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FORMS OF LOW DEGREE IN FINITE FIELDS

MORRIS ORZECH

It is known that diagonal forms over a finite field have

non-trivial zeros if the number of variables, or the size

of the field, is large enough. We consider diagonal forms

of degree up to five in cases where the size hypotheses are

not satisfied. There are finitely many fields not covered

by the known results, but a direct computational test of all

possible equations is impractical. We describe means of

cutting down considerably on the number of fields and the

number of equations for which there exist diagonal forms, of

degree up to 5 and in 3 variables, with no non-trivial zero.

The study of equations over finite fields, of whether they have

solutions, and how many, can be appealing because the questions asked are

easy to understand, and conjectures can be vetted by direct computation.

An example of a result that has come to be widely known because it is

striking, yet elementary to prove is the theorem of Chevalley which

states that in a finite field F any equation

(1) a2xf + aJC* + ... + a n X * = 0 , n> 1

with a-, ..., a in F has a solution (x~, ... , x ) £ (0, ... , 0)
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46 Morris Orzech

provided n > d. But what happens if n <_ d ? Most readers will have

seen the

equation

seen the remark that for F the prime field with p elements the

(2) tf.-1 +t>~1+ ... +#-\=0
1 2 p-1

cannot have a nontrivial solution in F since V = 1 for any nonzero

b in F . Though this example shows that the condition n > d cannot be

simply dropped in the statement of Chevalley's theorem, it does not

indicate whether a weaker condition might suffice. Indeed, an equation

seemingly worse than (2) in that the number of variables is strictly less

than the degree, namely

has a solution for any a. t . . . 3 a. , in F as long as p is an odd

prime greater than three, and not necessarily equal to the characteristic

of F. This fact is a special case of a result proved by Gray ([ 7], Theorem

A) , and we will indicate later why it is true.

There are other results which provide conditions under which

equations such as (1) have solutions even if n <_d. The kind of result

we will focus on is that which guarantees that (1) has a solution provided

the field F is large enough. Although we will for the reader's

information mention facts relating to fairly general and standard equations,

our attitude towards these equations will not be the usual one. Rather

than dismiss a question once it has been reduced to a computational one,

we will persist in answering it completely. It turns out that the

computations needed for a complete answer can seem daunting even in

special cases because of the many equations to be tested. This leads us

to examine ways of reducing to a set of computations which we can

implement. The situation in which we will provide a complete answer as to

for which F equation (1) always has a nontrivial solution is that where

n = 3 and d <_ 5. Where less is to be lost in simplicity than is to be

gained from a more general perspective, we will treat equation (1) without

restricting n or d.
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Forms of low degree 47

1. Notation and basic reductions

Throughout our discussion F will be a finite field with q

elements. We will write F for the set of nonzero elements of F and

r , d a positive integer, for the set of nonzero elements of the form

x . A solution (x.3.,.3x ) to (1) will be called nontrivial if at least

one x. is nonzero. When we refer to a solution of (1) we will assume it

is nontrivial unless we specifically say otherwise. It is obvious that

if any a. is zero then (1) has a solution, hence we will also assume

all a. are nonzero. It will then make sense to refer to the coset

a-F\ of Ff^ in F* without explicitly writing a. £ 0. The fundamental

way in which the cosets of F*^ in F* play a role is summarized in the

next statement, whose proof is immediate:

(1.1) Whether equation (1) has a solution depends only on the cosets

a.F*^ , and not on the a. themselves.
Is 1/

Now let 6 = god(q-l,d). It is easy to see that e = F and that

S is the minimum positive integer 8 for which F^ = r. Let U,

denote the group of dth roots of unity in F . Since 6 divides q-1

there is a primitive 6th root of unity in F* and we have U-, = U. and

\Ui| = 6 , where |s| denotes the cardinality of the set 5. The group

homomorphism x •*• x of F to itself therefore has kernel of order 6

and it follows that \F^\ = (q-l)/6. For convenient reference we record

these observations below.

(1.2) Let 6 = gcd(q-l,d). Then F* = FS , i/rf = tffi , \V^ = 6 ,

\Fd\ = (q-l)/S and [FrF^] = 6.

