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Hypercyclic Abelian Groups of Affine
Maps on C"

Adlene Ayadi

Abstract. 'We give a characterization of hypercyclic abelian group G of affine maps on C”. If G is finitely
generated, this characterization is explicit. We prove in particular that no abelian group generated by
n affine maps on C" has a dense orbit.

1 Introduction

Let M,,(C) be the set of all square matrices of order n > 1 with entries in C and
GL(#n, C) be the group of all invertible matrices of M,(C). A map f: C" — C" is
called an affine map if there exist A € M,(C) and a € C" such that f(x) = Ax + a,
x € C". Welet f = (A, a), and we call A the linear part of f. The map f is invertible
if A € GL(n,C). Denote by MA(#n, C) the vector space of all affine maps on C" and
GA(n, C) the group of all invertible affine maps of MA(n, C).

Let G be an abelian affine subgroup of GA(n, C). For a vector v € C", we consider
the orbit of G through v: G(v) = {f(v): f € G} C C". Denote by E the closure of a
subset E C C". The group § is called hypercyclic if there exists a vector v € C" such
that G(v) = C". For an account of results and bibliography on hypercyclicity, we refer
to the book [3] by Bayart and Matheron.

Let n € Ny be fixed, denote by:

e C*=C\{0}, R* =R\{0} and Ny = N\{0};
e By = (er,...,en1) the canonical basis of C**! and .4, the identity matrix of
GL(n+1,C).

Foreachm =1,2,...,n+ 1, denote by

e T,,(C) the set of matrices over C of the form

" 0
a1 M
(1.1) . . ;
Am1 - Amm—1 M

e T7.(C) the group of matrices of the form (1.1) with p # 0.
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Letr € Nand n = (ny,...,n,) € Njsuch thatn; +--- 4+ n, = n + 1. In particular,
r < n+ 1. Write

e X, (C) =T, (C)®---&T,(C). In particular if r = 1, then X, ;(C) = T,,;;(C)
andnp = (n+1);

e X ,.(C):=%,,(C)NGL(n+ 1,0

e uy = (e11,...,6,1) € C""" where ¢,; = (1,0,...,0) € C*, fork = 1,...,r,
sou € {1} x C%

e p: C x C" — (", the second projection, defined by py(xi,...,%41) =
(%2, -y X011)5

o e = (e . &) e where

0eCy ifj#k
e(k):{ ec ifj# forevery 1 < j, k <r;

J er1 if j =k

o exp: M,;;(C) — GL(n+ 1, C) is the matrix exponential map; set exp(M) = e,
M e Mn+l((c)~

Define the map ®: GA(n,C) — GL(n + 1,C),
f=(Aa)r— le 2]
We have the composition formula
[1 0“1 0}:[1 o]
a Al|b B Ab+a AB|’
Then @ is an injective homomorphism of groups. Write G = ®(9), which is an

abelian subgroup of GL(n + 1, C).
Define the map ¥: MA(n,C) — M,,4;(C),

f=(Aa)— {2 X]

We can see that W is injective and linear. Hence \II(MA(n, (C)) is a vector subspace
of M,11(C). We prove (see Lemma 2.8) that ® and W are related by the following

property
exp( U (MA(1,0) ) = ®(GA(n,0)).

Let us consider the normal form of §: By Proposition 2.1, there exists a P €
P ( GA(n, (C)) and a partition 7 of (n + 1) such that

G' =P 'GP C X; (C) N ®(GA(n,C)).

For such a choice of matrix P, we assume the following:
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e Vo = Puy. Sovy € {1} x C",since P € <I>(GA(n,(C)).

* wy = pa(vy) € C". We have vy = (1, wp).

e p=31(P) € GA(n, C).

* g = expH6) N (P(X,,(0) PT). I G C X;,(C), we have P = Iy and

g=exp (G NK,,(C).

e gl =¢gn \II(MA(n7 (C)) . This is an additive subgroup of M,.1(C) (because by
Lemma 3.2, g is an additive subgroup of M,.1(C)).

e g ={Bu:Beg'} cC*,ueC.

e g = U!l(g!) € MA(n,C). Then q is an additive subgroup of MA(n, C) and we
have ¥(q) = g!. By Corollary 2.12, we have exp( \Il(q)) = ®(9).

e g, ={f(»),feqtcC,veC.

