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ASYMPTOTIC PROBABILITIES OF AN
EXCEEDANCE OVER RENEWAL THRESHOLDS
WITH AN APPLICATION TO RISK THEORY

CHRISTIAN Y. ROBERT,∗ CNAM and CREST

Abstract

Let (Yn,Nn)n≥1 be independent and identically distributed bivariate random variables
such that the Nn are positive with finite mean ν and the Yn have a common heavy-tailed
distribution F . We consider the process (Zn)n≥1 defined by Zn = Yn − �n−1, where
�n−1 = ∑n−1

k=1 Nk . It is shown that the probability that the maximum M = maxn≥1 Zn
exceeds x is approximately ν−1

∫ ∞
x F (u) du, as x → ∞, where F := 1 − F . Then we

study the integrated tail of the maximum of a random walk with long-tailed increments
and negative drift over the interval [0, σ ], defined by some stopping time σ , in the case
in which the randomly stopped sum is negative. Finally, an application to risk theory is
considered.
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1. Introduction

Throughout this paper, (Y,N) and (Yn,Nn)n≥1 are independent and identically distributed
(i.i.d.) bivariate random variables (RVs) such that N is positive with finite mean ν and Y has
a heavy-tailed distribution F . We consider the process (Zn)n≥1 defined by Zn = Yn − �n−1,
where �n−1 = ∑n−1

k=1 Nk (and �0 = 0), and study the probability that the maximum M =
maxn≥1 Zn exceeds largex. This is also the probability that there exists ann such thatYn exceeds
x +�n−1, where (�n−1)n≥1 is a sequence of renewal thresholds. The renewal threshold�n−1
is independent of Yn, but can be a function of its past values. It is shown that this probability
is approximately ν−1

∫ ∞
x
F (u) du for large x, where F := 1 − F . (Throughout the paper, this

notation holds for a general distribution.)
A possible application of this result is to risk theory. Let us consider the following risk

model with renewal arrivals:

(i) the claim sizes U1, U2, . . . are i.i.d. positive RVs with mean µU ;

(ii) the claims happen at random times s1 < s2 < · · · such that Tn = sn − sn−1 are i.i.d.
positive RVs with mean µT , and are independent of (Un)n≥1;

(iii) the premium rate is assumed to be equal to 1 and µU < µT .

We define the claim surplus process and the risk reserve process by Sc
t = ∑Nt

k=1 Uk − t

and Rt = −Sc
t , respectively, where Nt = max{n ≥ 0 : sn ≤ t}. Let u be the initial solvency
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margin, which is met by capital provided by the shareholders. The classical probability of
ultimate ruin ψ(u) is the probability that the claim surplus process ever exceeds the level u,
i.e. P(maxt≥0 S

c
t > u). Since ruin can only occur at claim times, the ruin probability is equal

to P(maxn≥0 Sn > u), where (Sn)n≥1 is the random walk with increments Xn = Un − Tn.
A reasonable modification of this model is that some dividends are paid out to the shareholders

when the reserve process is sufficiently large. Dividend barrier models have a long history in
risk theory (Bühlmann (1996)), but other situations can be considered. Let ϕ : R

+ → R
+ be a

positive function such that 0 ≤ ϕ(x) ≤ x. The insurance company uses a stopping time σ1 to
decide when, just after a claim, the reserves −Sσ1 are sufficiently large (and necessarily positive)
that a part ϕ(−Sσ1) is distributed to the shareholders and the other part −Sσ1 − ϕ(−Sσ1) kept
to reinforce the solvency margin. At this time, the reserves are reduced to 0. The same rule is
then used to define a sequence of stopping times σk and a sequence of dividends ϕ(Sσk−1 −Sσk ).
Let us define the process {Sϕn } by

Sϕn = Sn +
∑

{k≥1 : σk<n}
ϕ(Sσk−1 − Sσk ),

where σ0 = 0 and S0 = 0. The probability of ruin is thus equal to ψ(u) = P(Mϕ > u),
where Mϕ = max{Sϕn : n ≥ 1}. If we set Yn = max0≤k<σn−σn−1(Sk+σn−1 − Sσn−1) and
Nn = ρ(Sσn−1 − Sσn), where ρ(x) = x − ϕ(x), then it is easy to see that P(Mϕ > u) =
P(M > u). According to our result, the probability of ruin is approximately

ψ(u) ∼ E(ρ(−Sσ1))
−1

∫ ∞

u

P(Y > x) dx for large u.

