6]). The purpose here is to give analogous results for linear abelian subgroups
of GL(n,C) [1, Theorem 1.1].

Our main results are the following.

Theorem 1.1 Let G be an abelian subgroup of GA(n,C). Then the following are
equivalent:

(i) G is hypercyclic;
(ii) the orbit G(w0) is dense in Cn;
(iii) qw0 is an additive subgroup dense in Cn.

In the particular case whereG is an abelian subgroup of GL(n,C), let Q ∈ GL(n,C)
such that Q−1GQ ⊂ K∗η ′,r ′(C) for some r ′ ≤ n and η ′ = (n ′1, . . . , n

′
r ′) ∈ Nr ′

0 with
n ′1 + · · · + n ′r ′ = n (Proposition 2.6). Write

• u ′0 = (e ′1,1, . . . , e
′
r ′,1) ∈ Cn where e ′k,1 = (1, 0, . . . , 0) ∈ Cn ′k , for k = 1, . . . , r ′;

• v ′0 = Qu ′0;
• g ′ = exp−1(G) ∩ Q

(
Kη ′,r ′(C)

)
Q−1 and g ′v ′0 = { f (v ′0), f ∈ g ′}.

Corollary 1.2 ([1, Theorem 1.3]) Let G be an abelian subgroup of GL(n,C). Under
the notations above, the following properties are equivalent:

(i) G is hypercyclic.
(ii) g ′v ′0 is an additive subgroup dense in Cn.

For a finitely generated abelian subgroup G ⊂ GA(n,R), let us introduce the fol-
lowing property. Consider the following rank condition on a collection of affine
maps f1, . . . , fp ∈ G. Let f ′1 , . . . , f ′p ∈ q be such that eΨ( f ′k ) = Φ( fk), k = 1, . . . , p.
We say that f1, . . . , fp satisfy the property D if for every (s1, . . . , sp; t2, . . . , tr) ∈
Zp+r−1\{0},

rank

Re
(

f ′1 (w0)
)
· · · Re

(
f ′p (w0)

)
0 · · · 0

Im
(

f ′1 (w0)
)
· · · Im

(
f ′p (w0)

)
2πp2(e(2)) · · · 2πp2(e(r))

s1 · · · sp t2 · · · tr

 = 2n + 1.
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For r = 1, this means that for every (s1, . . . , sp) ∈ Zp\{0},

rank

Re
(

f ′1 (w0)
)
· · · Re

(
f ′p (w0)

)
Im
(

f ′1 (w0)
)
· · · Im

(
f ′p (w0)

)
s1 · · · sp

 = 2n + 1.

For a vector v ∈ Cn, we write v = Re(v) + i Im(v) where Re(v) and Im(v) ∈ Rn. The
next result can be stated as follows.

Theorem 1.3 Let G be an abelian subgroup of GA(n,C) generated by f1, . . . , fp and

let f ′1 , . . . , f ′p ∈ q be such that eΨ( f ′1 ) = Φ( f1), . . . , eΨ( f ′p ) = Φ( fp). Then the following
are equivalent:

(i) G is hypercyclic;
(ii) the maps ϕ−1 ◦ f1 ◦ ϕ, . . . , ϕ−1 ◦ fp ◦ ϕ in GA(n,C) satisfy the property D;
(iii)

qw0 =

{∑p
k=1 Z f ′k (w0) + 2iπ

∑r
k=2 Z

(
p2(Pe(k))

)
if r ≥ 2,∑p

k=1 Z f ′k (w0) if r = 1,

is an additive subgroup dense in Cn.

Corollary 1.4 Let G be an abelian subgroup of GA(n,C) and G = Φ(G). Let
P ∈ Φ

(
GA(n,C)

)
such that P−1GP ⊂ K∗η,r(C) where 1 ≤ r ≤ n + 1 and

η = (n1, . . . , nr) ∈ Nr
0. If G is generated by 2n − r + 1 commuting invertible affine

maps, then it has no dense orbit.

Corollary 1.5 Let G be an abelian subgroup of GA(n,C). If G is generated by n com-
muting invertible affine maps, then it has no dense orbit.

2 Normal Form of Abelian Affine Groups

The aim of this section is to prove the following proposition.

Proposition 2.1 LetG be an abelian subgroup of GA(n,C) and G = Φ(G). Then there
exists P ∈ Φ

(
GA(n,C)

)
such that P−1GP is a subgroup of K∗η,r(C) ∩ Φ

(
GA(n,C)

)
,

for some r ≤ n + 1 and η = (n1, . . . , nr) ∈ Nr
0.

The group G ′ = P−1GP is called the normal form of G. In particular, we have
Pu0 = v0 ∈ {1} × Cn. Denote by LG the set of the linear parts of all elements
of G. Then LG is an abelian subgroup of GL(n,C). A subset F ⊂ Cn is called G-
invariant (resp. LG-invariant) if A(F) ⊂ F for any A ∈ G (resp. A ∈ LG). To prove
Proposition 2.1, we need the following results.