We will now introduce a clever device used by Lewis [5] to show that

equation (1) has a solution for d = n = 3 and extended by Gray [l] to a

more general setting. Let W be the set of elements of F of the form

x -1 , x in F*. By (1.2) F^ has (q-l)/S elements, and W has one

element less than c , since zero is certainly of the form x -1 but is

not in W. Hence \w\ = -l+(q-l)/6. Then

|(/U F^U W~2\ < -3+3(q-l)/6 ,
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where W~ = {x~ | I in W }. If 6 > 3 we have that

| W U /• U W'11 < q-1 ,

so there exists b in F* not in V II r U f/~ . It follows that:

(1.3) For 6 > 3 there exists i in F* such that the cosets F^

, (l+b)F^ are distinct.

With this at hand, we will show how to analyze equation (3).

THEOREM 1.4. Suppose d _> 4 and -1 € F^ (i.e. ahar(F) = 2 or

26\(q-l)). Then any equation

(4) afc + as?q + ... + ad_2^_2 = 0

has a solution in F.

Proof. If two of the cosets a.IT are equal then (1.1) and the

hypothesis that -1 is a dth power imply that equation (4) has a solution.

We therefore assume the cosets a-i^ > • • • •> arj -f
 a r e distinct. Then

[F : r~\ _>_ ̂ --1 i hence by (1.2) we have 6 _> d-1 , and since 6 divides

d we must have 6 = d.

Let ? be a generator of the cyclic group F . Then the cosets

F^, r.F , ... j x> * are distinct, and must be all the cosets of r

in F . By (1.2) we may assume each a. is in the set {1,1,,..., X, }.

Since the a. are distinct, precisely one coset £, r , i = 03 ... s d-1;V* , i = 0, ... 3 d-1

is missing among the a .F^. Suppose for example that £, F^ is the

missing coset, so that equation (4) may be replaced by

a .e . Suppose for example that £

This equation has a solution if and only if that obtained in multiplying

by £ has a solution. But multiplying by C results in an equation

which has a solution if and only if

has a solution. Here £ e = e is the missing coset. Successive
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multiplications by C lead to equations exhausting all possibilities as

to which coset of F" is not represented among the a Jr.

Now use (1.3) to obtain b such that F^, bF^ , (l+b)r are

distinct cosets. Since d j> 4 there exists £ with 0 <_ i <_ d-1

such that ?V^ is distinct from the cosets F^ , bv , (l+b)F^ .

Our comments above clearly imply that after suitable renumbering of the

X. and a. we may assume equation (4) is of the form
Is If

= 0 .

IT"Since -1 is in IT" this equation has a solution with X = X- = 1 }

hence (4) has a solution. This proves Theorem 1.4.

There are variants of Theorem 1.4 in which stronger hypothesis leads

to better conclusions. For example, if d is an odd prime the equation

has a solution whenever t <_ \_2(d+2)^~\-4 , where [m] is the largest

integer less than or equal to m. For d not necessarily prime, with -1

in IT" , and d sufficiently large, the same equation has a solution if

t _< d-log-d . The methods involved in proving these results are more

sophisticated than ours. The interested reader is referred to [1] and

[9].

2. Reduction to a computational problem

Our original equation (1) is the homogeneous case of the more general

diagonal equation

(5) a/^+a2xf + ... +/?

Weil [10] used standard and fairly elementary facts involving Gauss and

Jacobi sums to provide an estimate for N , the number of solutions

fz? , , x ) (including the trivial one) to (5) with x~, ... , x

in F. For F a field with q elements we have:
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(2.1) \N - qn~1\ <M(d13...3dn)(q-l)q(n/2)~1
 3 where

U(dn3... 3d ) is the number of n-tuples (j13 3j ) with j . an integer,
J. ft J. ft Is

0 < j . ±d.-l for i=l3...3n and (o'-,/dn + ... + j/d ) an integer.
Is is J. J. ft ft

This result was proved by Hua and Vandiver as well - the reader may

find a pleasant exposition and historical comments in [3, pp. 103-105].

When we specialize to equation (1) we have that each d. is d.

We write M (d) for M(d}... 3d). In this case there is a concise formula

for Mn(d) [7, p. 169]:

(2.2) Mjd) = ((d-lf'1 + (-l)n)(d-l)/d .