We shall not solve the problem of optimal dividend payment under a ruin constraint.
(See Bühlmann (1996) and references given there, as well as Gerber (1979), for such a
problem.)

In a recent paper, Foss and Zachary (2003) studied the tail behavior of the maximum of a
random walk with long-tailed increments (Xn) and negative drift over the interval [0, σ ] defined
by some stopping time σ . Those authors showed that

P(Y > x) ∼ E σ P(X > x) for large x,

where X has the same distribution as the Xn. In the case in which the randomly stopped sum
is negative, we derive the similar equivalence

∫ ∞

u

P(Y > x) dx ∼ E σ
∫ ∞

u

P(X > x) dx for large u,

as a corollary of our result. Then the probability of ruin is approximately

ψ(u) ∼ E(ρ(−Sσ1))
−1 E σ1

∫ ∞

u

P(X > x) dx for large u.

In the case in which no dividend is distributed, ϕ is equal to 0 and, by using Wald’s
identity (Chow et al. (1965)), E(ρ(−Sσ1)) = −E Sσ1 = −E σ1 EX, which gives the classical
asymptotics for the probability of ruin.

In Section 2, we present the results of the paper. All the proofs are postponed to Section 3.
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2. Results

We first state our main result, which is Theorem 2.1. We then give Corollary 2.1,
Corollary 2.2, and Proposition 2.1, which set out the conditions for the application to risk
theory.

Theorem 2.1. Let us assume that EN2 < ∞ and that

lim
x→∞

P(Y > x)∫ ∞
x

P(Y > u) du
= 0. (2.1)

Then,

lim
x→∞

P(M > x)∫ ∞
x

P(Y > u) du
= 1

EN
.

Remark 2.1. Equation (2.1) is not a condition ordinarily used to define heavy-tailed distribu-
tions. A more usual condition is that the distribution of Y be long tailed, i.e.

lim
x→∞

P(Y > x − h)

P(Y > x)
= 1 for all fixed h > 0

(see below for other definitions). If Y is long tailed then it is easy to see that condition (2.1)
holds.

Remark 2.2. Let (Sn)n≥1 be a random walk with heavy-tailed increments Xn and negative
mean. It is well known that

lim
x→∞

P(maxn≥1 Sn > x)∫ ∞
x

P(X > u) du
= − 1

EX

(see, e.g. Veraverbeke (1977), Embrechts and Veraverbeke (1982), and Korshunov (1997)).
Theorem 2.1 seems to hold with Yn = Xn and Nn = −Xn, although the −Xn are not almost
surely positive, and have a positive mean.

Now consider a regenerative process {Vn}n≥0: there exists a zero-delayed renewal process
with epochs T0 = 0 < T1 < T2 < · · · such that the cycles {Vn+Tk−1}0≤n<Tk−Tk−1 are
independent and have the same distribution. Regenerative processes have many important ap-
plications in queueing networks, storage processes, insurance, and finance (see, e.g. Asmussen
(1987), (2000)). A basic example is the Lindley process and its cycles, that is, the time intervals
separated by the instants at which the process is equal to 0. We write ck = Tk − Tk−1 for the
cycle lengths and let c be an RV with the same distribution as the ck . We define κ = E c, and
assume this to be finite. Let us define the maxima over cycles as

Mck = max{Vn+Tk−1 : 0 ≤ n < Tk − Tk−1}.
Furthermore, let us assume that there exist RVsNn such that ({Vn+Tk−1}0≤n<Tk−Tk−1 , Nk)k≥1

are i.i.d. As a consequence of Theorem 2.1, we give the asymptotic tail behavior of M =
maxk≥1(Mck − �k−1), i.e. the probability that the regenerative process exceeds increasingly
high thresholds that are defined by a renewal process and are constant on regenerative cycles.

Corollary 2.1. Let us assume that EN2 < ∞ and that

lim
x→∞

P(Mc > x)∫ ∞
x

P(Mc > u) du
= 0.
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Then,

lim
x→∞

P(M > x)∫ ∞
x

P(Mc > u) du
= 1

EN
.