Lemma 2.2 Let G be an abelian subgroup of GA(n,C), n ≥ 1 and G = Φ(G). Then
there exist an integer p ∈ N, 0 ≤ p ≤ n and Q ∈ GL(n,C) such that

(i) Cn = E ⊕ H where E = Q(Cp × {0Cn−p}) and H = Q({0Cp} × Cn−p) are
LG-invariant;

(ii) if E 6= {0}, then for every A ∈ LG, A/E has 1 as the only eigenvalue;
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(iii) if E 6= {0}, H 6= {0} and P1 = diag(1,Q), then for every f = (A, a) ∈ G, one
has

P−1
1 Φ( f )P1 =

 1 0 0
a1 A1 0
a2 0 A2


where A1 = A/E ∈ T∗p(C), A2 = A/H ∈ K∗η ′ ′,r ′ ′(C) for some r ′ ′ ≤ n − p and

η ′ ′ ∈ Nr ′ ′
0 , a1 ∈ Cp and a2 ∈ Cn−p;

(iv) if H = {0}, then for every f = (A, a) ∈ G, one has P−1
1 Φ( f )P1 ∈ T∗n+1(C) ∩

Φ
(

GA(n,C)
)

.

Proof Apply Proposition 2.6 to the group LG; there exists Q ∈ GL(n,C) such that
Q−1LGQ is a subgroup of K∗η ′,r ′(C) for some r ′ ≤ n and η ′ = (n ′1, . . . , n

′
r ′) ∈

Nr ′
0 such that n ′1 + · · · + n ′r ′ = n. Hence for every A ∈ LG, we have Q−1AQ =

diag(A ′1, . . . ,A
′
r ′) with A ′k ∈ T∗n ′k

. Let µA ′k
be the only eigenvalue of A ′k, k = 1, . . . , r ′

and denote by JG =
{

k ∈ {1, . . . , r ′} :µA ′k
= 1,∀A ∈ LG

}
. If JG = ∅, we take

E = {0} and H = Cn. If JG 6= ∅, one can assume that JG = {1, . . . , s} for some
1 ≤ s ≤ r ′, by replacing Q by QR, where R is a circular matrix R of GL(n,C). We let
P1 = diag(1,Q) = Φ( f1), f1 = (Q, 0). So for every f = (A, a) ∈ G, we have

Φ( f−1
1 ◦ f ◦ f1) = P−1

1 Φ( f )P1 =

[
1 0

Q−1a Q−1AQ

]
∈ Φ

(
GA(n,C)

)
.

Proof of (i) If JG = ∅, the assertion is clear. One can assume that JG 6= ∅. We let
p = n ′1 + · · · + n ′s , E = Q(Cp × {0Cn−p}) and H = Q({0Cp} × Cn−p). It is plain that
Cn = E ⊕ H. Moreover, E and H are LG-invariant vector spaces: Indeed, if A ∈ LG

and x = (x1, 0) ∈ Cp × {0Cn−p}, one has AQx = Q(Q−1AQ)x. Since Q−1AQ =
diag(A1,A2) where A1 = diag(A ′1, . . . ,A

′
s ) ∈ GL(p,C) with µA ′k

= 1, k = 1, . . . , s

and A2 = diag(A ′s+1, . . . ,A
′
r ′), we have Q−1AQx = (A1x1, 0) ∈ Cp × {0Cn−p}. The

same proof holds for H.

Proof of (ii) If A ∈ LG then (Q−1AQ)/E = A1 = diag(A ′1, . . . ,A
′
s ) ∈ GL(p,C) with

µA ′k
= 1, k = 1, . . . , s.

Proof of (iii) Assume that E 6= {0} and H 6= {0}. Then, for every f = (A, a) ∈ G,
we have Q−1AQ = diag(A1,A2) where A1 = A/E ∈ T∗p(C), A2 = A/H ∈ K∗η ′ ′,r ′ ′(C)
with r ′ ′ = r ′ − s ≤ n− p and η ′ ′ = (n ′s+1, . . . , n

′
r ′). Hence

P−1
1 Φ( f )P1 =

[
1 0

Q−1a Q−1AQ

]
=

 1 0 0
a1 A1 0
a2 0 A2

 ,
where Q−1a = (a1, a2) ∈ Cp×Cn−p. Note that by (ii), 1 is the only eigenvalue of A1.

