
JFP 15 (1): 1–13, 2005. c© 2004 Cambridge University Press

DOI: 10.1017/S0956796804005313 Printed in the United Kingdom

1

THEORETICAL PEARL

Church numerals, twice!

RALF HINZE

Institut für Informatik III, Universität Bonn, Römerstraße 164, 53117 Bonn, Germany

(e-mail: ralf@informatik.uni-bonn.de)

Abstract

This pearl explains Church numerals, twice. The first explanation links Church numerals to

Peano numerals via the well-known encoding of data types in the polymorphic λ-calculus.

This view suggests that Church numerals are folds in disguise. The second explanation, which

is more elaborate, but also more insightful, derives Church numerals from first principles, that

is, from an algebraic specification of addition and multiplication. Additionally, we illustrate

the use of the parametricity theorem by proving exponentiation as reverse application correct.

1 Introduction

Church (1941) devised the following scheme for representing natural numbers in the

untyped λ-calculus: the natural number n is encoded by a function that applies its

first argument n times to its second argument. Using a compositional style the first

three natural numbers are defined

�0� = λϕ . id

�1� = λϕ . ϕ

�2� = λϕ . ϕ · ϕ.

In general, we have �n� = λϕ . ϕn where ϕn is given by ϕ0 = id and ϕn+1 = ϕ · ϕn .

Building upon this representation the successor function reads

succ n = λϕ . ϕ · n ϕ.

The following definitions of addition, multiplication, and exponentiation are due to

Rosser.

m + n = λϕ .m ϕ · n ϕ

m × n = m · n

m ↑ n = n m

Interestingly, multiplication is implemented by function composition and exponen-

tiation by reverse function application. It is relatively straightforward to prove the

definitions correct: succ �n� = �n + 1�, �m� + �n� = �m + n�, �m� × �n� = �mn�, and

�m� ↑ �n� = �mn� – see Barendregt (1992) for an inductive proof.

The purpose of this pearl is to provide additional background and hopefully

additional insights by deriving the Church numeral system in two different ways.

https://doi.org/10.1017/S0956796804005313 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005313

2 R. Hinze

Though Church numerals were devised for the untyped λ-calculus, we will work

in a typed setting: we use Girard’s System F (Girard, 1972), also known as the

polymorphic or second-order λ-calculus (Reynolds, 1974), augmented by inductive

types (Mendler, 1991; Parigot, 1992). To avoid clutter, however, we usually omit type

abstractions (written explicitly as ΛA.e) and type applications (written explicitly as

e [T]).

2 Church numerals, first approach

The first derivation takes as a starting point the unary representation of the natural

numbers, also known as the Peano numeral system:

data Nat = Zero | Succ Nat .

Here n is represented by �n� = Succn Zero, i.e. the successor function is applied

n times to the constant zero. Arithmetic operations can be conveniently expressed

in terms of the fold operator for Nat .

fold : ∀N .(N → N) → N → Nat → N

fold succ zero Zero = zero

fold succ zero (Succ n) = succ (fold succ zero n)

In essence, fold succ zero replaces Zero by zero, Succ by succ and evaluates the

resulting term. The recursion scheme captured by fold is known as structural recursion

over the natural numbers, which is an instance of a more general scheme called

primitive recursion. The fold operator satisfies the following so-called universal

property, which provides the central key for reasoning about fold (Bird & de Moor,

1997; Hutton, 1999).

h = fold ϕ a ⇐⇒
{

h Zero = a

h (Succ n) = ϕ (h n)

The universal property states that fold ϕ a is the unique solution of the recursion

equations on the right. A simple consequence of the property is the reflection law

fold Succ Zero = id (simply put h = id , a = Zero, and ϕ = Succ).

Addition, multiplication, and exponentiation are given by

(+), (×), (↑) : Nat → Nat → Nat

m + n = fold Succ n m

m × n = fold (add n) �0� m

m ↑ n = fold (mult m) �1� n .

Now, let us reinvent Church numerals using the Peano numerals as a starting

point. For the sake of argument, assume that there are no data declarations so that

we cannot introduce new constants. In this case, we can only treat Zero and Succ

as variables and λ-abstract over them. Thus, Succn Zero becomes

λsucc . λzero . succn zero.