For groups of affine maps on K" (K = R or C), the study of their dynamics was
recently initiated for some classes from a different point of view (see for instance,
[2,4-6]). The purpose here is to give analogous results for linear abelian subgroups
of GL(n,C) [1, Theorem 1.1].

Our main results are the following.

Theorem 1.1 Let G be an abelian subgroup of GA(n,C). Then the following are
equivalent:

(1) G is hypercyclic;

(i) the orbit G(wy) is dense in C";

(iii) q, s an additive subgroup dense in C".

In the particular case where G is an abelian subgroup of GL(#, C), let Q € GL(n, C)
such that Q7'9Q C X/ ,/(C) for some " <nandn' = (n],...,nl.,) € N(’), with

ny +---+nl, = n (Proposition 2.6). Write

o uy=(ef,,---,€,,) € C"where 312,1 =(1,0,...,0) € C%, fork=1,...,r;
. V(;:QM(/);
/

e g’ =exp (9 NQ(K,,(C)Q " and gc‘{ ={fW), feg'}.

Corollary 1.2 ([1, Theorem 1.3]) Let G be an abelian subgroup of GL(n, C). Under
the notations above, the following properties are equivalent:

(1) G is hypercyclic.
(i1) géo, is an additive subgroup dense in C".

For a finitely generated abelian subgroup § C GA(n, R), let us introduce the fol-
lowing property. Consider the following rank condition on a collection of affine
maps fi,..., f, € S. Letfl’,...,fp’ € q be such that e?Ui) = O(fi), k=1,...,p.
We say that fi,..., f, satisfy the property D if for every (si,...,sp3t2,...,t) €
Zp+rfl\{0},

Re(fi(wo)) -+ Re(fl(wy)) 0 . 0
rank Im(fl/(WO)) Im(fp/(Wo)) 27rp2(e(2)) zﬂpz(e(r)) — 2+ 1.
S1 e Sp t) . t,
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For r = 1, this means that for every (s, ...,s,) € ZP\{0},

Re(f/(wp)) -+ Re(fp/(Wo))
rank [Im( f/(wo)) --- Im(fp’(wo)) =2n+1.
5| 5

For a vector v € C", we write v = Re(v) + i Im(v) where Re(v) and Im(v) € R". The
next result can be stated as follows.

Theorem 1.3 Let G be an abelian subgroup of GA(n, C) generated by f,, ..., f, and
let f,..., fp’ € q be such that e*/\) = O(f),... ,eq'(fp,) = O(f,). Then the following
are equivalent:

(1) G is hypercyclic
(ii) themapsp™'o fiog,...,p "o f, 0 pin GA(n, C) satisfy the property D;
(iif)

Zle L (wp) ifr=1,

is an additive subgroup dense in C".

q — {Zfl Lf!(wo) +2im Y1, Z( pa(Pe®)) ifr > 2,

Corollary 1.4 Let G be an abelian subgroup of GA(n,C) and G = ®(G). Let
P € <I>(GA(n,(C)) such that P7'GP C X5.(©€) where 1 < r < n+ 1 and
n = (m,...,n) € N{. If G is generated by 2n — r + 1 commuting invertible affine
maps, then it has no dense orbit.

Corollary 1.5 Let G be an abelian subgroup of GA(n, C). If G is generated by n com-
muting invertible affine maps, then it has no dense orbit.

2 Normal Form of Abelian Affine Groups

The aim of this section is to prove the following proposition.

Proposition 2.1 Let G be an abelian subgroup of GA(n, C) and G = ®(9). Then there
exists P € @(GA(n, (C)) such that P~ 'GP is a subgroup offK;;vr((C) N (I>(GA(n, (C)) ,
forsomer < n+1landn = (m,...,n) €N

The group G’ = P~'GP is called the normal form of G. In particular, we have
Puy = vy € {1} x C". Denote by Lg the set of the linear parts of all elements
of §. Then Lg is an abelian subgroup of GL(n,C). A subset F C " is called G-
invariant (resp. £g-invariant) if A(F) C F for any A € G (resp. A € Lg). To prove
Proposition 2.1, we need the following results.

