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AFFINE HYPERSURFACES WITH PARALLEL CUBIC FORM
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§1. Introduction

As is well known, there exists a canonical transversal vector field on a non-

degenerate affine hypersurface M. This vector field is called the affine normal.

The second fundamental form associated to this affine normal is called the affine

metric. If M is locally strongly convex, then this affine metric is a Riemannian

metric. And also, using the affine normal and the Gauss formula one can introduce

an affine connection V on M which is called the induced affine connection. Thus

there are in general two different connections on M: one is the induced connection

V and the other is the Levi Civita connection V of the affine metric h. The differ-

ence tensor K is defined by K(X, Y) = KXY = VXY - VXY. The cubic form C is

defined by C = Vh and is related to the difference tensor by

h(KxY,Z) = -\c{X, Y,Z).

The classical Berwald theorem states that C vanishes identically on M, implying

that the two connections coincide, if and only if M is an open part of a

nondegenerate quadric.

In this paper we will consider the condition VC = 0 for a 4-dimensional

locally strongly convex affine hypersurface in R . Clearly VC = 0 if and only if

VK = 0. For surfaces this condition has been studied by M. Magid and K. Nomizu

in [MN], where they proved the following;

THEOREM A [MN]. Let M2 be an affine surface in R3 with VC = 0. Then either

M is an open part of a nondegenerate quadric (i.e. C = 0) or M is affine equivalent to

an open part of the following surfaces:
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(1) xyz = 1,

(2) x(y2 + z) = 1,

(3) z = xy +-5- y (the Cayley surface).

A generalization of this theorem to 3-dimensional locally strongly convex

hypersurfaces in R is given by the first two authors in [DV1]. There the follow-

ing classification theorem is proved.

THEOREM B [DV1]. Let M be a 3-dimensional affine locally strongly convex

hypersurface in R with VC — 0. Then either M is a part of a locally strongly convex

quadric (i.e. C = 0) or M is affine equivalent to an open part of one of the following

two hypersurfaces:

(1) xyzw = 1,
/ O v / 2 2 2x3 2 Λ

(2) (y - z - w ) x = 1.

Comparing Theorem A and Theorem B with the classification of locally

strongly convex homogeneous hyperspheres in R and R in [NS] and [DV3]

(homogeneous in the sense used therein), we find that a locally strongly convex

affine hypersphere in R or R is homogeneous if and only if it satisfies VC = 0.

In [DV2] it is proved that the hypersurface in R with equation

( 1 2 / 1 2 , \ 3 3 Λz — -wx /u — -wy /υ) u υ — 1,

is a homogeneous hyperbolic affine hypersphere in R . It however does not satisfy

V C — 0. In the present paper we give a classification of all locally strongly

convex affine hypersurfaces in R with VC = 0. In particular, our main result is

the following theorem.

THEOREM 1. Let M be a 4-dimensional locally strongly convex affine hypersurface

in R with VC = 0. Then either M is an open part of a locally strongly convex quadric

(i.e. C = 0) or M is affine equivalent to an open part of one of the following three

hypersurfaces:

(1) xyzwt = 1,
/o\ / 2 2 2 ,2\2 -,

(2) (y —z —w —t)x=l,
(3) (z2-w2-t2)\xy)2=l.

All examples occurring in the previous theorems are special cases of the

following class of hypersurfaces of R satisfying VC = 0 with equation
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k Pi
T-r / 2 vi 2 \Pi+l/ \2 -,

Π C r ( ί + 1 - Σ x,j) (ί/i z/s+1) = 1,

where w = Σi=ί(pi + 1) + q and

are affine coordinates of RM+1. The theorems mentioned above show that this class

gives all examples of locally strongly convex hypersurfaces with VC = 0 for n =

2, 3, 4. This is however not true for n — 5, as follows from the discussions in

[DV2].

All examples occurring are also homogeneous. This property remains true in

all dimensions. We will prove this in the final section.

THEOREM 2. Let M be a nondegenerate affine hypersurface in R with VC — 0.

Then M is a locally homogeneous affine sphere.

We will use the formalism and the notations of [N]. For a short survey of the

preliminaries that we need in this paper, we refer to [DV1, §2].

§2. The construction of an orthonormal basis

In this section, we consider an n-dimensional, locally strongly convex affine

hypersurface M in R which has parallel cubic form, i.e. which satisfies VC = 0.

From [BNS], if follows that M is an affine sphere, so the affine shape operator is

S = λl

Since VC = 0 implies that h{C, C) is constant, there are two cases. First if

h(C, O — 0, then C — 0, h being definite, and therefore M is an open part of a

quadric. Otherwise, C never vanishes, and we assume this for the remainder of

this section.