Proof of (iv) Assume that H = {0}. In this case we have s = r ′ and JG =
{1, . . . , r ′}. Then for every f = (A, a) ∈ G, we have P−1

1 Φ( f )P1 =
[

1 0
a1 A1

]
with

A = A1 ∈ T∗n(C). So P−1
1 Φ( f )P1 ∈ T∗n+1(C) ∩ Φ

(
GA(n,C)

)
.
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Lemma 2.3 ([2, Lemma 3.1]) Let u1, . . . , un ∈ Cn such that for every 1 ≤ k ≤ n,
uk = (xk,1, . . . , xk,n) with xk,k 6= 0. Then (Zu1 + · · · + Zun) ∩ (C∗)n 6= ∅.

Lemma 2.4 Let G and H are as in Lemma 2.2 If H 6= {0} then there exists B ∈ LG

such that B/H − In−p is invertible.

Proof As H 6= {0}, then s < r ′ and for every 1 ≤ k ≤ r ′ − s there exists B(k) ∈ G
such that B(k)/H = diag(Bk,s+1, . . . ,Bk,r ′) where

Bk, j =


µBk, j 0

b(k)
2,1

. . .
...

. . .
. . .

b(k)
n ′j ,1

· · · b(k)
n ′j ,n
′
j−1 µBk, j

 ∈ T∗n ′j (C),

such that µBk,s+k 6= 1, for every j = s + 1, . . . , r ′.

We let uk =
(

log(µBk,s+1 ), . . . , log(µBk,r ′ )
)
∈ Cr ′−s, k = 1, . . . , r ′ − s. For z =

|z|ei arg(z) ∈ C, arg(z) ∈ [0, 2π[, log z = |z| + i arg(z). As log(µBk,s+k ) 6= 0 for every

k = 1, . . . , r ′ − s, by Lemma 2.3, (Zu1 + · · · + Zur ′−s) ∩ (C∗)r ′−s 6= ∅. So there
exist m1, . . . ,mr ′−s ∈ Z such that m1u1 + · · · + mr ′−sur ′−s ∈ (C∗)r ′−s. It follows

that for every j = s + 1, . . . , r ′,
∏r ′−s

k=1 µ
mk
Bk, j
6= 1. If B =

∏r ′−s
k=1

(
B(k)

)mk
, then∏r ′−s

k=1 µ
mk
Bk, j

, j = s + 1, . . . , r ′ are the eigenvalues of B/H , this implies that B/H − In−p

is invertible.

Denote by Fix(G) = {x ∈ Cn+1 :Bx = x, for every B ∈ G}.

Lemma 2.5 Let G and E be as in Lemma 2.2. If E = {0} then Fix(G)∩ ({1}×Cn) 6=
∅.

Proof By hypothesis, p = 0 and so H = Cn. Then by Lemma 2.4, we have B ∈ LG

such that B − In is invertible, so 1 is not an eigenvalue of B. We let f0 = (B, b) ∈ G.
As Φ( f0) =

[
1 0
b B

]
, F = Fix

(
Φ( f0)

)
= {x ∈ Cn+1 :Φ( f0)x = x} has dimension 1.

So Fix
(

Φ( f0)
)

= Cv, where v = (1, v1), v1 ∈ Cn. Write P2 =
[

1 0
v1 In

]
. We have

Φ( f0)v = v, so Bv1+b = v1 and P−1
2 Φ( f0)P2 =

[
1 0

−v1+b+Bv1 B

]
=
[

1 0
0 B

]
. Similarly, for

every f = (A, a) ∈ G, one has P−1
2 Φ( f )P2 =

[
1 0

Av1+a−v1 A

]
. Write a ′ = Av1 + a− v1.

Since G is abelian, we have P−1
2 Φ( f0)Φ( f )P2 = P−1

2 Φ( f )Φ( f0)P2, this implies that
Ba ′ = a ′ and hence a ′ = 0. It follows that P−1

2 Φ( f )P2e1 = e1, hence P2e1 ∈ Fix(G).
Since P2e1 ∈ {1} × Cn, we conclude that Fix(G) ∩ ({1} × Cn) 6= ∅.

Proposition 2.6 ([1, Proposition 2.3]) Let G ′ be an abelian subgroup of GL(m,C),
m ≥ 1. Then there exists P ∈ GL(m,C) such that P−1G ′P is a subgroup of K∗η ′,r ′(C),

for some r ′ ≤ m and η ′ = (n ′1, . . . , n
′
r ′) ∈ Nr ′

0 .

Proof of Proposition 2.1 Let P1 = diag(1,Q), E and H as in Lemma 2.2. We distin-
guish two cases:
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Case 1: E 6= {0} If H = {0}, then the proposition results from Lemma 2.2 (iv) by
taking P = P1.