Lemma 2.2 Let G be an abelian subgroup of GA(n,C), n > 1 and G = ®(G). Then

there exist an integer p € N, 0 < p < nand Q € GL(n, C) such that

(i) C" =E®H where E = Q(C? x {0ci-»}) and H = Q({0¢r} x C*"P) are
Lg-invariant;

(ii) ifE # {0}, then for every A € Lg, A g has 1 as the only eigenvalue;
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(i) ifE # {0}, H # {0} and P, = diag(1, Q), then for every f = (A,a) € G, one

has
1 0 0
PI'®(f)Py = [ay A 0
ap 0 Az

where Ay = Ajp € TH(C), Ay = Ay € K10,/ (C) for some ' < n-—pand
n" €Ny’ a € CPanda, € C"F;

(iv) if H = {0}, then for every f = (A,a) € G, one has P, '®(f)P, € T%,,(C) N
®(GA(n, Q).

Proof Apply Proposition 2.6 to the group Lg; there exists Q € GL(#n, C) such that
Q™ 1£5Q is a subgroup of X ,(C) for some " < mandn' = (nf,...,n,) €
Ni’ such that n] + --- + n/, = n. Hence for every A € Lg, we have Q"'AQ =
diag(A{,...,A],) with A} € T:k,. Let py; be the only eigenvalue of A, k= 1,...,7'
and denote by Jg = {k € {1,..or'biuny = 1,VA € Lg}. If Jg = @, we take
E = {0}and H = C". If Jg # &, one can assume that Jg = {1,...,s} for some
1 <s </, by replacing Q by QR, where R is a circular matrix R of GL(n, C). We let
P, = diag(1,Q) = ®(f1), fi = (Q,0). So for every f = (A, a) € G, we have

1

0 Q?AQ} € ®(GA(n, Q).

O(f7 o fo fi) =P '®(f)P, = {

Proof of (i) If Jg = @, the assertion is clear. One can assume that Jg # @. We let
p=n{+--+n,E=Q(C’ x {0c:i—»})and H = Q({0cr } x C"~P). It is plain that
C" = E @ H. Moreover, E and H are £ g-invariant vector spaces: Indeed, if A € Lg
and x = (x;,0) € C? x {O¢s—»}, one has AQx = Q(Q 'AQ)x. Since Q7!AQ =
diag(A;, Ay) where A; = diag(A],...,A!) € GL(p,C) with pa; =1, k=1,...s
and A, = diag(AL,,...,A.), we have Q7'AQx = (A1x1,0) € C? x {0 }. The
same proof holds for H.

Proof of (ii) IfA € Lg then (Q_IAQ)/E = A, = diag(A{,...,A]) € GL(p, C) with
/,LAk/ = 1,k: 17...,5.

Proof of (iii) Assume that E # {0} and H # {0}. Then, for every f = (4,a) € G,

we have Q7!AQ = diag(A;, A;) where A} = A € TZ((C),AZ =Ap € K;,,J”((C)
withr” =1 —s<mn—pandn’ = (nl,,...,n.). Hence
1 0 0
Pylo(f)P —{ ! 0 }— a A 0
1 1 — —1 -1 - 1 1 )
Qa QAQ o 0 A

where Q7 'a = (a;,a,) € C? x C"~P. Note that by (ii), 1 is the only eigenvalue of A;.
Proof of (iv) Assume that H = {0}. In this case we have s = ' and Jg =

{1,...,r'}. Then for every f = (A,a) € G, we have P, '®(f)P; = [} 2] with
A=A € T;C). So P ®(f)Py € Ti, 1 (C) N @ (GA(n, C)). [
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Lemma 2.3 ([2, Lemma 3.1]) Let uy,...,u, € C" such that for every 1 < k < n,
U = (Xp1s -+, Xen) With xgx # 0. Then (Zuy + - - - + Zu,) N (C*)" # 2.

Lemma 2.4 Let G and H are as in Lemma 2.2 If H # {0} then there exists B € Lg
such that Bjy — I, is invertible.