Let p ^ M. We now choose an orthonormal basis with respect to the affine

metric h at the pointy in the following way, similar as in [DV1]. Let UMP — {u e

TPM\ h(u, u) = 1}. Since M is locally strongly convex, UMP is compact. We de-

fine a function / on UMP by f(u) = h(Kuu, u). Let eγ be an element of UMP at

which the function/attains an absolute maximum, lίfie^ — 0, then/ is identical-

ly zero, and therefore, K being symmetric, K = 0. This contradicts our assump-

tion, s o / ( ^ ) > 0.

Let u G UMp such that h(u> eλ) = 0, and let g be a function, defined by

git) = f(cos(t)eι + sin(t)u). Since g attains an absolute maximum at t = 0, we
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have £'(()) = 0, which means that h(Kβιelf u) = 0. So eί is an eigenvector of Keι,

say with eigenvalue λv Let e2, e3,. . . ,en be orthonormal vectors, orthogonal to eh

which are the remaining eigenvectors of Kei with respective eigenvalues λ2, λ3,. . .,

λn. Further, since eλ is an absolute maximum of/ we know that g"(0) ^ 0 and if

g"(0) = 0, then also g"(0) = 0. This implies that

(2.1) λ, - 2λ{ ^ 0

and

(2.2) if λι = 2λif then h(Keeif et) = 0

for / ̂  (2,3, . . ,,n}. From the apolarity condition we have

(2.3) λ, + λ2 + - + λn = 0.

Now VK = 0 implies that R'K = 0, and as in the proof of [DV1, Lemma 3.3], this

implies that

(2.4) (λ, - 2λt)(- λ-λ] + λλλt) = 0 .

If λλ = 2λ{ for all i e {2,3,...,«}, then (2.3) implies that ^ = 0 which is a

contradiction. Therefore there is a number k, 1 < A: < n such that, after rear-

ranging the ordering,

Moreover, if i > kf then (2.4) implies that

(2.5) - λ~ λ] + λ.λ, = 0.

Subtracting (2.4) for i, j > k, we obtain

Ui-λj)^- Ui + λj)) =0.

But for i9 j > k one can check that λ1 — (λ{ + λ}) Φ 0. Thus λi = λj for k < i, j

< n. Setting λk+1 = = λn = μ and using (2.3) and (2.5), we have

+ l 1

-k)Λl2(n-k)

_ 3 _ ,2

4(n - A;)2

Therefore we have proved the following result.
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PROPOSITION 2.1. If M is a locally strongly convex hypersurface of Rw with

VC = 0, then M is a hyperbolic affine sphere.

§3. Hypersurfaces in R

From now on M will be a hypersurface in R . Then, using the notation of §2,

we have the following cases.

So in this case Ke. has a 3-dimensional eigenspace corresponding to the eigen-

value μ. Define the function fx to be the restriction of / to this eigenspace and

choose e2 as the maximum of fv thus h{Kee2J u) = 0 where u e UMP is orthogon-

al to both e1 and e2. Let the function f2 be the restriction of / to B where B =

{u G C/M^ I h(u, ej = h(u, e2) = 0}. We can choose e3 as an absolute maximum

of f2. Then h(KeeZi u) = 0 for M e ί/Λf, with A(«, ^) = A(M, ^2) = A(M, ^3) = 0.

Finally we can adjust the sign of eA such that h(Kee3, e4) > 0. Resuming, the

difference tensor K takes the following form:

Ke2

e3 ~ be3 + ce4i Ke<e4 — ce3 — (a + b)e4, Ke3e4 = ce2 — de4f

where a, b, c, d are real numbers and by assumption a > 0, c > 0, d > 0. Note

that if a — 0, then the function f2 is identically zero, so also b — c — d — 0.

Case B: k — 2. Then λγ — 4 / -̂i , /ί2

 = 2 /~oϊ~ and λ3 = λ4— — 3 /~oϊ~

Here, we can choose e3 in the direction of Kee2, such that h(Kβ2e2, e4)
 = 0

and h(Kβ2e2, e3) > 0. Also, because of (2.2) we know that h(Kee2, e2) = 0. Here

the difference tensor takes the following form:

Λ<Ί ei 4V 21 β l ' Λ<!2 2 V̂ 21 βί "*" α e 3 '

https://doi.org/10.1017/S0027763000005006 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000005006


158 FRANKI DILLEN, LUC VRANCKEN, AND SAHNUR YAPRAK

KΛeΛ = - 3.

ee4 = — 3

22 *i + be2 + de3 + feA,

— fe4,

Kβ2e3 = ae2 + be3 + ce4, Kee4 = ce3 - be4, Ke3e4 = ce2 +fe3—(

where a, b, c, d, e, f are real numbers and by assumption a > 0.