If H 6= {0}, then by Lemma 2.4 there exists B ∈ LG such that B/H − In−p is
invertible. Write B1 = B/E, B2 = B/H and set f0 = (B, b) ∈ G. Since E 6= {0}, we
have by Lemma 2.2 (iii),

P−1
1 Φ( f0)P1 =

 1 0 0
b1 B1 0
b2 0 B2


where B1 ∈ T∗p(C), B2 ∈ K∗η ′ ′,r ′ ′(C) for some r ′ ′ ≤ n−p, η ′ ′ = (n ′ ′1 , . . . , n

′ ′
r ′ ′) ∈ Nr ′ ′

0

and (b1, b2) ∈ Cp × Cn−p. If

P2 =

 1 0 0
0 Ip 0
b2 0 B2 − In−p

 ,
it is clear that P2 ∈ GL(n + 1,C). We let P = P1P−1

2 . Then we have P =
[

1 0
d P0

]
where

P0 = QQ−1
1 , Q1 =

[ Ip 0
0 B2−In−p

]
and d = −P0

[( 0
b2

)]
. For f = (A, a) ∈ G, we have

P−1
1 Φ( f )P1 =

 1 0 0
a1 A1 0
a2 0 A2


where A1 ∈ T∗p(C) and A2 ∈ K∗η ′ ′,r ′ ′(C). Since G is abelian, P−1

1 Φ( f )Φ( f0)P1 =

P−1
1 Φ( f0)Φ( f )P1, and therefore A2B2 = B2A2 and−(A2− In−p)b2 + (B2− In−p)a2 =

0. It follows that

P−1Φ( f )P = P2P−1
1 Φ( f )P1P−1

2

= P2

 1 0 0
a1 A1 0
a2 0 A2

 P−1
2

=

 1 0 0
a1 A1 0

−(A2 − In−p)b2 + (B2 − In−p)a2 0 A2


=

 1 0 0
a1 A1 0
0 0 A2

 .
Therefore, P−1Φ( f )P = diag(A ′1,A2) ∈ K∗η ′,r ′ ′+1(C) where A ′1 =

[
1 0
a1 A1

]
∈ T∗p+1(C)

A2 ∈ K∗η ′ ′,r ′ ′(C) and η ′ = (p + 1, n ′ ′1 , . . . , n
′ ′
r ′ ′). This completes the proof in this

case.
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Case 2: E = {0} Let B ∈ LG such that (B − In) is invertible (Lemma 2.4). We let
f0 = (B, b) ∈ G. By Proposition 2.6, there exists Q ∈ GL(n,C) such that Q−1LGQ
is a subgroup of K∗η ′,r ′(C) for some r ′ ≤ n and η ′ = (n ′1, . . . , n

′
r ′) ∈ Nr ′

0 where
n ′1 + · · · + n ′r ′ = n. By Lemma 2.5, there exists w = (1,w1) ∈ Fix(G) ∩ ({1} × Cn).
Set P =

[
1 0

w1 Q

]
. For every f = (A, a) ∈ G, Φ( f )w = w, so Aw1 + a = w1. Therefore

P−1Φ( f )P =

[
1 0

−Q−1w1 Q−1

] [
1 0
a A

] [
1 0

w1 Q

]
=

[
1 0

Q−1(Aw1 + a− w1) Q−1AQ

]
=

[
1 0
0 Q−1AQ

]
.

Hence P−1Φ( f )P ∈ K∗η,r(C) ∩ Φ
(

GA(n,C)
)

, where r = r ′ + 1 and η =
(1, n ′1, . . . , n

′
r ′). This completes the proof.

Lemma 2.7 ([1, Proposition 3.2]) exp
(
Kη,r(C)

)
= K∗η,r(C).

Lemma 2.8 exp(Ψ(MA(n,C))) = Φ(GA(n,C)).

Proof It is clear that exp(Ψ(MA(n,C))) ⊂ Φ(GA(n,C)). Conversely, let M ∈
Φ(GA(n,C)). By Proposition 2.1, there exists P ∈ Φ

(
GA(n,C)

)
such that M ′ =

P−1MP ∈ K∗η,r(C) ∩ Φ
(

GA(n,C)
)

. By Lemma 2.7, exp
(
Kη,r(C)

)
= K∗η,r(C),

then M ′ = eN ′ for some N ′ ∈ Kη,r(C). So N ′ ′ = PN ′P−1 ∈ PKη,r(C)P−1 and

eN ′ ′ = PM ′P−1 = M ∈ Φ
(

GA(n,C)
)

. By Lemma 2.9, N = N ′ ′ − 2ikπIn+1 ∈
Ψ
(

MA(n,C)
)

for some k ∈ Z and N satisfies eN = e2ikπeN ′ ′ = M. It follows that
M ∈ exp(Ψ(MA(n,C))).

Lemma 2.9 If N ∈ PKη,r(C)P−1 such that eN ∈ Φ
(

GA(n,C)
)

, then there exists

k ∈ Z such that N − 2ikπIn+1 ∈ Ψ
(

MA(n,C)
)

.