The proof is omitted because it is a direct application of Theorem 2.1.
Let {Xn}n≥1 be a sequence of i.i.d. random variables. By FX we denote the common

distribution of the Xn, and we assume that µ = EXn < 0 and P(X1 > 0) > 0. We consider a
stopping time σ with respect to the filtration {Fn}n≥1, where Fn = σ(X1, . . . , Xn), and write
Sn = ∑n

i=1Xi and Mσ = max{Sn : n = 0, 1, . . . , σ − 1}.
Before stating Corollary 2.2, we first provide some further definitions. For any distribution

function H on R with finite mean, we define the integrated distribution function Hs by
Hs = min(1,

∫ ∞
x
H(u) du). A distribution function H on R

+ is subexponential if and only
if H(x) > 0 for all x and limx→∞H ∗n(x)/H(x) = n, n ≥ 2, where H ∗n is the n-fold
convolution of H with itself. (It is sufficient that only the first of these conditions holds in the
case n = 2.) More generally, a distribution functionH on R is subexponential if and only ifH+
is subexponential, whereH+ = H 1R+ and 1R+ is the indicator function of R

+. A well-known
result is that subexponential distributions are long tailed. Finally, a distribution function H on
R belongs to the class S∗ if and only if H(x) > 0 for all x and

lim
x→∞

∫ x
0 H(x − y)H(y) dy

H(x)
=

∫ ∞

0
H(y) dy.

It is also known that ifH ∈ S∗, thenH andHs are subexponential (see Klüppelberg (1988)).

Corollary 2.2. (i) Suppose that FX ∈ S∗. Let σ be any stopping time such that P(Sσ ≤ 0) = 1
and E S2

σ < ∞. Then

lim
x→∞

∫ ∞
x

P(Mσ > u) du∫ ∞
x
FX(u) du

= E σ. (2.2)

(ii) Suppose that (2.2) holds for some stopping time σ such that P(Sσ ≤ 0) = 1 and E S2
σ < ∞.

Then, F sX is subexponential.

Remark 2.3. If we assume that E(X+
1 )

2 < ∞ and E σ 2 < ∞, then E S2
σ < ∞ (see Gut

and Janson (1986), Theorem 3.1). Moreover, if the stopping time is the first-passage time
min{n : Sn < c}, with c a nonpositive constant, then the condition E(X+

1 )
2 < ∞ implies that

E σ 2 < ∞, from Theorem 2.1 of Gut (1974). In this case, only the condition E(X+
1 )

2 < ∞ is
needed.

Finally, we come back to the risk problem outlined in the Introduction. We found that, as in
the classical risk model, the probability of ruin is equivalent to the integrated tail of X.

Proposition 2.1. Suppose that FX ∈ S∗. Then,

lim
x→∞

ψ(x)∫ ∞
x
FX(u) du

= E σ

E(ϕ(−Sσ )) .
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3. Proofs

We first state a lemma that is needed for the proof of Theorem 2.1.

Lemma 3.1. Let {ξn}n≥1 be a sequence of i.i.d. RVs with E ξ1 = −m < 0 and P(ξ1 > 0) > 0.
Let us define ξ+

1 = max(0, ξ1). Then,

E(ξ+
1 )

2 < ∞ ⇔
∑
n≥1

P

( n∑
i=1

ξi > 0

)
< ∞.

Proof. Consider the probability that n is the epoch of the first entry into ]−∞, 0[ of the
random walk with increments {ξn}, that is,

τ ξn = P

(
ξ1 ≥ 0, . . . ,

n−1∑
i=1

ξi ≥ 0,
n∑
i=1

ξi < 0

)
.

Then, {τ ξn } is the distribution of the first descending ladder epoch τ ξ−. The finiteness of the
moments of τ ξ− is equivalent to the finiteness of the moments of ξ+

1 (see Gut (1974),
Theorem 2.1): if we let r ≥ 1 then E(|ξ+

1 |)r < ∞ if and only if E(τ ξ−)r < ∞.

The probability-generating function of {τ ξn } is given by P ξ (s) = ∑
n≥1 τ

ξ
n s
n, 0 ≤ s ≤ 1.

The Sparre–Anderson theorem (see Feller (1971, Theorem XII.7.1)) establishes that

log
1 − P ξ (s)

1 − s
=

∑
n≥1

sn

n
P

( n∑
i=1

ξi > 0

)
, 0 ≤ s < 1.