This formula can be proved thus: To have (j-.3...3d ) be a suitable

n-tuple we may choose j-,>...3j -, almost arbitrary integers between 1

and d-1 , and let j = dk - (j. + ... + j .), where k is the least

positive integer m with dm >_ (3' + ... + j _J. Among the (d-l)n~

(n-1) -tuples 0-j • • • j J •,) 1 the only ones which do not give a suitable

fj'j,...,i J are those for which j- + ...+ j . = dm for some integer

m. But there are M Ad) of these and (2.2) follows by induction on n.

Let us now specialize further to the situation where n = 3.

We will then be considering the equation

(6) a-rl + a22 +

We will write M(d) for M-(d), which equals (d-1)(d-2). If equation
o

(6) has only the trivial solution then N = 1 and (2.1) implies that

(q+1) <_ (d-1)(d-2)qz. By use of the quadratic formula it is straight-

forward to obtain the following result.

(2.3) Equation (6) has a solution if F has q elements, where

q > i[M(d)z - 2 + M(d)(M(d)2 - 4)s] and M(d) = (d-1) (d-2).

TietaivSinen [9, Theorem 7, p. 27] proved a result in the spirit of

(2.3) but which also applies to equations with more than three unknowns.

https://doi.org/10.1017/S0004972700001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700001702


Forms of low degree 51

He showed that if -1 is in r~ and q _> n~ d(d-l)n' then

equation (1) has a solution. For n=3 and d ranging through the small

values we will examine, (2.3) gives a smaller value of q than this

result.

The information that (2.3) yields when d is 2 or 3 can be

obtained without use of formula (2.1). When d=2 it is simple to see

that every equation (6) has a solution by recalling that in a finite field

every element is a sum of two squares, and using (1.1) along with the
* 2

observation that [F :F ] <_ 2. When d=3 we have that 6 , the greatest

common divisor of d and q-1 is 1 or 3. Then (1.2) and (1.3) imply

that every equation (6) has a solution.

For d=4 , (2.3) implies that every equation (6) has a solution if

q > 34. To decide for which q <^ 34 there are equations (6) admitting

only the trivial solution we need a computational device for checking all

such equations without going through every case. This concern will be

the focus of the next section.

3. The computations

The values of q for which the equation

(7) a/2 + a/2 + a/z = 0

may fail to have a solution have been shown to be among q = 2, 3, 4, 5,

7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32. If gad(4,q-l) < 4

then every equation (7) has a solution, by (1.2) and our analysis of (6)

for d = 2. This reduces our work to considering only q = 5, 9, 13, 17,

25, 29. If 8 divides q-1 then there is a primitive eighth root of

unity, C , in F . Then ?** = -1 and Theorem 1.4 implies that equation

(7) has a solution. Thus we eliminate q = 9, 17 and 25 from

consideration. We cannot eliminate q = 5, 13, 29 since in these cases

there are equations such as (7) with only the trivial solution, namely

those with a. = ao = a, = 1 for q=5 and q=29 and with an = a- =1 <4 o 1 2
= -a- = 1 for q = 13. The search for these examples among the fields

o

P., F-_ and F~n can be shortened so that in each case only a few

equations need to be tested. The following discussion shows how this is

done.
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For q = 5, 13, 29 we have a primitive fourth root of unity £

in F , with t, not in F since 8 does not divide q-1. The cosets

4 4 4 4
F , --F j C? , -Z.F are therefore distinct and since by (1.2) there are

4 *four cosets of F in F , we have listed them all. We now use (1.1)
4

to observe that if the cosets a.F , i = 1, 2, 3 are distinct, there

are two of them such that one contains 1, the other -1, or one contains

C, the other -C,. In either case equation (7) has a solution. We may

therefore consider only the case where the cosets a.F are not distinct.
"Xr

Solving (7) is then equivalent to solving an equation of the form

(8) X* + X4
2 + aX4

s = 0 ,

where o is one of la -1, T,, -t,. Checking each of the four equations

(8) in each of the three fields F^ F13* *'09 i s n o t a difficult o r

onerous task, and the offending equations can be readily detected.