Proof Let N ′ = P−1NP ∈ Kη,r(C), M = eN and M ′ = P−1MP. We have

eN ′ = M ′ and by Lemma 2.7, M ′ ∈ K∗η,r(C). Write M ′ = diag(M ′1, . . . ,M
′
r )

and N ′ = diag(N ′1 , . . . ,N
′
r ), M ′k ,N

′
k ∈ Tnk (C), k = 1, . . . , r. Then eN ′ =

diag(eN ′1 , . . . , eN ′r ), so eN ′1 = M ′1. As 1 is the only eigenvalue of M ′1, N ′1 has an
eigenvalue µ ∈ C such that eµ = 1. Thus µ = 2ikπ for some k ∈ Z. There-
fore, N ′ ′ = N ′ − 2ikπIn+1 ∈ Ψ

(
MA(n,C)

)
and eN ′ ′ = e−2ikπeN ′ = M ′. It fol-

lows that N − 2ikπIn+1 = PN ′ ′P−1 ∈ PΨ
(

MA(n,C)
)

P−1 = Ψ
(

MA(n,C)
)

, since

P ∈ Φ
(

GA(n,C)
)

.

Lemma 2.10 ([1, Lemma 4.2]) One has exp(g) = G.

Corollary 2.11 Let G = Φ(G). We have g = g1 + 2iπZIn+1.

Proof Let N ∈ g. By Lemma 2.10, exp(N) ∈ G ⊂ Φ
(

GA(n,C)
)

. Then by

Lemma 2.9, there exists k ∈ Z such that N ′ = N − 2ikπIn+1 ∈ Ψ
(

MA(n,C)
)

.
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As eN ′ = eN ∈ G and N ′ ∈ PKη,r(C)P−1 then N ′ ∈ g ∩ Ψ
(

MA(n,C)
)

=
g1. Hence g ⊂ g1 + 2iπZIn+1. Conversely, as g1 + 2iπZIn+1 ⊂ PKη,r(C)P−1 and
exp(g1 + 2iπZIn+1) = exp(g1) ⊂ G, hence g1 + 2iπZIn+1 ⊂ g.

Corollary 2.12 We have exp
(

Ψ(q)
)

= Φ(G).

Proof By Lemmas 2.10 and 2.11, we have G = exp(g) = exp(g1 + 2iπZIn+1) =
exp(g1). Since g1 = Ψ(q), we get exp

(
Ψ(q)

)
= Φ(G).

3 Proof of Theorem 1.1

Let G̃ be the group generated by G and C∗In+1 = {λIn+1 :λ ∈ C∗}. Then G̃ is an
abelian subgroup of GL(n + 1,C). By Proposition 2.1, there exists P ∈ Φ

(
GA(n,C)

)
such that P−1GP is a subgroup of K∗η,r(C) for some r ≤ n + 1 and η = (n1, . . . , nr) ∈
Nr

0, and this also implies that P−1G̃P is a subgroup of K∗η,r(C). Set g̃ = exp−1(G̃) ∩(
PKη,r(C)P−1

)
and g̃v0 = {Bv0 :B ∈ g̃}. Then we have the following theorem,

applied to G̃.

Theorem 3.1 ([1, Theorem 1.1]) Under the notations above, the following properties
are equivalent:

(i) G̃ has a dense orbit in Cn+1;
(ii) the orbit G̃(v0) is dense in Cn+1;
(iii) g̃v0 is an additive subgroup dense in Cn+1.

Lemma 3.2 ([1, Lemma 4.1]) The sets g and g̃ are additive subgroups of Mn+1(C). In
particular, gv0 and g̃v0 are additive subgroups of Cn+1.

Recall that g1 = g ∩Ψ
(

MA(n,C)
)

and q = Ψ−1(g1) ⊂ MA(n,C).

Lemma 3.3 Under the notations above, one has

(i) g̃ = g1 + CIn+1,
(ii) {0} × qw0 = g1

v0
.

Proof (i) Let B ∈ g̃, then eB ∈ G̃. One can write eB = λA for some λ ∈ C∗ and A ∈
G. Let µ ∈ C such that eµ = λ, then eB−µIn+1 = A. Since B−µIn+1 ∈ PKη,r(C)P−1, so
B−µIn+1 ∈ exp−1(G)∩PKη,r(C)P−1 = g. By Corollary 2.11, there exists k ∈ Z such
that B ′ := B−µIn+1 + 2ikπIn+1 ∈ g1. Then B ∈ g1 + CIn+1 and hence g̃ ⊂ g1 + CIn+1.
Since g1 ⊂ g̃ and CIn+1 ⊂ g̃, it follows that g1 + CIn+1 ⊂ g̃ (since g̃ is an additive
group, by Lemma 3.2). This proves (i).

(ii) Since Ψ(q) = g1 and v0 = (1,w0), we obtain for every f = (B, b) ∈ q,

Ψ( f )v0 =

[
0 0
b B

] [
1

w0

]
=

[
0

b + Bw0

]
=

[
0

f (w0)

]
.