Proof As H # {0}, then s < r’ and for every 1 < k < 1’ — s there exists B(k) € G
such that B(k) )y = diag(Bs+1, - - - , Brrr) where

KBy 0
X
2,1 : .
Bej=1 . . i € T5,(©),
® w
bn}{,l bnj’,n;fl HBy

such that up, ., # 1, forevery j=s+1,...,7'.

We let u, = (log(,uBk_m), ... ,log(ugh,)) eC k= l,...,r" —s. Forz =
|z|e'¥8@) € C, arg(z) € [0,27[, logz = |z| + iarg(z). Aslog(up,.) # O for every
k=1,...,r" —s by Lemma 2.3, (Zu; + -+ + Zu, _5) N (C*yr'=s # &. So there

exist my,...,my_s € 7 such that myu; + -+ + my_su, 5 € (C*)r'=. 1t follows
that for every j = s+ 1,...,r, [[,. pg, # 1. IfB = ' (B(k) "™ then
L. ul’?:_j, j=s+1,...,r"are the eigenvalues of By, this implies that B/ — I,
is invertible. u

Denote by Fix(G) = {x € C"*':Bx = x, for every B € G}.

Lemma 2.5 Let G andE be asin Lemma 2.2. IfE = {0} then Fix(G) N ({1} x C") #
d.

Proof By hypothesis, p = 0 and so H = C". Then by Lemma 2.4, we have B € Lg
such that B — I, is invertible, so 1 is not an eigenvalue of B. We let fy = (B, b) € S.
As ®(fo) = [} 5], F = Fix(®(fy)) = {x € C"*":®(fy)x = x} has dimension 1.
So Fix(@(fo)) = Cv, where v = (1,v1), v, € C". Write P, = [vll IO] We have
®(fo)v=v,s50Bvi+b=v;and P, '®(fo)P, = [ _, \pupy, 8] = | & 5] - Similarly, for
every f = (A,a) € G, one has P;lq)(f)Pz = [Av1+1a—v1 2} . Writea’ = Avy +a —v,.
Since G is abelian, we have P{l@(ﬁ,)@(f)Pz = P;1<I>(f)<1)(ﬁ))P2, this implies that
Ba' = a’ and hence a’ = 0. It follows that P, '®( f)Pye; = ey, hence P,e; € Fix(G).
Since Pye; € {1} x ", we conclude that Fix(G) N ({1} x C") # . [ |

Proposition 2.6 ([1, Proposition 2.3]) Let G’ be an abelian subgroup of GL(m, C),
m > 1. Then there exists P € GL(m, C) such that P~'G'P is a subgroup of X*, .,(C),

n'r

forsomer’ <mandn’ = (ni,...,n.,) € Ny

Proof of Proposition 2.1 Let P; = diag(1, Q), E and H as in Lemma 2.2. We distin-
guish two cases:
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Case 1: E # {0} If H = {0}, then the proposition results from Lemma 2.2 (iv) by
taking P = P;.

If H # {0}, then by Lemma 2.4 there exists B € Lg such that B/y — I, is
invertible. Write By = B/, B, = By and set fy = (B,b) € §. Since E # {0}, we
have by Lemma 2.2 (iii),

1 0 0
PU'®(fo)Py = [by By 0
b, 0 B

’

where B, € T (C), B, € X7, ., (C) for some ' <n—p,n" =n,...,nll) € N(’)'
and (b1, b,) € CP x C"P. If

1 0 0
p=10 I, 0
by 0 By—1I,,

)

it is clear that P, € GL(n+1,C). Welet P = P1P{1. Then we have P = [ ;“90] where

Py = QQfl, Q= [%’sznip] andd = —PO[(I?Z)] .For f = (A,a) € G, we have

1 0 O
P;I(I)(f)Pl = |d] A] 0
ap 0 A2

where A; € T7(C) and A; € UC:;,,A’,,,((C). Since G is abelian, Pl_lfl)(f)fl)(fo)Pl =
Pf1<I>(f0)(I>(f)P1, and therefore A, B, = ByA; and —(A; —1I,,_ )by + (B, — I,—p)a; =
0. It follows that

