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AFFINE HYPERSURFACES WITH PARALLEL CUBIC FORM
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§1. Introduction

As is well known, there exists a canonical transversal vector field on a non-
degenerate affine hypersurface M. This vector field is called the affine normal.
The second fundamental form associated to this affine normal is called the affine
metric. If M is locally strongly convex, then this affine metric is a Riemannian
metric. And also, using the affine normal and the Gauss formula one can introduce
an affine connection V on M which is called the induced affine connection. Thus
there are in general two different connections on M : one is the induced connection
V and the other is the Levi Civita connection V of the affine metric . The differ-
ence tensor K is defined by K(X, ¥) = K, Y = V,Y — V,Y. The cubic form C is
defined by C = Vh and is related to the difference tensor by

WY, D = — 5 CX, Y, 2.

The classical Berwald theorem states that C vanishes identically on M, implying
that the two connections coincide, if and only if M is an open part of a
nondegenerate quadric.

In this paper we will consider the condition 7 C =0 for a 4-dimensional
locally strongly convex affine hypersurface in R’ Clearly VC =0 if and only if
VK = 0. For surfaces this condition has been studied by M. Magid and K. Nomizu
in [MN], where they proved the following;

TurorEM A [MN]. Let M? be an affine surface in R® with VC = 0. Then cither
M is an open part of a nondegenerate quadric (i.e. C = 0) or M is affine equivalent to
an open part of the following surfaces:
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1) xyz =1,
@) 2"+ 2 =1,

1
(3) z=xy +§ y3 (the Cayley surface).

A generalization of this theorem to 3-dimensional locally strongly convex
hypersurfaces in R' is given by the first two authors in [DV1]. There the follow-
ing classification theorem is proved.

TueorEM B [DV1]. Let M be a 3-dimensional affine locally strongly convex
hypersurface in R* with VC = 0. Then either M is a part of a locally strongly convex
quadric (i.e. C = 0) or M is affine equivalent to an open part of one of the following
two hypersurfaces:

(1) xyzw = 1,
@) @ — 22— w2’ =1.

Comparing Theorem A and Theorem B with the classification of locally
strongly convex homogeneous hyperspheres in R’ and R* in [NS] and [DV3]
(homogeneous in the sense used therein), we find that a locally strongly convex
affine hypersphere in R’or R'is homogeneous if and only if it satisfies vec=o.
In [DV2] it is proved that the hypersurface in R’ with equation

4
(z - %xz/u - %yz/v> u’ =1,
is a homogeneous hyperbolic affine hypersphere in R’. It however does not satisfy
VC=0. In the present paper we give a classification of all locally strongly
convex affine hypersurfaces in R’ with C=0. In particular, our main result is
the following theorem.

THEOREM 1. Let M be a 4-dimensional locally strongly convex affine hypersurface
in R® with VC = 0. Then either M is an open part of a locally strongly convex quadric
(.e. C=0) or M is affine equivalent to an open part of one of the following three
hypersurfaces :

(1) xyzwt = 1,

@2 @G—2—w—52=1,

(3) @ —w' =)@y’ =1.

All examples occurring in the previous theorems are special cases of the
following class of hypersurfaces of R™ satisfying VC = 0 with equation
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k ’
iI;Il (xiz;ﬁﬁl - ]E xzi)ﬁi+l(yl, . .yq+1)2 — 1’
where n= 2}, (p, + 1) + g and

(x1;1’ R SR, R RPL . WS PR S ST RRRPY S WS 1Y [P Yger)

are affine coordinates of R**'. The theorems mentioned above show that this class
gives all examples of locally strongly convex hypersurfaces with VC=0forn=
2, 3, 4. This is however not true for # = 5, as follows from the discussions in
[DV2].

All examples occurring are also homogeneous. This property remains true in
all dimensions. We will prove this in the final section.

THEOREM 2. Let M be a nondegenerate affine hypersurface in R with VC = 0.
Then M is a locally homogeneous affine sphere.

We will use the formalism and the notations of [N]. For a short survey of the
preliminaries that we need in this paper, we refer to [DV1, §2].

§2. The construction of an orthonormal basis

In this section, we consider an #-dimensional, locally strongly convex affine
hypersurface M in R™" which has parallel cubic form, ie. which satisfies VC = 0.
From [BNS], if follows that M is an affine sphere, so the affine shape operator is
S= AL

Since ¥ C = 0 implies that 2(C, C) is constant, there are two cases. First if
h(C, C) =0, then C = 0, & being definite, and therefore M is an open part of a
quadric. Otherwise, C never vanishes, and we assume this for the remainder of
this section.