Since, by assumption, E|ξ+
1 | < ∞, we have E τ ξ− < ∞ and we can introduce the following

probability-generating function:

Qξ(s) = 1

E τ ξ−

1 − P ξ (s)

(1 − s)
, 0 ≤ s ≤ 1. (3.1)

This is the probability-generating function of the random variable I
τ
ξ
−

defined, for j ≥ 0, by

P(I
τ
ξ
−

= j) = ∑
k>j τ

ξ
j /E τ

ξ
− (see Feller (1970, p. 265)). By differentiating (3.1), we have

(Qξ )′(s)
Qξ (s)

=
∑
n≥1

sn−1 P

( n∑
i=1

ξi > 0

)
, 0 ≤ s < 1,

from which it follows that

lim
s↗1

(Qξ )′(s) < ∞ ⇔
∑
n≥1

P

( n∑
i=1

ξi > 0

)
< ∞

⇔ E I
τ
ξ
−
< ∞ ⇔ E(τ ξ−)2 < ∞.

We conclude that E(|ξ+
1 |)2 < ∞ is equivalent to

∑
n≥1 P(

∑n
i=1 ξi > 0) < ∞.
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3.1. Proof of Theorem 2.1

Let us write Mk = max1≤i≤k(Yk −�k−1). Then

P(Mk > x) = P

( k⋃
i=1

{Yi > x +�i−1}
)
.

The proof of Theorem 2.1 is based on several steps.
Step 1: an upper bound for P(M > x). Since P(Mk > x) is bounded by

∑k
i=1 P(Yi >

x +�i−1), we focus our attention on the probability

P(Yi > x +�i−1) = P(Yi > x +�i−1, �i−1 < (i − 1)ν(1 − ε))

+ P(Yi > x +�i−1, �i−1 ≥ (i − 1)ν(1 − ε))

≤ P(Yi > x,�i−1 < (i − 1)ν(1 − ε))+ P(Yi ≥ x + (i − 1)ν(1 − ε))

≤ P(Yi > x)P(�i−1 < (i − 1)ν(1 − ε))+ P(Yi ≥ x + (i − 1)ν(1 − ε)).

It follows that

P(Mk > x) ≤ F(x)

k∑
i=1

P(�̃ui−1 > 0)+
k∑
i=1

F(x + (i − 1)ν(1 − ε)),

where �̃ui−1 = (i − 1)ν(1 − ε) − �i−1. From Lemma 3.1 and the facts that E �̃u1 < 0 and
E(N)2 < ∞, we deduce that

k∑
i=1

P(�̃ui−1 > 0) <
∞∑
i=1

P(�̃ui−1 > 0) =: K1(ε) < ∞

and

P(Mk > x) ≤ F(x)K1(ε)+
k∑
i=1

F(x + (i − 1)ν(1 − ε)).

Then, as k → ∞, we have P(Mk > x) ↗ P(M > x) and, so,

P(M > x) ≤ F(x)K1(ε)+
∞∑
i=1

F(x + (i − 1)ν(1 − ε))

≤
∫ ∞
x
F (u) du

ν(1 − ε)
+ F(x)(K1(ε)+ 1).

Step 2: a lower bound for P(M > x). First, let us note that

P(M > x) ≥
∞∑
i=1

P(Yi > x +�i−1)−
∑

1≤i<j
P(Yi > x +�i−1, Yj > x +�j−1).
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On one hand, we have

P(Yi > x +�i−1) ≥ P(Yi > x +�i−1, �i−1 ≤ (i − 1)ν(1 + ε))

≥ P(Yi > x + (i − 1)ν(1 + ε),�i−1 ≤ (i − 1)ν(1 + ε))

= P(Yi > x + (i − 1)ν(1 + ε))P(�i−1 ≤ (i − 1)ν(1 + ε))

= P(Yi > x + (i − 1)ν(1 + ε))

− P(Yi > x + (i − 1)ν(1 + ε))P(�i−1 > (i − 1)ν(1 + ε))

≥ P(Yi > x + (i − 1)ν(1 + ε))− P(Yi > x)P(�i−1 > (i − 1)ν(1 + ε)).