P~'®(f)P = PP ®(f)P, Py

1 0 0
=Py |lag A 0[P}
ap 0 A2
i 1 0 0
= ap A] 0
|—(Ay =L p)by+ (By —I,—play 0 Ay
[1 0 0
= |d] A1 0
10 0 A

Therefore, P~'®(f)P = diag(A], A;) € X 1141 (€) where Al = [ all ,?1} € T3, (C)
Ay € Ky (€ and " = (p+ 1,ny,...,n/l,). This completes the proof in this
case.
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Case2: E = {0} Let B € Lg such that (B — I,,) is invertible (Lemma 2.4). We let
fo = (B,b) € §G. By Proposition 2.6, there exists Q € GL(n, C) such that Q7' £5Q
is a subgroup of XKy (©) for some ' < nandn’ = (nf,...,n.,) € Nj where

ny +---+mn/, = n. By Lemma 2.5, there exists w = (1, w;) € Fix(G) N ({1} x C").
Set P = [ M}l g} .Forevery f = (A,a) € G, ®(f)w = w, so Aw, + a = w;. Therefore

_ 1 0 1 olf1 o
PP =1_g1y, Q—l} [a A] [w] Q}

1 0
T Q7 Aw +a—w) QIAQ}

1o
o QlAQ|

Hence P'®(f)P € X (€) N @(GA(n,(C)), where r = ' + 1 and 7

(1,n{,...,n.,). This completes the proof. [ |

Lemma 2.7 ([1, Proposition 3.2]) exp( X, .(C)) = K ,(C).

n,r

Lemma 2.8 exp(V(MA(n,C))) = ®(GA(n, C)).

Proof It is clear that exp(¥(MA(n,C))) C ®(GA(n,C)). Conversely, let M €
®(GA(n,C)). By Proposition 2.1, there exists P € @(GA(n, (C)) such that M/ =
P~IMP € X (€) N @(GA(n,(C)). By Lemma 2.7, exp(fKW((C)) = X; (O,
then M’ = V' for some N’ € X,+(C). So N = PN'P~! € PX, ,(C)P~! and
N = PM'P"' = M € ®(GA(n,C)). By Lemma 2.9, N = N/ — 2iknl,, €
\I/(MA(n, (C)) for some k € 7 and N satisfies e¥ = ¢*meN"”" = M. It follows that
M € exp(VY(MA(n, C))). [ |

Lemma 2.9 IfN € PfK,]“,((C)P_1 such that eN € <I>(GA(n7(C)), then there exists
k € Z such that N — 2iknl,, € \II(MA(n, (C)).

Proof Let N/ = P7!NP € X,,(C), M = ¥ and M' = P"'MP. We have
eN' = M’ and by Lemma 2.7, M’ € X (C). Write M’ = diag(M{, ..., M)
and N’ = diag(N/,...,N/), M{,N/ € T,(C), k = 1,...,r. Then N' =
diag(eM', ..., eN), so eN = M]. As 1 is the only eigenvalue of M/, N/ has an
eigenvalue ;¢ € C such that ¢/ = 1. Thus pp = 2ikr for some k € Z. There-
fore, N = N’ — 2iknl,.; € ¥(MA(n,C)) and N = 72k N — MY Tt fol-
lows that N — 2iknl,.; = PN"'P~' € PU(MA(n,C)) P~! = ¥(MA(n,C)), since
P e ®(GA(n,Q). [

Lemma 2.10 ([1, Lemma 4.2]) One has exp(g) = G.
Corollary 2.11 Let G = ®(G). We have g = g' + 2imZI,4,.

Proof Let N € g. By Lemma 2.10, exp(N) € G C ®(GA(n,C)). Then by
Lemma 2.9, there exists k € Z such that N’ = N — 2iknl,,; € \I!(MA(n,(C)).
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AseV' = N € Gand N’ € PK,,(Q)P~' then N' € gN ¥(MA(n,C)) =
g'. Hence g C g' + 2inZl,4. Conversely, as g' + 2inZl,.; C PX,,(C)P~! and
exp(g! + 2inZl,.1) = exp(g') C G, hence g' + 2inZI,,, C g. ]

Corollary 2.12 We have exp(\I/(q)) = ®(9).