Having shown that FCJ F, } Fon are the only fields for which (6)

can fail to have a solution when d = 4, we will attack the case d = 5.

Using (2.3) we see that the equation

(9) a/t + a/2 + a/3 = 0

has a solution when q > 142. We can eliminate those q with

gcd(5,q-l) = 1, leaving only the cases q = 11, 16, 31, 41, 61, 71, 81,

101, 121, 131.

If two of the cosets a.F are equal then (9) has a solution
5 * 5

because (-1) = -1. We may therefore assume the cosets a.F are

distinct for i = 1, 2, 3. Hence if I, is a primitive fifth root of

unity, solving (9) is equivalent to solving one of the six equations

(10) v^ j . ry5 J. r
4Y^ - n y^ + r^y^ + r^y^ - n

A, t g l , + ; A - U A 1 f t, A _ f L, A 7 — U
1 6 6 l c o

= 0 x* + ,2xi + c V o 0

If we multiply the f i rs t equation in each column by a suitable power of
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we can generate the other equations in the column (after renumbering the

X.). We have shown:

(3.1) All equations (9) have a solution if and only if each of the

two equations

(11) A- + C"o ~^ £ ̂  7 ~ ^ ^ 1 ^~ £ O ̂  £ 7 = ^

or equivalently, each of the two equations

i + a5 + c V = o i + r,xs + ? V = o

has a solution.

We can now eliminate from consideration those q where 25

divides q-1 (which unfortunately means only the case q = 101) since for

these C = a and each of the equations in (11) has a solution with

Xl - 1' X2 ~ "a > X3 ~ °-
Our next reduction depends on using (1.3). Since we are assuming

6 = 5 , there exists b in F with F5, bF , (l+b)F distinct cosets.

By (3.1) the equation

(13) X5, + bX5o + (Ub)X
5. = 0

must be equivalent (in the sense of having a solution) to one of the

equations in (11). Since (13) has the solution X- = X~ = -X- = 1, it

follows that:

(3.2) At least one of the equation in (11) has a solution.

By using (3.1) and (3.2) we can eliminate the cases in our list

where q = pr , p the characteristic of F, f > 1. For then

(a + bfi = cP + V. If the first equation of (11) has a solution

CX-JX-JX-J then raising to the pth power gives a solution (af^sfL,^)

to the equation:

(14) X + CX + C, rX - 0 .
i a o

In the list of the q we are considering the values of p thus arising

are p = 2, 3 and 11. Looking at table (10) we see that equation (14) is
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in each case in the second column. It follows that the two equations in

(11) are equivalent, hence by (3.1) and (3.2) all equations (9) have a

solution when q = 16, 81 and 121.

We are left to consider the two equations in (12) for q = 11, 31,

41, 61, 71, 101, 131. For q = 11 we can take C, = 4 as our fifth root

of unity, and since F = {±1} it is easy to see that the second equation

in (12) does not have a solution. Although it turns out that except for

q = 11 both equations in (12) have solutions, we are not able to offer a

pleasant explanation for this fact. However, the computations involved

in disposing of the open cases are not particularly burdensome, owing to

the nice form of the equations in (12) . Indeed, once we choose a fifth

root of unity Z, and compute the cosets £ F , i = 0, . . . ,3 we need only

inspect each of the pairs of cosets (x,F ,t, F ) , (x,F ,x, F ) to see if

there is an element in the first coset of the pair which differs by ±1

from an element in the second coset of the pair (we are using the fact

that (-1) = -1. We will list the results of our computations in a table

so the reader can verify them, and after that we will summarize our

conclusions about equation (9) . In our table we write n for the n-fold

sum of 1 in F , (x,y) for a solution to the equation heading the

column and ?. for a primitive fifth root of unity.

q

31

41

61

71

131

2

-4

-3

5

-42

(-3,-3)

(14,-1)

(-4,8)

(2,-2)

(2,-23)

(3,-3)

(3,3)

(2,1 )

(-2,-1)

(-6,21)
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THEOREM 3.1. Let F be a finite field with q elements.

Let a^a^a, be elements of F. The equation

aA + aA + aA = o
has nontrivial solutions for d = 2 and d = 3. For d = 4 there exist

a^1an,a- for which the equation fails to have a nontrivial solution

precisely when q = 5, 1Z, 29. For d = 5 such a. exist precisely

when q = 11.