Case C: k = 3. In this case, we have λ± = 2 / 04 > 2̂ = ^3 = / 94 and

Now we put

Then we notice that

= — "2 ^ H — 2 ~ β4» ε = — l

If we choose ε such that εf(eA) is positive, then

1 18 17
f(u) > — g- /ίx + -g- λx — -g- ĵ_ > /ίi,

which contradicts the maximality of Λ^ Thus this case cannot occur.

Expressing the equation R * K = 0, using the expression for K obtained in

cases A and B, we obtain the following system of equations.

Case A.

(Al) 4a2b - I2ab2 + 8b3 - 20ac2 + 8bc2 - 5λa + lOλb = 0,

(A2) c(12a2 + Aab + 4ί>2 + 4c2 + 5λ) = 0,

(A3) d(16ab + 20b2 + 28c2 + 24rf2 + 15Λ) = 0,

(A4) b(4b2 + 4c2 - 4ab + 5λ) = 0,

(A5) (a + 26) (Aab + 4ft2 + ±c + 12d2 + 5^) = 0,

(A6) d(\2a2 + 28ab + 20b2 + 4c2 + 5λ) = 0,

(A7) abc = 0;
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Case B.

(Bl) 6 = 0,

(B2) c=0,

(B3) af= 0,

(B4) 3a2 +-^ = 0,

? 5

(B5) 2a - ad + jλ = 0.

Now we will solve these systems explicitly.

Solving* the equations in Case A. We already noted that if a — 0 then b — c

— d = 0. This is a solution of the system.

We call it solution (SI).

Suppose a Φ 0, then from (A7) it follows that b = 0 or c — 0. So we can

consider the following cases.

(a) b — c — 0. This is not possible since (Al) then implies that λa = 0.

2 λ

(b) b = 0, c Φ 0. Then (Al) implies that c = — -j and (A2) implies that

α = o . Moreover, (A5) gives d — ~ o ~ All the other equations are satisfied.

Setting u = -j=- (e2 + e3 — \^3e4), we notice that

h(Kuu, u) =

but this contradicts the fact that/ 2 attains an absolute maximum at e2.

(c) b Φ 0, c = 0, rf = 0. The equation (A4) implies that 4α6 = 462 + 5λ.

Substituting this in (A5) we obtain that a + 2b = 0, implying that b < 0. Using

(A4) we get b — — ~τw. We can compute easily that all the the other equations

are satisfied. We will call this solution of the system (S2).

(d) 6 Φ 0, c = 0, d Φ 0. Again (A4) implies that 4ab = 462 + 5λ. Substi-

tuting this into (A6) we get that (a + 26) (3a + 26) = 0.

If a — — 26, then b — — I—γχ~ . Substituting this into (A3) gives us

d = /—^—. All the other equations are satisfied. We call this solution (S3).
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If 3a + 2b = 0, then b2 = 7-. From (A5) we then obtain that d

Setting w = -Έ=- (— e2 + e3) we get

which again contradicts the fact that f2 attains an absolute maximum at e2.

Solving the equations in Case B. From the equation (B4) we conclude that

a= I- Ί^yλ Φ0. Thus (B3) implies that / = 0. From (B5) we get d =

~2 oϊ~ and all the other equations are satisfied.

\ίu—— cos ae3 — sin ae4, a e R, such that tan a = /-g then

h(Kuu, u) = λ1

which contradicts the fact that λι is an absolute maximum.

The three possible shapes for K. Corresponding to the three possible solu-

tions of the system (A), the following shapes for K can occur at p.

(SI)

= K..eA = - ev

2 ^2f z i e i^ 4

(S2)

2 *'•

12
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•e, -
V 12

r=l
3, K^ = ~

v.
(S3)

K._eΛ = -

Kee2 = 2~ , Keιe3 = e3,

12 ^ ^H*I V 12

The following lemma can be proved as [DVl, Lemma 3.4].

LEMMA 3.1. // the case (S3) holds at p then all the sectional curvatures are zero,

67 9
moreover h(K, K) = — ~yχλ. If the case (SI) holds at p then h(K, K) — — -w λ

and if the case (S2) holds at p then h(K, K) = o~ λ.