What is the type of this term? A possible choice is (Nat → Nat) → Nat → Nat , but

(Bool → Bool) → Bool → Bool works, as well. In fact, (N → N) → N → N is a

https://doi.org/10.1017/S0956796804005313 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005313

Theoretical pearl 3

sensible type, for all N . This motivates the following type definition.

type Church = ∀N .(N → N) → N → N

How are the types Nat and Church related? Ideally, they should be isomorphic

since both represent the same set, the set of natural numbers. And, in fact, they are.

The conversion maps are given by

nat : Church → Nat

nat c = c Succ Zero

church : Nat → Church

church n = λsucc zero . fold succ zero n .

The proof of nat · church = id makes use of the universal property of fold .

(nat · church) n

= { definition of nat and church }
(λsucc zero . fold succ zero n) Succ Zero

= { β-conversion }
fold Succ Zero n

= { reflection law }
n

The reverse direction, church · nat = id , is more involving.

(church · nat) c

= { definition of church and nat }
λsucc zero . fold succ zero (c Succ Zero)

Now we are stuck. The universal property is not applicable since the arguments

of fold , namely succ and zero, are unknowns. Instead we must apply the so-called

parametricity condition of the type Church . Briefly, each polymorphic type gives rise

to a general property that each element of the type satisfies (Wadler, 1989). For

Church we obtain the following ‘theorem for free’. Let xtimes: Church and let A and

A′ be arbitrary types; then for all ϕ: A → A, ϕ′: A′ → A′, and h: A → A′

h · xtimes [A] ϕ = xtimes [A′] ϕ′ · h ⇐= h · ϕ = ϕ′ · h .

Intuitively, the type ensures that xtimes only composes its argument with itself:

xtimes ϕ = ϕ · . . . · ϕ. Thus, h · ϕ = ϕ′ · h implies h · (ϕ · . . . · ϕ) = (ϕ′ · . . . · ϕ′) · h .

Setting xtimes = c, ϕ = Succ, ϕ′ = succ, and h = fold succ zero, we have

fold succ zero · c Succ = c succ · fold succ zero, (1)

provided fold succ zero · Succ = succ · fold succ zero. This equation, however,

follows directly from the definition of fold . Using (1) we can complete the proof.

= { (1) }
λsucc zero . c succ (fold succ zero Zero)

https://doi.org/10.1017/S0956796804005313 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005313

4 R. Hinze

= { definition of fold }
λsucc zero . c succ zero

= { η-conversion }
c

The isomorphism suggests that a Church numeral is a fold in disguise as each

numeral can be rewritten into the form λsucc zero . fold succ zero n for some n .

Functions on Nat are programmed using Zero, Succ, and fold . What are the

corresponding operations on Church? For fold we calculate

fold ϕ a n

= { β-conversion }
(λs z . fold s z n) ϕ a

= { definition of church }
church n ϕ a .

The encodings of the constructor functions Zero and Succ can be specified as

follows.

zero = church Zero

succ (church m) = church (Succ m)

Given this specification it is straightforward to derive zero = λs z . z and succ c =

λs z . s (c s z). To summarize, define the relation ‘∼’ by n ∼ c ⇐⇒ church n = c

⇐⇒ n = nat c, then

Zero ∼ zero = �0�
Succ n ∼ succ c

fold ϕ a n = c ϕ a


 ⇐= n ∼ c.

Using this correspondence we can mechanically transform functions on Nat into

operations on Church . For instance, the structurally recursive definitions of addition,

multiplication, and exponentiation give rise to the following operations on Church .

(+), (×), (↑) : Church → Church → Church

m + n = m succ n

m × n = m (n+) �0�
m ↑ n = n (m×) �1�

Comparing these definitions to the ones given in section 1 we see that we have

found alternative implementations of ‘+’, ‘×’, and ‘↑’. Or, to put it negatively, the

correspondence of Church to Nat does not explain Rosser’s implementation of the

arithmetic operations.

3 Church numerals, second approach

Ready for a second go? This time we start from an algebraic specification of addition

and multiplication, where a specification consists of a signature and properties that

https://doi.org/10.1017/S0956796804005313 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005313

Theoretical pearl 5

the operations of the signature are required to satisfy. We consider the following

five constants and operations.