Proof By Lemmas 2.10 and 2.11, we have G = exp(g) = exp(g' + 2inZl,4) =
exp(g'). Since g' = W(q), we get exp(¥(q)) = D(9). [ ]

3 Proof of Theorem 1.1

Let G be the group generated by G and C*I,,;; = {A;+1: A € C*}. Then G is an
abelian subgroup of GL(n + 1, C). By Proposition 2.1, there exists P € <I>(GA(n, (C))
such that P~ !GP is a subgroup ofﬂCfN((C) forsomer <n+1landn = (n,...,n,) €
N7, and this also implies that P~ GP is a subgroup of X5 (C). Setg = exp~1(G) N

(PX,(C)P~') and g, = {Bvy:B € g}. Then we have the following theorem,
applied to G.

Theorem 3.1 ([1, Theorem 1.1])  Under the notations above, the following properties
are equivalent:

(i) Ghasa dense orbit in C**';
(ii) the orbit G(vy) is dense in C**;
(ili) gy, is an additive subgroup dense in C™*',

Lemma 3.2 ([1,Lemma4.1]) The sets g and g are additive subgroups of M,,+1(C). In
particular, g,, and g,, are additive subgroups of C™*'.

Recall that g' = gN ¥ (MA(n,C)) and g = U~ '(g') C MA(n, C).

Lemma 3.3 Under the notations above, one has

(1) g = gl + (C1n+1)
(i) {0} x au, =g}

Proof (i) Let B € g, then ¢ € G. One can write ¢ = A\A for some A € C* and A €
G. Let u € Csuch thate” = ), then e?~#/"1 = A. Since B— jul.4+1 € PX,,,(C)P~!, s0
B— uly € exp”{(G)NPK,,,(C)P~! = g. By Corollary 2.11, there exists k € Z such
that B’ := B — pul,y, +2ikrl,;; € g'. Then B € g!' + Cl,,;; and hence g C g! + Cl,,41.
Since g! C gand CL,;; C g, it follows that g' + CI,;; C ¢ (since g is an additive
group, by Lemma 3.2). This proves (i).

(ii) Since ¥(q) = g' and vy = (1, wy), we obtain for every f = (B,b) € q,

(v = {2 ,2] m = {b +OBWJ - {f((v)vO)] '

Hence g, = {0} X qy,. ]

Lemma 3.4 The following assertions are equivalent:
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(i) Gu =C%
(ii) g, = {0} x C%
(iii) g, = €.

Proof (i) < (ii) follows from the fact that {0} x ¢, = giﬂ (Lemma 3.3 (ii)).

(ii) = (ili) By Lemma 3.3 (ii), g,, = g,, +Cv. Since vy = (1,wy) ¢ {0} xC" and
Cl,11 C g, we obtain Cvy C gy, and so Cvy C ?gjo Therefore C"*! = {0} x C*"®Cvy =
gl @ Cvy C gy, (since, by Lemma 3.2, g, is an additive subgroup of C**'). Thus
’?VO —_ (Cn+1. o

(iii) = (ii) Letx € C", then (0,x) € g,, and there exists a sequence (A;,)men C g
such that lim,,;, 400 Ao = (0, x). By Lemma 3.3, we can write A,,,vo = Ao + BV
with A,, € Cand B,, = | b(j" BO;] € g' for every m € N. Since B,y € {0} x
C" for every m € N, we have A,,v9g = (A, by + BLwg + A\ywy). Tt follows that
limy, 100 A = 0 and limy, 400 Apvo = limy, 400 Biuvo = (0, %), thus (0,x) € g}, .
Hence {0} x C" C gl . Since g' C ¥(MA(n,C)), gl C {0} x C", and we conclude
that gl = {0} x C". [ |

Lemma 3.5 Letx € C" and G = ®(9). The following are equivalent:

i) S =Cy
(i) G(1,x) = {1} x C%

(iii) G(1,x) = C"*1,

Proof (i) < (ii) is obvious, since {1} x G(x) = G(1, x) by construction.

(iii) = (ii) Let y € C" and (B,)n a sequence in G with lim,; 400 Bi(1,x) =
(1, ). One can write B,, = A\, ®(f) with f,, € G and A, € C*, thus B,,(1,x) =
()\m, )\mfm(x)) ,s0limm — +oo),, = 1. Therefore,

. . 1
Jim @(f)(1.0 = lim =B, = (1),
Hence, (1, y) € G(1,x).