Hence g1
v0

= {0} × qw0 .

Lemma 3.4 The following assertions are equivalent:
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(i) qw0 = Cn;
(ii) g1

v0
= {0} × Cn;

(iii) g̃v0 = Cn+1.

Proof (i)⇔ (ii) follows from the fact that {0} × qw0 = g1
v0

(Lemma 3.3 (ii)).
(ii)⇒ (iii) By Lemma 3.3 (ii), g̃v0 = g1

v0
+Cv0. Since v0 = (1,w0) /∈ {0}×Cn and

CIn+1 ⊂ g̃, we obtain Cv0 ⊂ g̃v0 and so Cv0 ⊂ g̃v0 . Therefore Cn+1 = {0}×Cn⊕Cv0 =
g1

v0
⊕ Cv0 ⊂ g̃v0 (since, by Lemma 3.2, g̃v0 is an additive subgroup of Cn+1). Thus

g̃v0 = Cn+1.
(iii)⇒ (ii) Let x ∈ Cn, then (0, x) ∈ g̃v0 and there exists a sequence (Am)m∈N ⊂ g̃

such that limm→+∞ Amv0 = (0, x). By Lemma 3.3, we can write Amv0 = λmv0 + Bmv0

with λm ∈ C and Bm =
[ 0 0

bm B1
m

]
∈ g1 for every m ∈ N. Since Bmv0 ∈ {0} ×

Cn for every m ∈ N, we have Amv0 = (λm, bm + B1
mw0 + λmw0). It follows that

limm→+∞ λm = 0 and limm→+∞ Amv0 = limm→+∞ Bmv0 = (0, x), thus (0, x) ∈ g1
v0

.

Hence {0} × Cn ⊂ g1
v0

. Since g1 ⊂ Ψ
(

MA(n,C)
)

, g1
v0
⊂ {0} × Cn, and we conclude

that g1
v0

= {0} × Cn.

Lemma 3.5 Let x ∈ Cn and G = Φ(G). The following are equivalent:

(i) G(x) = Cn;
(ii) G(1, x) = {1} × Cn;

(iii) G̃(1, x) = Cn+1.

Proof (i)⇔ (ii) is obvious, since {1} × G(x) = G(1, x) by construction.
(iii)⇒ (ii) Let y ∈ Cn and (Bm)m a sequence in G̃ with limm→+∞ Bm(1, x) =

(1, y). One can write Bm = λmΦ( fm) with fm ∈ G and λm ∈ C∗, thus Bm(1, x) =(
λm, λm fm(x)

)
, so lim m→ +∞λm = 1. Therefore,

lim
m→+∞

Φ( fm)(1, x) = lim
m→+∞

1

λm
Bm(1, x) = (1, y).

Hence, (1, y) ∈ G(1, x).
(ii)⇒ (iii) Since Cn+1\({0} × Cn) =

⋃
λ∈C∗ λ({1} × Cn) and for every λ ∈ C∗,

λG(1, x) ⊂ G̃(1, x), we get

Cn+1 = Cn+1\({0} × Cn) =
⋃

λ∈C∗
λ({1} × Cn) =

⋃
λ∈C∗

λG(1, x) ⊂ G̃(1, x).

Hence Cn+1 = G̃(1, x).

Proof of Theorem 1.1 (ii)⇒ (i) is obvious.
(i) ⇒ (ii) Suppose that G is hypercyclic, so G(x) = Cn for some x ∈ Cn. By

Lemma 3.5 (iii), G̃(1, x) = Cn+1, and by Theorem 3.1, G̃(v0) = Cn+1. Then by
Lemma 3.5, G(w0) = Cn, since v0 = (1,w0).

(ii) ⇒ (iii) Suppose that G(w0) = Cn. By Lemma 3.5, G̃(v0) = Cn+1, and by
Theorem 3.1, g̃v0 = Cn+1. Then by Lemma 3.4, qw0 = Cn.
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(iii)⇒ (ii) Suppose that qw0 = Cn. By Lemma 3.4, g̃v0 = Cn+1, and by Theo-

rem 3.1, G̃(v0) = Cn+1. Then by Lemma 3.5, G(w0) = Cn.

Proof of Corollary 1.2 Assume that G ⊂ GL(n,C). Then take P = diag(1,Q)
and G = Φ(G), so P−1GP ⊂ Kη,r ′+1(C) where η = (1, n ′1, . . . , n

′
r ′). Hence u0 =

(1, u ′0), v0 = Pu0 = (1,Qu ′0) and thus w0 = Qu ′0 = v ′0. Every f = (A, 0) ∈ G

is simply noted A. Then for every A ∈ G, Φ(A) = diag(1,A). We can verify that
g1 = {diag(0,B) :B ∈ g ′} where g ′ = exp−1(G) ∩ Q

(
Kη ′,r ′(C)

)
Q−1, and so q =

Ψ−1(g1) = g ′. Hence the proof of Corollary 1.2 follows directly from Theorem 1.1.