0, 1 : �
(+), (×) : � → � → �
nat : � → Nat

Two points are worth noting. First, exponentiation is deliberately omitted from

the signature – this design decision is clearly unmotivated and will be justified

only later (see remark 1). Second, we include a so-called observer function, which

maps elements of the new type � to elements of Nat . Observer functions allow us

to distinguish elements of the new type. If there were none, then the equational

specification below could be trivially satisfied by setting � = (); see Hughes (1995)

for a more comprehensive discussion.

The set of natural numbers with addition and multiplication forms a commutative

semiring, that is, (�; +; 0) and (�; ×; 1) are commutative monoids, 0 is the zero of

‘×’, and ‘×’ distributes over ‘+’. Interestingly, we will not require all of the laws. The

following subset is sufficient for our purposes.

0 + x = x = x + 0

(x + y) + z = x + (y + z)

0 × x = 0

1 × x = x = x × 1

(x × y) × z = x × (y × z)

(x + y) × z = (x × z) + (y × z)

In addition, we must determine nat .

nat 0 = Zero (2)

nat (1 + x) = Succ (nat x) (3)

The most straightforward way to represent values of type � is by terms of the

algebra. The data type Expr implements the term algebra of �.

data Expr = Null | One | Expr :+ Expr | Expr :× Expr

Each of the operations 0, 1, ‘+’, and ‘×’ is simply implemented by the corresponding

constructor: 0 = Null , 1 = One, (+) = (:+), and (×) = (:×). In other words, the

operations do nothing. All the work is performed by the observer function nat ,

which can be seen as an interpreter for the arithmetic language. Let us derive its

definition using the laws above. The first two cases are straightforward.

nat Null = Zero

nat One = Succ Zero

It is tempting to set nat (m :+ n) = nat m + nat n with (+) = fold Succ, but this

equation does not follow immediately from the laws. Instead, we proceed by making

https://doi.org/10.1017/S0956796804005313 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005313

6 R. Hinze

a further case distinction on m .

nat (Null :+ a1) = nat a1

nat (One :+ a1) = Succ (nat a1)

nat ((m :+ n) :+ a1) = nat (m :+ (n :+ a1))

Now we are stuck. There is no obvious way to simplify nat ((m :× n) :+ a1). Again,

we help ourselves by making a further case distinction on m .

nat ((Null :× a2) :+ a1) = nat a1

nat ((One :× a2) :+ a1) = nat (a2 :+ a1)

nat (((m :+ n) :× a2) :+ a1) = nat ((m :× a2) :+ ((n :× a2) :+ a1))

nat (((m :× n) :× a2) :+ a1) = nat ((m :× (n :× a2)) :+ a1)

The last case, nat (m :× n), is an instance of the previous one (with a1 = Null).

nat (Null :× a2) = Zero

nat (One :× a2) = nat a2

nat ((m :+ n) :× a2) = nat ((m :× a2) :+ (n :× a2))

nat ((m :× n) :× a2) = nat (m :× (n :× a2)) .

At this point the reader may wonder whether nat is really well-defined. Now, the

case analysis is clearly exhaustive; termination can be established using a so-called

polynomial interpretation of operations (Dershowitz & Jouannaud, 1990).

Null τ = 2

Oneτ = 2

m :+τ n = 2m + n

m :×τ n = m2n

A multivariate polynomial opτ of n variables is associated with each n-ary operation

op. For each equation nat l = . . . nat r . . . we must then show that τ l > τ r for

all variables (ranging over positive integers) where τ is given by τ(op e1 . . . en) =

opτ(τ e1) . . . (τ en).

Furthermore, it is worth noting that the implementation does not satisfy the

specification. The laws only hold under observation, that is, 0 + x = x , for instance,

is weakened to nat (0 + x) = nat x . As a consequence, Nat and Expr are not

isomorphic. This is, however, typical of abstract types.

Remark 1

Why didn’t we include exponentiation in the specification? The answer is simply

that in this case the derivation no longer works: there is no way to simplify the call

nat ((((a3 :↑ (n :↑ m)) :× a2) :+ a1)). Exponentiation lacks the property of associativity,

which we used for rewriting nested additions and multiplications. �

Let us now try to improve the efficiency of nat . For a start, we can avoid the

construction and deconstruction of many terms if we specialize nat for e :+ a1 and

(e :× a2) :+ a1. We specify

nat1 e a1 = nat (e :+ a1)

nat2 e a2 a1 = nat ((e :× a2) :+ a1).

https://doi.org/10.1017/S0956796804005313 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005313

Theoretical pearl 7

Given this specification we can easily derive the following implementation.