(ii) = (iii)  Since C""\({0} x €") = U,cc- A({1} x €") and for every A € C*,
AG(1,x) C 5(1,x),we get

c*l=c\({oy xC) = U {1} xC) = |J AG(,x) C G(1,x).
A

ec AeC*

Hence C**! = G(1, x). [ ]

Proof of Theorem 1.1 (ii) = (i) is obvious.

(i) = (i) Suppose that G is hypercyclic, so G(x) = C" for some x € C". By
Lemma 3.5 (iii), G(1,x) = €™, and by Theorem 3.1, G(vy) = C*!'. Then by
Lemma 3.5, G(wy) = C", since vy = (1, wp).

(ii) = (iii) _Suppose that G(wy) = C". By Lemma 3.5, G(vy) = C**!, and by
Theorem 3.1,'g,, = C"*!. Then by Lemma 3.4, q,,, = C".
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(iii) = (ii) Suppose that q,,, = C". By Lemma 3.4, 'gvjo = (", and by Theo-
rem 3.1, é(vo) = C"*!. Then by Lemma 3.5, G(w,) = C". [ |

Proof of Corollary 1.2 Assume that § C GL(n,C). Then take P = diag(l, Q)
and G = ®(§), so P"'GP C X, ,+41(C) where n = (1,n{,...,n.,). Hence uy =
(1,u)), vo = Pug = (1,Qu}) and thus wy = Quj = v{. Every f = (A,0) € §
is simply noted A. Then for every A € G, ®(A) = diag(1,A). We can verify that
g' = {diag(0,B):B € g’} where g’ = exp'(§) N Q(X,,(C)) Q™" and so q =
U~1(g') = g’. Hence the proof of Corollary 1.2 follows directly from Theorem 1.1.

|

4 Finitely Generated Subgroups
Recall the following result, proved in [1], which, applied to G, can be stated as follows.

Proposition 4.1 ([1, Proposition 8.1])  Suppose that G is generated by A;, ..., A,
and let By, ...,B, € gsuch that Ay = €, k = 1,...,p, and P € GL(n + 1,C)
satisfying P~'GP C X, (C). Then

p r p r
g= IBc+2iry ZPJP™" and g, = ZBwo+ Y 2imZPe¥,
k=1 k=1 k=1 k=1

where Ji = diag(Ji1, ..., Ji,) with Ji; = 0 € T, (C) ifi # k and Jix = I,,.

Proposition 4.2 Let G be an abelian subgroup of GA(n, C) generated by fi,. .., f,
andlet f, ..., fp’ € q such that e?%) = ®(fi), k=1,...,p. Let P be as in Proposi-
tion 2.1. Then

G — Zle LZf (wo) + > i, 2imZpa(Pe®) ifr > 2,
" P ZF (we) ifr=1.

Proof Let G = ®(§). Then G is generated by ®(f;),...,®(f,). Apply Proposi-
tion 4.1 to G, Ax = ®(fi), By = ¥(f) € g', then we have

p r
g= Z 29(f)) + zmzz PP

k=1 k=1

We have ZfZIZ\I/(fk’) C \I!(MA(n,(C)). Moreover, for every k = 2,...,r,
Ji € ¥(MA(n,Q)), hence PJyP~! € W¥(MA(n,C)), since P € ®(GA(n,C)).
However, mPJ;P~! ¢ ¥(MA(n,C)) for every m € Z\{0}, since J; has the form
Ji = diag(1, J') where ]’ € M,(C). As g' = gN ¥(MA(n,C)), then mPJ,P~" ¢ g'
for every m € Z\{0}. Hence we obtain

LR () + Y, 2imZP P ifr > 2,
Soh ZY(f) ifr=1.

https://doi.org/10.4153/CMB-2012-019-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2012-019-6

488 A. Ayadi

Since Jyuy = e¥), we get

g = S ZU(f v + S, 2imzPe®  ifr > 2,
X 28 (v ifr=1.