4 Finitely Generated Subgroups

Recall the following result, proved in [1], which, applied to G, can be stated as follows.

Proposition 4.1 ([1, Proposition 8.1]) Suppose that G is generated by A1, . . . ,Ap

and let B1, . . . ,Bp ∈ g such that Ak = eBk , k = 1, . . . , p, and P ∈ GL(n + 1,C)
satisfying P−1GP ⊂ K∗η,r(C). Then

g =

p∑
k=1

ZBk + 2iπ
r∑

k=1

ZP JkP−1 and gv0 =

p∑
k=1

ZBkv0 +
r∑

k=1

2iπZPe(k),

where Jk = diag( Jk,1, . . . , Jk,r) with Jk,i = 0 ∈ Tni (C) if i 6= k and Jk,k = Ink .

Proposition 4.2 Let G be an abelian subgroup of GA(n,C) generated by f1, . . . , fp

and let f ′1 , . . . , f ′p ∈ q such that eΨ( f ′k ) = Φ( fk), k = 1, . . . , p. Let P be as in Proposi-
tion 2.1. Then

qw0 =

{∑p
k=1 Z f ′k (w0) +

∑r
k=2 2iπZp2(Pe(k)) if r ≥ 2,∑p

k=1 Z f ′k (w0) if r = 1.

Proof Let G = Φ(G). Then G is generated by Φ( f1), . . . ,Φ( fp). Apply Proposi-
tion 4.1 to G, Ak = Φ( fk), Bk = Ψ( f ′k ) ∈ g1, then we have

g =

p∑
k=1

ZΨ( f ′k ) + 2iπZ
r∑

k=1

P JkP−1.

We have
∑p

k=1 ZΨ( f ′k ) ⊂ Ψ
(

MA(n,C)
)

. Moreover, for every k = 2, . . . , r,

Jk ∈ Ψ
(

MA(n,C)
)

, hence P JkP−1 ∈ Ψ
(

MA(n,C)
)

, since P ∈ Φ
(

GA(n,C)
)

.

However, mP J1P−1 /∈ Ψ
(

MA(n,C)
)

for every m ∈ Z\{0}, since J1 has the form

J1 = diag(1, J ′) where J ′ ∈ Mn(C). As g1 = g ∩Ψ
(

MA(n,C)
)

, then mP J1P−1 /∈ g1

for every m ∈ Z\{0}. Hence we obtain

g1 =

{∑p
k=1 ZΨ( f ′k ) +

∑r
k=2 2iπZP JkP−1 if r ≥ 2,∑p

k=1 ZΨ( f ′k ) if r = 1.
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Since Jku0 = e(k), we get

g1
v0

=

{∑p
k=1 ZΨ( f ′k )v0 +

∑r
k=2 2iπZPe(k) if r ≥ 2,∑p

k=1 ZΨ( f ′k )v0 if r = 1.

By Lemma 3.3 (iii), one has {0} × qw0 = g1
v0

and Ψ( f ′k )v0 =
(

0, f ′k (w0)
)

, so
qw0 = p2(g1

v0
). It follows that

qw0 =

{∑p
k=1 Z f ′k (w0) +

∑r
k=2 2iπZp2(Pe(k)) if r ≥ 2,∑p

k=1 Z f ′k (w0) if r = 1.

The proof is complete.

Recall the following proposition, which was proved in [7].

Proposition 4.3 (cf. [7, p. 35]) Let F = Zu1 + · · ·+ Zup with uk = Re(uk) + i Im(uk),
where Re(uk), Im(uk) ∈ Rn, k = 1, . . . , p. Then F is dense in Cn if and only if for every
(s1, . . . , sp) ∈ Zp\{0}:

rank

Re(u1) · · · Re(up)
Im(u1) · · · Im(up)

s1 · · · sp

 = 2n + 1.

Proof of Theorem 1.3 This follows directly from Theorem 1.1, Propositions 4.2
and 4.3.

Proof of Corollary 1.4 First, by Proposition 4.3, if F = Zu1 +· · ·+Zum, uk ∈ Cn with
m ≤ 2n, then F cannot be dense in Cn. Now, by the form of qw0 in Proposition 4.2,
qw0 cannot be dense in Cn, and so Corollary 1.4 follows by Theorem 1.3.

Proof of Corollary 1.5 Since n ≤ 2n − r + 1 (because r ≤ n + 1), Corollary 1.5
follows from Corollary 1.4.