nat1 Null = λa1 . nat a1

nat1 One = λa1 . Succ (nat a1)

nat1 (m :+ n) = λa1 . nat1 m (n :+ a1)

nat1 (m :× n) = λa1 . nat2 m n a1

nat2 Null = λa2 a1 . nat a1

nat2 One = λa2 a1 . nat1 a2 a1

nat2 (m :+ n) = λa2 a1 . nat2 m a2 ((n :× a2) :+ a1)

nat2 (m :× n) = λa2 a1 . nat2 m (n :× a2) a1

The rewriting opens up further opportunities for improvement. Note that the

parameter a1 is eventually passed to nat in each case. Likewise, a2 is eventually

passed to nat1. These observations suggest that we could try to advance the function

calls and pass nat a1 instead of a1 and similarly nat1 a2 instead of a2. The idea can

be formalized as follows (the new observer functions are called nat1 and nat2).

nat1 e a1 = nat (e :+ a1) ⇐= a1 = nat a1 (4)

nat2 e a2 a1 = nat (e :× a2 :+ a1) ⇐= a1 = nat a1 ∧ a2 = nat1 a2 (5)

Note that the parameter a2 equals nat1 a2 rather than nat1 a2 since we want to

avoid dependencies on the ‘old’ code. Given this specification it is straightforward

to derive the following implementation of nat1.

nat1 Null = λa1 . a1

nat1 One = λa1 . Succ a1

nat1 (m :+ n) = λa1 . nat1 m (nat1 n a1)

nat1 (m :× n) = λa1 . nat2 m (nat1 n) a1

Let us calculate the definition of nat2. We assume a1 = nat a1 and a2 = nat1 a2 and

consider each of the four cases. Cases e = Null and e = One:

nat2 Null a2 a1

= { assumptions and (5) }
nat (Null :× a2 :+ a1)

= { 0 × x = 0 and 0 + x = x }
nat a1

= { a1 = nat a1 }
a1

nat2 One a2 a1

= { assumptions and (5) }
nat (One :× a2 :+ a1)

= { 1 × x = x }
nat (a2 :+ a1)

= { a1 = nat a1 and (4) }
nat1 a2 a1

= { a2 = nat1 a2 }
a2 a1.

https://doi.org/10.1017/S0956796804005313 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005313

8 R. Hinze

Cases e = m :+ n and e = m :× n:

nat2 (m :+ n) a2 a1

= { assumptions and (5) }
nat ((m :+ n) :× a2 :+ a1)

= { (x + y) × z = (x × z) + (y × z)

and (x + y) + z = x + (y + z) }
nat ((m :× a2) :+ ((n :× a2) :+ a1))

= { a2 = nat1 a2 and (5) }
nat2 m a2 (nat ((n :× a2) :+ a1))

= { assumptions and (5) }
nat2 m a2 (nat2 n a2 a1)

nat2 (m :× n) a2 a1

= { assumptions and (5) }
nat ((m :× n) :× a2 :+ a1)

= { (x × y) × z = x × (y × z) }
nat (m :× (n :× a2) :+ a1)

= { a1 = nat a1 and (5) }
nat2 m (nat1 (n :× a2)) a1

= { definition of nat1 }
nat2 m (nat2 n (nat1 a2)) a1

= { a2 = nat1 a2 }
nat2 m (nat2 n a2) a1.

A final generalization step1 yields:

nat2 Null = λa2 a1 . a1

nat2 One = λa2 a1 . a2 a1

nat2 (m :+ n) = λa2 a1 . nat2 m a2 (nat2 n a2 a1)

nat2 (m :× n) = λa2 a1 . nat2 m (nat2 n a2) a1.

The code looks familiar. We are pretty close to Rosser’s implementation of addition

and multiplication. As a last step we simply remove the interpretative layer.

Specifying 0, 1, ‘+’, and ‘×’ by

0 = nat2 Null

1 = nat2 One

nat2 m + nat2 n = nat2 (m :+ n)

nat2 m × nat2 n = nat2 (m :× n),

we obtain the definitions given in section 1. We have even derived the type of Church

numerals: nat2 has type ∀N .Expr → (N → N) → N → N (= Expr → Church).

Interestingly, the type of nat2 is more general than one would expect. By contrast,

nat1 has type Expr → Nat → Nat because of the occurrence of Succ in the equation

for nat1 One.