Let p € M. We now choose an orthonormal basis with respect to the affine
metric / at the point p in the following way, similar as in [DV1]. Let UM, = {u €
TI,Ml h(u, ) = 1}. Since M is locally strongly convex, UM, is compact. We de-
fine a function f on UM, by f(u) = h(K,u, u). Let e, be an element of UM, at
which the function f attains an absolute maximum. If f(¢,) = 0, then f is identical-
ly zero, and therefore, K being symmetric, K = 0. This contradicts our assump-
tion, so f(e) > 0.

Let w € UM, such that h(u, e;) =0, and let g be a function, defined by
g(® = f(cos(t)e, + sin(Hu). Since g attains an absolute maximum at ¢ = 0, we
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have g’(0) = 0, which means that h(K, e,, ) = 0. So ¢, is an eigenvector of K, ,
say with eigenvalue A,. Let e,, e,,...,e, be orthonormal vectors, orthogonal to e,
which are the remaining eigenvectors of Ke1 with respective eigenvalues 4,, 4, .. .,
A,. Further, since e, is an absolute maximum of f, we know that g”(0) < 0 and if
g”(0) = 0, then also g”(0) = 0. This implies that

(2.1) A, —24, 20
and
(2.2) if 2, = 22, then h(K,e;, e) =0

for 1 € {2,3,...,n}. From the apolarity condition we have
(2.3) AT A+ +24,=0.

Now VK =0 implies that R-K =0, and as in the proof of [DV1, Lemma 3.3], this
implies that

(2.4) (A, —22)(— 2 =22+ 42) =0.

If A, =22, for all 1 € {2,3,...,n}, then (2.3) implies that 4, = 0 which is a
contradiction. Therefore there is a number k, 1 < k < #u such that, after rear-
ranging the ordering,

1
5 A

1 1
A= A= = A= ERI and A, < 521,...,/1” <
Moreover, if ¢ > k, then (2.4) implies that
(2.5) —A=2+12,=0.
Subtracting (2.4) for i, j > k, we obtain
(A,’ - lj) (/11 - (/L + /1])) =0.

But for 7, 7 > k one can check that 4, — (4, + 4;)) # 0. Thus A, = A; for k < 4,
< . Setting 4,,;, = *** = A, = p and using (2.3) and (2.5), we have

_ ket
E= "2 -0 "

_ e p D20+ ) (0~ )
=1 2 .
4(n — k)

Therefore we have proved the following result.
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ProposiTion 2.1. If M is a locally strongly comvex hypersurface of R" with
VC = 0, then M is a hyperbolic affine sphere.

§3. Hypersurfaces in R’

From now on M will be a hypersurface in R’ Then, using the notation of §2,
we have the following cases.

CaseA:k=1‘Thenll=%\/:7, L=2,=A= _‘/_TR'

So in this case Kei has a 3-dimensional eigenspace corresponding to the eigen-
value g Define the function f; to be the restriction of f to this eigenspace and
choose ¢, as the maximum of f,, thus A(K, e,, #) = 0 where u € UM, is orthogon-
al to both ¢; and e, Let the function f, be the restriction of f to B where B =
{u € UM, | h(u, e)) = h(u, ¢,) = 0}. We can choose ¢, as an absolute maximum
of f,. Then h(Keaes, ) =0 for u € UM, with h(u, e) = h(u, e,) = h(u, e¢) = 0.
Finally we can adjust the sign of e, such that h(Kezes, ¢,) = 0. Resuming, the
difference tensor K takes the following form:

K, e = 3—2:1 e, K, e, = — %i e, + ae,,

K=~ "5 Ao+ be, + de,, K, e =— *—”—2’1 e, — (a+ b)e, — de,,
—/=3 /=2 —J=2

Kpeo=—5 e Ke=—"5""¢ Ke=""5""¢

K, e; = be; + ce,, K, e, = ce; — (a + be,, Kye, = ce, — de,,

where @, b, ¢, d are real numbers and by assumption @ = 0, ¢ =2 0, d = 0. Note
that if @ = 0, then the function f, is identically zero, so also b = ¢ = d = 0.

Case B:k=2. Then A,=4 /2 , 2/ and/l —2—11

Here, we can choose ¢; in the direction of Kezez, such that (K, e, e) =0
and h(K, e, e;) = 0. Also, because of (2.2) we know that (K, e,, ¢,) = 0. Here
the difference tensor takes the following form:

[— 4 [— A
K,e,=4 51 e K,e,=2 —2Te1+ae3,
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__3/ e1+be2+de3+fe4,
K., = — 3/ 21 € — (@ + de; — fe,

Koe,=2 /57 € Kees= =3 /57 & Ke,=—3 2—11 €y
K, e, = ae, + be; + ce,, K, e, = ce; — be,, K¢, = ce, + fe, —(a + de,

where a, b, ¢, d, e, f are real numbers and by assumption a = 0.

. — A — A
Case C: k= 3. In this case, we have 4, = 2 W,22=23= 54 and
— A

e 122

Now we put

1 3
u=—§el+ﬂg;e4, e==*1.
Then we notice that
1 f

fw) = h(Ku, uw) = — 5 A, Z +——cfle).