5 Example

Example 5.1 Let G the subgroup of GA(2,C) generated by f1 = (A1, a1), f2 =
(A2, a2), f3 = (A3, a3) and f4 = (A4, a4), where

a1 = I2, a1 = (1 + i, 0),

A2 = diag(1, e−2+i), a2 = (0, 0),

A3 = diag(1, e
−
√

2
π +i(

√
2

2π −
√

7
2 )), a3 =

(
−
√

3

2π
+ i
(√5

2
−
√

3

2π

)
, 0

)
,

A4 = I2, a4 = (2iπ, 0).

Then G is hypercyclic.
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Proof First one can check that G is abelian: fi ◦ f j = f j ◦ fi for every i, j = 1, 2, 3, 4.
Let by G = Φ(G). Then G is generated by

Φ( f1) =

 1 0 0
1 + i 1 0

0 0 1

 , Φ( f2) =

1 0 0
0 1 0
0 0 e−2+i

 ,

Φ( f3) =


1 0 0

−
√

3
2π + i

( √
5

2 −
√

3
2π

)
1 0

0 0 e
−
√

2
π +i

(
√

2
2π −

√
7

2

)
 , Φ( f4) =

 1 0 0
2iπ 1 0

0 0 1

.
Let f ′i = (Bi , bi), i = 1, 2, 3, 4 where

B1 = diag(0, 0) = 0, b1 = (1 + i, 0),

B2 = diag(0,−2 + i), b2 = (0, 0),

B3 = diag

(
0,
−
√

2

π
+ i
(√2

2π
−
√

7

2

))
, b3 =

(
−
√

3

2π
+ i
(√5

2
−
√

3

2π

)
, 0

)
,

B4 = diag(0, 0) = 0, b4 = (2iπ, 0).

Then we have eΨ( f ′i ) = Φ( fi), i = 1, 2, 3, 4.
Here r = 2, η = (2, 1), G is an abelian subgroup of K∗(2,1),2(C). We have P = I3,

ϕ = (I2, 0), u0 = v0 = (1, 0, 1), e(2) = (0, 0, 1) and w0 = (0, 1). By Proposition 4.2,
qw0 =

∑4
k=1 Z f ′k (w0) + 2iπZp2(e(2)). On the other hand, for every (s1, s2, s3, s4, t2) ∈

Z5\{0}, write

M(s1,s2,s3,s4,t2) =Re(B1w0 + b1) Re(B2w0 + b2) Re(B3w0 + b3) Re(B4w0 + b4) 0
Im(B1w0 + b1) Im(B2w0 + b2) Im(B3w0 + b3) Im(B4w0 + b4) 2πe(2)

s1 s2 s3 s4 t2

 .
Then the determinant:

∆ = det(M(s1,s2,s3,s4,t2)) =

∣∣∣∣∣∣∣∣∣∣∣

1 0 −
√

3
2π 0 0

0 −2 −
√

2
π 0 0

1 0
√

5
2 −

√
3

2π 2π 0

0 1
√

2
2π −

√
7

2 0 2π
s1 s2 s3 s4 t2

∣∣∣∣∣∣∣∣∣∣∣
= 2π(−s1

√
3 + 2s2

√
2− 4s3π + s4

√
5− t2

√
7).

Since π,
√

2,
√

3,
√

5 and
√

7 are rationally independent, ∆ 6= 0 for every
(s1, s2, s3, s4, t2) ∈ Z5\{0}. It follows that rank(M(s1,s2,s3,s4,t2)) = 5. Hence f1, . . . , f4

satisfy the property D. By Theorem 1.3, G is hypercyclic.

https://doi.org/10.4153/CMB-2012-019-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2012-019-6


490 A. Ayadi

References
[1] A. Ayadi and H. Marzougui, Dense orbits for abelian subgroups of GL(n,C). In: Foliations 2005,

World Sci. Publ., Hackensack, NJ, 2006, 47–69.
[2] A. Ayadi, H. Marzougui and Y. N’dao, On the dynamic of abelian groups of affine maps on Cn and

Rn. Preprint, ICTP, IC /2009/062, 2009.
[3] F. Bayart and E. Matheron, Dynamics of Linear Operators. Cambridge Tracts in Math. 179,

Cambridge University Press, 2009.
[4] M. Javaheri, A generalization of Dirichlet approximation theorem for the affine actions on real line.

J. Number Theory 128(2008), 1146–1156. http://dx.doi.org/10.1016/j.jnt.2007.08.008
[5] R. S. Kulkarni, Dynamics of linear and affine maps. Asian J. Math. 12(2008), 321–344.
[6] V. Bergelson, M. Misiurewicz and S. Senti, Affine actions of a free semigroup on the real line. Ergodic

Theory Dynam. Systems 26(2006), 1285–1305. http://dx.doi.org/10.1017/S014338570600037X
[7] M. Waldschmidt, Topologie des points rationnels. Cours de Troisième Cycle, Université P. et
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