If we look at the derivation of nat2, we notice that we have only used the algebraic

properties of 0, 1, ‘+’, and ‘×’ but not the specification of nat . This observation

motivates the following generalization of (4) and (5): Let A be an arbitrary type

and let h: Church → A be an arbitrary function; then c: Church satisfies R2(c [A], c),

where

R0(e, e) ⇐⇒ e = h e

R1(e, e) ⇐⇒ e a1 = h (e + a1) ⇐= R0(a1, a1)

R2(e, e) ⇐⇒ e a2 a1 = h (e × a2 + a1) ⇐= R0(a1, a1) ∧ R1(a2, a2).

1 We have derived nat2 Null (nat1 a2) (nat a1) = nat a1 etc. Now, we generalize nat1 a2 and nat a1 to
fresh variables, say, a2 and a1.

https://doi.org/10.1017/S0956796804005313 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005313

Theoretical pearl 9

This can be seen as the specification of Church numerals, from which we can derive

the definitions of 0, 1, ‘+’, and ‘×’. An important special case is obtained for a2 = 1

and a1 = 0:

h c = c [A] a2 a1 ⇐⇒
{

h 0 = a1

h (1 + a′
1) = a2 (h a′

1).
(6)

Note that the implication has been strengthened to an equivalence. Furthermore,

note that (6) corresponds to the universal property of fold! Thus, using (6) we can

derive the alternative definitions of ‘+’, ‘×’, and ‘↑’ given in section 2. Additionally,

from the specification of nat , equations (2) and (3), we can immediately conclude

that nat c = c Succ Zero.

4 Exponentiation as reverse application

Rosser’s definition of exponentiation seems to be peculiar. One property that sets it

apart from the other operations is that it makes non-trivial use of polymorphism.

Compare the definitions of ‘+’, ‘×’, and ‘↑’ (in this section we will be explicit

about type abstractions and type applications—with the exception of id and ‘·’). Let

T̄ = T → T ; then

m + n = ΛN . λϕ: N̄ .m [N] ϕ · n [N] ϕ

m × n = ΛN .m [N] · n [N]

m ↑ n = ΛN . (n [N̄]) (m [N]).

Exponentiation is the only operation whose arguments are instantiated to two

different types. This observation suggests that we cannot reasonably expect to

derive exponentiation in an algebraic manner. Hence, we make do with proving its

correctness. Now, it is straightforward to show that (omitting type arguments)

�m� ↑ �n� = �n� �m� = �m� · . . . · �m�︸ ︷︷ ︸
n times

= �m� × · · · × �m�︸ ︷︷ ︸
n times

= �mn�.

But, can we also verify the correctness of ‘↑’ without making assumptions about

the arguments? The answer is in the affirmative. In the sequel we show that the

two definitions of exponentiation are equal using type-theoretic arguments only.

The proof of (n [N̄]) (m [N]) = n [Church] (m×) �1� [N] proceeds in three major

steps, each of which appeals to parametricity. Thus, the following can be seen as an

instructive exercise in the use of the parametricity theorem.

n [Church] (m×) �1� [N] f

= { Lemma 1 }
n [¯̄N] (m [N] ·) id f

= { define const a b = a }
n [¯̄N] (m [N] ·) id (const f g)

= { Lemma 2 }
n [¯̄N] (m [N] ·) (const f) g

https://doi.org/10.1017/S0956796804005313 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005313

10 R. Hinze

= { Lemma 3 }
n [N̄] (m [N]) f

Lemma 1 shows that applying a Church numeral to polymorphic arguments and

instantiating the result is the same as first instantiating the arguments and then

applying the numeral.

Lemma 1

Let xtimes: Church be a Church numeral, let T be a type, and let ϕ: Church →
Church , ϕ′: ¯̄T → ¯̄T . Then

xtimes [Church] ϕ a [T] = xtimes [¯̄T] ϕ′ (a [T]) ⇐= ϕ b [T] = ϕ′ (b [T]).

Proof

The proposition is implied by the free theorem for Church with A = Church and

A′ = ¯̄T . The types A and A′ suggest that h: Church → ¯̄T is type instantiation:

h = λc . c [T]. The premise of the free theorem is easily checked:

h · ϕ = ϕ′ · h

⇐⇒ { definition of h }
ϕ b [T] = ϕ′ (b [T]) �

Lemma 2 expresses that postcomposition commutes with precomposition.