8
If we choose ¢ such that £ f(e,) is positive, then

17

1 18
fa) = —gh+ g W= 4>,

which contradicts the maximality of A,. Thus this case cannot occur.

Expressing the equation R-K=0, using the expression for K obtained in
cases A and B, we obtain the following system of equations.

Case A.

(A1) 4a°b — 12ab” + 8b° — 20ac” + 8bc® — 54a + 1026 = 0,
(A2) c(12a® + 4ab + 4b* + 4¢° + 52) = 0,

(A3) d(16ab + 20b° + 28¢° + 24d” + 152) = 0,

(A4) bAb* + 4¢® — 4ab + 52) = 0,

(A5) (a + 2b) (4ab + 4b° + 4% + 12d° + 52) = 0,

(A6) d(124” + 28ab + 200 + 4¢° + 52) = 0,

(A7) abc =0;
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Case B.

(B1) b= 0,

(B2) ¢ =0,

(B3) af =0,

102 _
7

(B4) 3d° + 0,

5
(B5) 2a° — ad +52=0.
Now we will solve these systems explicitly.

Solving the equations in Case A. We already noted that if @ = 0 then b = ¢
= d = 0. This is a solution of the system.
We call it solution (S1).

Suppose @ # 0, then from (A7) it follows that b =0 or ¢ = 0. So we can
consider the following cases. '

(a) b= ¢ = 0. This is not possible since (A1) then implies that Az = 0.

A
(b) =0, ¢# 0. Then (Al) implies that ¢’ = — 7 and (A2) implies that
- —A
a= 3 Moreover, (A5) gives a’= 3 All the other equations are satisfied.
1
Setting u = — i (e, + e; — /3 ¢,), we notice that

h(Ku, u) = /:35—/2 > /—‘TA =gq,

but this contradicts the fact that f, attains an absolute maximum at e,.
() b#0,c=0,d=0. The equation (A4) implies that 4ab = 45" + 52,
Substituting this in (A5) we obtain that @ + 2b = 0, implying that & < 0. Using

54
(A4) we get b= — 12 We can compute easily that all the the other equations

are satisfied. We will call this solution of the system (S2).
d b#0,c=0,d#0. Again (A4) implies that 4ab = 4b> + 52. Substi-
tuting this into (A6) we get that (@ + 2b)(3a + 2b) = 0.

— 54
If a= —2b, then b= — 7 - Substituting this into (A3) gives us
— 54 ) o . .
d= % All the other equations are satisfied. We call this solution (S3).
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32 V=32
If 3¢ + 2b =0, then b = — 4 From (A5) we then obtain that d = “—5

1
Setting u = 7z (— e, + e;) we get

2
3/ 32 -2
h(Kuu, u) S Z —7 > /T,

which again contradicts the fact that f, attains an absolute maximum at e,.

Solving the equations in Case B. From the equation (B4) we conclude that

1
a= /—-%2 # 0. Thus (B3) implies that f=0. From (B5) we get d =

1 104
2./ 21 and all the other equations are satisfied.
. 7
If u = — cos ae, — sin ae,, « € R, such that tana = /§ then

— A
h(Kuu, u) = 3\/§ -21— > 21
which contradicts the fact that A; is an absolute maximum.

The three possible shapes for K. Corresponding to the three possible solu-
tions of the system (A), the following shapes for K can occur at p.

(S1)

3V— A
K, e = 5 e

— A
K.,,=K,e,= K, e,= — 5 6
- V= A Vy— A

K, e, 5 e K, e, = 5 K, e,=— 5 Cu
K,e;=K,e,= K, e,=0;
(S2)

3V— 1A
Kele1 —5 e

— V=2 — 52
Kpe,=—5—e+2 i3 @
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V=2 — 54
K, e, = — s a~ /13 %
=2 — 52
K, e, = — 5o~ 12 &
Vy— A — A Vy— 2
Kelez =T T 6 Ke1e3 9 ¢ K, e,= — 2
[ 5A 54
K, e;=— |— 19 s K =— |— 12 € K23e4 =0;
(S3)
K, e, = 3 ;l e,
V=2 54
K, e,= — 2 e, + 2 o1 &
v— A — 54 — 54
K,e;= — 5 e~ 1o & =+ 6 ¢
V=2 — 54 — 54
K, = — 9 &~ 19 &~ 6
V=2 -2 V=2
K, e,= — 9 K, e, = — 9 K, e, =— 2 fw
— 54 — 52 — 52
K,e;= — 12 % K,e, = — 12 % K, e, = 5

The following lemma can be proved as [DV1, Lemma 3.4].