We therefore can conclude that, if (SI), respectively (S2) or (S3), is true at a

point p, then it is true for every point on M. If (S3) is true on M, then we can ap-

ply the main theorem of [VLS] and obtain that M is affine equivalent to an open

part of the hypersurface (1) of Theorem 1.

Having this basis {et} at a point p, we can translate it parallelly along geode-

sies through p and obtain a local frame {£,-} on a normal neighborhood of p. Since

VK = 0, K will have the same expression in any point as in p. This is stated in

the following lemmas, which can be proved similarly as Lemma 3.5 and Lemma

3.6 of [DVl].
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LEMMA 3.2. Let M be a A-dimensional locally strongly convex affine hypersurface

in R with V C = 0. // (SI) holds at every point of M, then there exists a local basis

{Ev E21 E3, E4}, orthonormal with respect to h, such that:

(1) at any p ^ M, f attains its maximum value at E^p),

(2) at anyp e M, (E^p), E2(p), E3(p), E,(p)} satisfies (SI)

(3) VXEX — 0, for any vector field X on M.

Moreover, (M, h), considered as a Riemannian manifold, is locally isometric to

R X H, where H is the 3- dimensional hyperbolic space of constant negative sectional

curvature —τ~. After the identification, Eλ is tangent to R.

LEMMA 3.3. Let M be a 4-dimensional locally strongly convex affine hypersurface

in R with VC — 0. If (S2) holds at every point of M, then there exists a local basis

{Ev E21 E3, E4} orthonormal with respect to h, such that:

(1) at any p ^ M, f attains its maximum value at Eλ{p),

(2) at anyp e M, {Eλ{p), E2(p), E3(p)f E4(p)} satisfies (S2),

(3) VxEι = VXE2 = 0, for any vector field X on M.

Moreover, (M, h), considered as a Riemannian manifold is isometric to R X R X H,

where H is the hyperbolic plane of constant negative sectional curvature ~o~. After the

identification, Ex is tangent to the first R- component and E2 is tangent to the second.

§4. Proof of Theorem 1

Using [DV2], it is easy to compute that the hypersurface (2) of Theorem 1

satisfies the data of Lemma 3.2, and that the hypersurface (3) satisfies Lemma 3.3

for some appropriate choice of λ.

Let M satisfy Lemma 3.2, and suppose that F : Λf —• R x H is an isometry

(we should rather consider a suitable open subset of M, but we don't really worry

about this). Let / : R X H—*R be the immersion giving the hypersurface (2),

where we apply a homothetic transformation to make sure that both scaling

factors λ are the same, and let g : M—> Rn+ denote the immersion of M.

Let {Elf E2, E3, Ej be the frame on M satisfying Lemma 3.2. Then it can be

seen easily that {F*Elt F*E2, F*E3, F*EA} is a frame o n R x f f such that the

difference tensor of R X H has the form (SI). Hence F preserves both the affine

metric h and the cubic form C. Applying the fundamental uniqueness theorem of

affine differential geometry, for instance [D, Theorem 3.5], we obtain that there is

an affine transformation A : Rn —»Rn such that A(g) =f(F). This means,
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forgetting about the immersions, that M is affine equivalent to an open part of (2).

If M satisfies Lemma 3.3, we can show similarly that it is affine equivalent to

an open part of (3).

§5. Proof of Theorem 2

The fact that M is an affine sphere follows from [BNS]. If M satisfies VC = 0,

then VR = 0. Let p, q ^ M and let {e^ be any orthonormal basis of TPM. We

can translate it parallelly along geodesies through p and obtain a local frame

{E) on a normal neighborhood of p. Since VK = 0 and VR = 0, the numbers cijk

= h(K(Eif Ej), Ek) and rijkl = h(R(Eiy Ej)Ek, Et) will be constants. If we

translate {e{} parallelly to q, we obtain an orthonormal basis {/,} of TqM. Let L :

TPM—* TqM be the linear isometry mapping et onto ft. Then L preserves curva-

ture, such that from [O'N, Theorem 8.14] we know that there is an isometry/ : U

—> M from an open U around p such that f(p) = q and f*p = L. Let F{ = f*E{,

then the frame {Ft) is obtained from if) by parallel translation as above.

Moreover cijk = h{K(Fif F), Fk) and rijkl = h(R(Fi9 F)Fki F,) are the same

constants. Therefore / preserves both h and K, so by the fundamental uniqueness

theorem, we again obtain that there is an equiaffine transformation A of Rn+ such

that A(x) = f(x) for all x ^ U. Hence M i s locally homogeneous.
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