Lemma 2

Let xtimes: Church be a Church numeral, let T be a type, and let ϕ, f, g: T̄ . Then

xtimes [T̄] (ϕ ·) f · g = xtimes [T̄] (ϕ ·) (f · g).

Proof

Again, the proposition follows from the free theorem for Church with A = A′ = T̄

and h = (· g). The premise of the free theorem holds unconditionally.

h · (ϕ ·) = (ϕ ·) · h

⇐⇒ { definition of h }
(ϕ · f) · g = ϕ · (f · g)

⇐⇒ { associativity of ‘·’ }
true �

Setting f = id , we obtain as a simple consequence xtimes [T̄] (ϕ ·) id (g a) =

xtimes [T̄] (ϕ ·) g a .

Lemma 3 relates function composition and composition of postcompositions.

Lemma 3

Let xtimes: Church be a Church numeral, let T be a type, and let ϕ: T̄ . Then

const (xtimes [T] ϕ a) = xtimes [T̄] (ϕ ·) (const a).

https://doi.org/10.1017/S0956796804005313 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005313

Theoretical pearl 11

Proof
We apply the free theorem for Church with A = T and A′ = T̄ . The types more or

less dictate that h: T → T̄ is const . It remains to verify the premise:

const · ϕ = (ϕ ·) · const

⇐⇒ { operator sections: (a×) b = a × b }
const (ϕ a) b = (ϕ · const a) b

⇐⇒ { definition of ‘·’ }
const (ϕ a) b = ϕ (const a b)

⇐⇒ { definition of const }
ϕ a = ϕ a �

Using parametricity, we can also show that the two definitions of addition (and

the two definitions of multiplication) are equivalent. The proofs are left as instructive

exercises to the reader.

5 Final remarks

Church numerals are not just an intellectual curiosity. They gain practical importance

through their relationship to lists, the functional programmer’s favourite data

structure. It is well-known that representations of the natural numbers serve

admirably as templates for list implementations (Okasaki, 1998). The vanilla list

type, for instance, is based on the unary representation of the natural numbers.

data Nat = Zero | Succ Nat

data List a = Nil | Cons a (List a)

The encoding of Nat using a polymorphic type is an instance of a general scheme

for representing data types in System F discovered independently by Leivant (1983)

and Böhm & Berarducci (1985). If we apply the encoding to List , we obtain

the continuation- or context-passing implementation of lists also known as the

backtracking monad (Hughes, 1995; Hinze, 2001).

type Church = ∀X .(X → X) → X → X

type Backtr A = ∀X .(A → X → X) → X → X

The type Backtr has been reinvented quite a few times. It appears, for instance, in

a paper about deforestation (Gill et al., 1993). The central theorem of the paper,

foldr-build fusion, states that

foldr cons nil (build g) = g cons nil , (7)

where foldr is the fold operator for lists and build is given by

build : (∀X .(A → X → X) → X → X) → List A

build g = g Cons Nil .

Setting backtr x = λcons nil .foldr cons nil x we can rewrite (7) as backtr · build = id .

In other words, the fusion theorem is a direct consequence of the fact that List A

https://doi.org/10.1017/S0956796804005313 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005313

12 R. Hinze

and Backtr A are isomorphic. Unsurprisingly, the fusion theorem can be generalized

to arbitrary data types, as well (Takano & Meijer, 1995).

The second derivation of the Church numerals started from an algebraic specific-

ation of the natural numbers. Does this transfer to lists, as well? The answer is an

emphatic “Yes!”. The algebraic structure of the list type is that of a monad with

zero and plus (Moggi, 1991; Wadler, 1990). Using the monad laws as a starting

point the derivation goes through equally well, see Hughes (1986) and Hinze (2000).

Interestingly, if we confine ourselves to the additive fragment (0 and ‘+’), then we

obtain Hughes’s efficient sequence type (Hughes, 1986) – compare Hughes’s imple-

mentation to the definition of nat1 in section 3. As an aside, exponentiation, in

particular, Rosser’s definition of ‘↑’ has no counterpart in the world of lists (the

reverse application of two lists is not even typeable).