LemMA 3.1. If the case (S3) holds at p then all the sectional curvatures arve zevo,

moreover h(K, K) = — %X‘ If the case (S1) holds at p then W(K, K) = — %Z

26
and if the case (S2) holds at p then h(K, K) = — 3 A

We therefore can conclude that, if (S1), respectively (S2) or (S3), is true at a
point p, then it is true for every point on M. If (S3) is true on M, then we can ap-
ply the main theorem of [VLS] and obtain that M is affine equivalent to an open
part of the hypersurface (1) of Theorem 1.

Having this basis {¢,} at a point p, we can translate it parallelly along geode-
sics through p and obtain a local frame {E;} on a normal neighborhood of p. Since
VK= 0, K will have the same expression in any point as in p. This is stated in
the following lemmas, which can be proved similarly as Lemma 3.5 and Lemma
3.6 of [DV1].

https://doi.org/10.1017/50027763000005006 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000005006

162 FRANKI DILLEN, LUC VRANCKEN, AND SAHNUR YAPRAK

LEmMMA 3.2. Let M be a 4-dimensional locally strongly convex affine hypersurface
in R® with V.C = 0. If (S1) holds at every point of M, then there exists a local basis
{E,, E,, E,, E}, orthonormal with respect to h, such that:

(1) atany p € M, f attains its maximum value at E,(p),

(2) atanyp € M, {E,(p), E,(p), E;(p), E,(p)} satisfies (S1)

(3) lA7XE1 = 0, for any vector field X on M.

Moreover, (M, h), considered as a Riemannian manifold, is locally isometric to
R X H, where H is the 3-dimensional hyperbolic space of constant negative sectional

54
curvature 1 After the identification, E, is tangent to R.

LEmMA 3.3. Let M be a 4-dimensional locally strongly convex affine hypersurface
in R® with VC = 0. If (S2) holds at every point of M, then theve exists a local basis
{E,, E,, E,, E} orthonormal with respect to h, such that:

(1) atany p € M, f attains its maximum value at E, (p),
(2) atany p € M, {E,(p), E,(p), E;(), E,(p)} satisfies (S2),
(3) VyE, = V E, = 0, for any vector field X on M.

Moreover, (M, h), considered as a Riemannian mawifold is isometric to R X R X H,
54
wheve H is the hyperbolic plane of constant negative sectional curvature 3 After the

identification, E| is tangent to the first R-component and E, is tangent to the second.

§4. Proof of Theorem 1

Using [DVZ2], it is easy to compute that the hypersurface (2) of Theorem 1
satisfies the data of Lemma 3.2, and that the hypersurface (3) satisfies Lemma 3.3
for some appropriate choice of A.

Let M satisfy Lemma 3.2, and suppose that F : M— R X H is an isometry
(we should rather consider a suitable open subset of M, but we don’t really worry
about this). Let f : R X H—R"" be the immersion giving the hypersurface (2),
where we apply a homothetic transformation to make sure that both scaling
factors A are the same, and let g : M— R denote the immersion of M.

Let {E,, E,, E,, E,} be the frame on M satisfying Lemma 3.2. Then it can be
seen easily that {FyE,, F E, F.E, F.E,} is a frame on R X H such that the
difference tensor of R X H has the form (S1). Hence F preserves both the affine
metric 4 and the cubic form C. Applying the fundamental uniqueness theorem of
affine differential geometry, for instance [D, Theorem 3.5], we obtain that there is
an affine transformation 4:R"'— R™" such that A(g) = f(F). This means,
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forgetting about the immersions, that M is affine equivalent to an open part of (2).
If M satisfies Lemma 3.3, we can show similarly that it is affine equivalent to
an open part of (3).

§5. Proof of Theorem 2

The fact that M is an affine sphere follows from [BNS]. If M satisfies VC = 0,
then VR =0. Let p, ¢ € M and let {¢} be any orthonormal basis of T,M. We
can translate it parallelly along geodesics through p and obtain a local frame
{E;} on a normal neighborhood of p. Since VK= 0and VR = 0, the numbers Cijk
= W(K(E, E,), E) and 7,, = h(R(E,, E)E,, E) will be constants. If we
translate {¢;} parallelly to g, we obtain an orthonormal basis {f,} of T,M. Let L:
T,M— T,M be the linear isometry mapping ¢; onto f. Then L preserves curva-
ture, such that from [O'N, Theorem 8.14] we know that there is an isometry f : U
— M from an open U around p such that f(p) = ¢ and fi, = L. Let F, = f,E,,
then the frame {F,} is obtained from {f} by parallel translation as above.
Moreover ¢;, = h(K(F,, F,), F,) and 7, = h(R(F,, F)F,, F,) are the same
constants. Therefore f preserves both % and K, so by the fundamental uniqueness
theorem, we again obtain that there is an equiaffine transformation A of R"" such
that A(x) = f(x) for all x € U. Hence M is locally homogeneous.
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