4. Sums of two dth powers

There is clearly a connection between the existence of solutions

to the equation

(15) a^ + bxj, + cX^ = 0

and solutions to the equation

(16) a^ + b/1 = -c .

If (16) has a solution so does (15), but the reverse need not be true if

all solutions (xnixolxj to (15) have X- = 0. We would therefore

expect that if there is an integer I(d) such that every equation (16)

has a solution in F when q > I(d) , then I(d) should be related to,

but probably be strictly larger, than the quantity

ilM(d)2 - 2 + M(d)(M(d)2 - 4)2] mentioned in (2.3).

We will discuss how to obtain a well-known formula for one such

I(d) using the estimate presented in (2.1). The discussion surrounding

(2.1) is the only place in our paper where we invoked results that seem

to go beyond basic facts about finite fields and groups. However, a

perusal of [3, Chapter 7] will convince the reader that this same material

is all that is needed to establish and understand (2.1) - although the

discussion in [3] is for prime fields, the very same arguments given

there apply to all finite fields. Our formula for I(d) can be, and is

obtained in various places, from first principles using Gauss and Jacobi

sums rather than from (2.1). However, it seems worthwhile to pursue our
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method hoping to pique the reader's curiosity to consult [3] and compare

our recursive use of (2.1) with a similar recursive process used to

establish formulas for Gauss sums.

We now drop our convention that solutions are assumed to be non-

trivial. Let F have q elements and let

W = {(x^x^xj € FxFxF\ax^ + bx2 + cxg = 0} ,

L = {(x,y) e F*F\axd + byd = -a} .

Let N denote the cardinality of W , L that of L. For each element

(x,y) in L there are (q-1) elements in W, namely (xu,yu,u) as u

varies through F . It is easy to see that N = (q-l)L + N , where N

is the cardinality of the set

HQ = Uxvx2)\ax\ + bx\ = 0} .

The equation aXZ + hxt = 0 is one to which the discussion of (2.1)
1 Ci

applies with n = 2, so that M(d,d) = M (d) - d-1 , by (2.2). Thus (2.1)

implies that

(17) \flo- q\<* (d-1) (q-1).

What can we say about q if equation (16) has no solution? We must have

L = 0 so that N = N . Then applying (2.1) with n = 3 yields

(18) \NQ - q
Z\ < (d-l)(d-2)(q-l)qi .

Now use (17) and (18) together with the triangle inequality, then cancel

a factor of (q-1) , leading to

q < (d-1) + (d-l)(d-2)q* .

From this inequality we obtain the next result by a straightforward use of

the binomial formula.

https://doi.org/10.1017/S0004972700001702 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700001702


Forms of low degree 57

THEOREM 4.1. Let F be a field with q elements, d a positive

integer. If there exist a,b,c in F such that the equation

= o

fails to have a solution then

q < iM(d)2 + (d-1) + iM(d)(M(d)2

where M(d) = (d-l)(d-2).

Small [8] showed that for q > (d-1) any element of F is a

sum of two dth powers. Theorem 4.1 gives a smaller bound for q, though

one that is not so easily remembered. Though smaller, our bound for q

still grows like d , as does that of Small and that of TietSivHinen,

referred to following (2.3).

Our methods in Section 3 are at the limit of feasibility for hand-

computation when d = 5. The (admittedly sparse) evidence we have

gathered suggests that the requirement of (2.3) on the size of q is

stricter than necessary. Since our basis for restricting q is a count

on the number of solutions to our equations, rather than a criterion for

whether a single nontrivial solution exists, it may be that an approach

involving (2.1) is bound to give too gross an estimate. As previously

indicated there are more sophisticated methods that have been used to

establish conditions under which solutions exist (see [9] for example).

In addition to the book of Ireland and Rosen [3] mentioned earlier we

recommend Joly's exposition [4] for an introduction and broad survey of

questions about equations in finite fields. We also suggest Mazur's

article [6] for those wishing to see the connection between elementary

questions about the number of solutions to equations and the deeper

concerns leading to the Artin zeta function and the Weil conjectures.
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