Apropos efficiency. Though inductive types and their encodings are isomorphic,

they are not equivalent in terms of efficiency. Rosser’s addition and multiplication,

for instance, are constant time operations while the implementations based on folds

take time linear in the size of their first argument (the same holds for the list

operations). Conversely, projection functions such as predecessor (or head and tail

in the case of lists) are constant time operations for inductive types while they take

linear time for the polymorphic encodings.

Acknowledgements

I am grateful to Patricia Johann and to the anonymous referees for pointing out

several typos and for valuable suggestions regarding presentation.

References

Barendregt, H. (1992) Lambda calculi with types. In: Abramsky, S., Gabbay, D. M.

and Maibaum, T. (eds.), Handbook of Logic in Computer Science, Volume 2, Background:

Computational Structures, pp. 118–309. Clarendon Press, Oxford.

Bird, R. and de Moor, O. (1997) Algebra of Programming. Prentice Hall Europe.

Böhm, C. and Berarducci, A. (1985) Automatic synthesis of typed λ-programs on term

algebras. Theor. Comput. Sci. 39(2–3), 135–154.

Church, A. (1941) The Calculi of Lambda-Conversion. Annals of Mathematics Studies No. 6,

Princeton University Press.

Dershowitz, N. and Jouannaud, J.-P. (1990) Rewrite systems. In: van Leeuwen, J. (ed.), Hand-

book of Theoretical Computer Science, Volume B: Formal Models and Semantics, pp. 243–

320. Elsevier.

Gill, A., Launchbury, J. and Peyton Jones, S. L. (1993) A short cut to deforestation. FPCA ’93:

The Sixth International Conference on Functional Programming Languages and Computer

Architecture, pp. 223–232. ACM Press.

Girard, J.-Y. (1972) Interprétation fonctionelle et élimination des coupures dans l’arithmétique

d’ordre supérieur. PhD thesis, Université Paris VII.

Hinze, R. (2000) Deriving backtracking monad transformers. In: Wadler, P. (ed.), Proceedings

2000 International Conference on Functional Programming, pp. 186–197. Montreal, Canada.

Hinze, R. (2001) Prolog’s control constructs in a functional setting — Axioms and

implementation. Int. J. Foundations of Comput. Sci. 12(2), 125–170.

https://doi.org/10.1017/S0956796804005313 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005313

Theoretical pearl 13

Hughes, J. (1995) The design of a pretty-printing library. In: Jeuring, J. and Meijer, E.

(eds.), Advanced Functional Programming, First International Spring School on Advanced

Functional Programming Techniques: Lecture Notes in Computer Science 925, pp. 53–96.

B̊astad, Sweden. Springer-Verlag.

Hughes, R. J. M. (1986) A novel representation of lists and its application to the function

“reverse”. Infor. Process. Lett. 22(3), 141–144.

Hutton, G. (1999) A tutorial on the universality and expressiveness of fold. J. Funct. Program.

9(4), 355–372.

Leivant, D. (1983) Reasoning about functional programs and complexity classes associated

with type disciplines. Proceedings 24th Annual IEEE Symposium on Foundations of Computer

Science, FOCS’83, pp. 460–469. Tucson, AZ. IEEE Press.

Mendler, N. P. (1991) Inductive types and type constraints in the second-order lambda

calculus. Ann. Pure & Appl. Logic, 51(1–2), 159–172.

Moggi, E. (1991) Notions of computation and monads. Infor. & Computation 93(1), 55–92.

Okasaki, C. (1998) Purely Functional Data Structures. Cambridge University Press.

Parigot, M. (1992) Recursive programming with proofs. Theor. Comput. Sci. 94(2), 335–356.

Reynolds, J. (1974) Towards a theory of type structure. Proceedings, Colloque sur la

Programmation: Lecture Notes in Computer Science 19, pp. 408–425. Springer-Verlag.

Takano, A. and Meijer, E. (1995) Shortcut deforestation in calculational form. Proceedings

Seventh International Conference on Functional Programming Languages and Computer

Architecture (FPCA’95), pp. 306–313. La Jolla, San Diego, CA. ACM Press.

Wadler, P. (1989) Theorems for free! Fourth International Conference on Functional

Programming Languages and Computer Architecture (FPCA’89), pp. 347–359. London, UK.

Addison-Wesley.

Wadler, P. (1990) Comprehending monads. Proceedings 1990 ACM Conference on LISP and

Functional Programming, pp. 61–78. Nice, France. ACM Press.

https://doi.org/10.1017/S0956796804005313 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796804005313