By Lemma 3.3 (iii), one has {0} x q,, = g}}u and W(f)vy = (0’ fkl(Wo)) 5o
Gw, = P2(gy,)- It follows that

R 2 (wo) + Y, 2imZpy(PeV) i r > 2,
o = Soho1 Zf (wo) ifr=1.
The proof is complete. ]
Recall the following proposition, which was proved in [7].

Proposition 4.3 (cf. [7,p.35]) LetF = Zuy+---+Zu, with uy = Re(uy) +i Im(uy),
where Re(uy), Im(ux) € R”, k =1, ..., p. Then F is dense in C" if and only if for every
(s1,...,5p) € ZP\{0}:

Re(u;) ---  Re(uy)
rank [Im(u;) --- Im(u,)| =2n+1.
Sl ... Sp

Proof of Theorem 1.3 This follows directly from Theorem 1.1, Propositions 4.2
and 4.3.

Proof of Corollary 1.4 First, by Proposition 4.3, if F = Zu; +- - - +Zuy, ux € C" with
m < 2n, then F cannot be dense in C". Now, by the form of q,,, in Proposition 4.2,
qw, cannot be dense in C", and so Corollary 1.4 follows by Theorem 1.3. ]

Proof of Corollary 1.5 Since n < 2n — r + 1 (because r < n + 1), Corollary 1.5
follows from Corollary 1.4. [ ]

5 Example

Example 5.1 Let G the subgroup of GA(2,C) generated by fi = (A1,41), =
(A2, @), f3 = (A3, a3) and fy = (A4, aq), where

ay :IZa a :(1+170)7
A, = diag(1,e”*"), a, = (0,0),
Vi -3 5 3
A3=diag(1,e%+l(%_$))y as = i_}.l(i_i)’() ,
2T 2 2T
A4 = 127 ay = (2i7l', 0)

Then § is hypercyclic.
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Proof First one can check that G is abelian: f;o f; = f; o f; foreveryi, j =1,2,3,4.
Let by G = ®(§). Then G is generated by

1 0 0 1 0 0
O(fi)=|(1+i 1 0|, @(f,)=1]0 1 0 ,
0 0 1 0 0 e—2+i
1 0 0
=5, i(ﬁ _ ﬁ) 1 0 100
O(fs)=| *r 2 o . B(fy)=|2im 1 0
fﬂﬂ'(#fg) 0 0 1
0 0 e’ "
Let f;/ = (B;, b;),i = 1,2, 3,4 where
B, = diag(0,0) =0, by =(1+1,0),
B, = diag(0, —2 + 1), b, = (0,0),
—V?2 2 7 —/3 5 3
Bo—ding( 0. =2 +i( 2o VT)) o (22 (2 ) ),
s 2 2 21 2 21
B4 = dlag(oa 0) = 0; b4 = (2171',0)

Then we have i) = (fi),i=1,2,3,4.

Here r = 2, n = (2, 1), G is an abelian subgroup OffKE},l)_z((C)- We have P = I,
0 = (I,0), uy = vo = (1,0, 1), e¥ = (0,0,1) and wy = (0, 1). By Proposition 4.2,
Awy = Zizl Zf! (wy) + 2inZp,(e?). On the other hand, for every (s;, s,, 53,54, 12) €
7°\{0}, write

M(51,52~,53~,54,fz) =

Re(31W0 + b]) Re(32W0 + bz) Re(B3W0 + b3) RC(B4W0 + b4) 0
Im(Bywo + b)) Im(Bywg + by) Im(Bswg + b3)  Im(Bywg + by)  27me®
s1 S2 3 S4 13)

Then the determinant:

o ¥ 0 o0
0 2 ¥ o o
A = det(M(5, 5,.5,.50.0) = [1 0 % — \243 2w
0 V2_ T o on
S1 ) S3 S4 t

= 27r(—51\/§ + 252\f — Ay + 54V/5 — tzxﬁ).
Since 7, v/2, /3, v/5 and /7 are rationally independent, A # 0 for every

(51,52, 83,54, 1) € 2°\{0}. It follows that rank(M(s, s, 5, 5,5,)) = 5. Hence fi,..., fa
satisfy the property D. By Theorem 1.3, G is hypercyclic. ]
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