It follows, from Lemma 3.1 and E(N)2 < ∞, that K2(ε) := ∑∞
i=1 P(�̃li−1 > 0) < ∞,

where �̃li−1 = �i−1 − (i − 1)ν(1 + ε) since E �̃l1 < 0. Therefore,

∞∑
i=1

P(Yi > x +�i−1) ≥
∞∑
i=1

F(x + (i − 1)ν(1 + ε))− F(x)K2(ε)

≥
∫ ∞
x
F (u) du

ν(1 + ε)
− F(x)K2(ε).

On the other hand, let us write �j−1
i+1 = ∑j−1

k=i+1Nk for i < j . We have

P(Yi > x +�i−1, Yj > x +�j−1) ≤ P(Yi > x +�i−1, Yj > x +�
j−1
i+1 )

≤ P(Yi > x +�i−1)P(Yj > x +�
j−1
i+1 )

= P(Yi > x +�i−1)P(Yj > x +�j−i−1).

In analogy to step 1,

∑
1≤i<j

P(Yi > x +�i−1, Yj > x +�j−1) ≤
(∫ ∞

x
F (u) du

ν(1 − ε)
+ F(x)(K1(ε)+ 1)

)2

.

Thus, a lower bound is given by

P(M > x) ≥
∫ ∞
x
F (u) du

ν(1 + ε)
− F(x)K2(ε)−

(∫ ∞
x
F (u) du

ν(1 − ε)
+ F(x)(K1(ε)+ 1)

)2

.

Step 3. Let us use steps 1 and 2 and let x → ∞. Condition (2.1) then implies that

(1 − ε)

EN
≤ lim
x→∞

P(M > x)∫ ∞
x

P(Y > u) du
≤ (1 + ε)

EN
.

To complete the proof, we let ε → 0.

3.2. Proof of Corollary 2.2

Step 1. Let us define the sequence of stopping times {σk}k≥0 such that σ0 = 0 and σ1 = σ ,
and the cycles

{Sn+σk−1 − Sσk−1}0≤n<σk−σk−1 ,
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which are independent and have the same distribution for k = 1, 2, . . . . Let us write Vn+σk−1 =
Sn+σk−1 − Sσk−1 for 0 ≤ n < σk − σk−1, and Nk = Sσk−1 − Sσk . By the regenerative structure
of the random walk, ({Vn+σk−1}0≤n≤σk−σk−1 , Nk)k≥1 are i.i.d. We remark that

M = max
n≥1

Sn = max
k≥1

max
0≤n<σk−σk−1

(Vn+σk−1 −�k−1).

Since F sX is subexponential, Veraverbeke’s theorem (Korshunov (1997)) implies that

lim
x→∞

P(M > x)∫ ∞
x
FX(u) du

= − 1

µ

and, since E(N)2 = E(−Sσ )2 < ∞, in order to apply Corollary 2.1, it suffices to verify that

lim
x→∞

P(Mσ > x)∫ ∞
x

P(Mσ > u) du
= 0.

Let us define the sequence of stopping times {τk}k≥0 by

τ0 = 0, τk = min{n : n > τk−1, Sn ≤ Sτk−1},
so that τk is the kth descending ladder time. Since Sσ ≤ 0 almost surely, it follows that τ1 ≤ σ

almost surely. If we let µ(x) = min{n : Sn > x}, then

P(Mσ > x) =
∑
k≥1

P(τk < µ(x) ≤ τk+1, σ > µ(x))

=
∑
k≥1

P(σ > µ(x) > τk)P(τk < µ(x) ≤ τk+1 | σ > µ(x))

≤
∑
k≥1

P(σ > τk)P(Mτk > x) ≤
∑
k≥1

P(σ > k)P(Mτ > x)

≤ E σ P(Mτ > x).

Moreover,

P(Mτ > x) ≤ P(�{n < τ : Sn > x, Sn+1 ≤ x} ≥ 1) ≤ E
τ−1∑
n=0

1{Sn>x,Sn+1≤x},

where �A denotes the cardinality of A. By using the argument of the proof of Lemma 2.3 of
Asmussen (1998), we find that

E
τ−1∑
n=0

1{Sn>x,Sn+1≤x} ∼ E τ
µ−

µ
P(X > x) for large x,

where µ− = ∫ ∞
0 FX(−y) dy. Since P(Mσ > x) ≥ P(X > x), we find that

P(Mσ > x)∫ ∞
x

P(Mσ > u) du
≤ E σ E τ

µ−

µ

P(X > x)∫ ∞
x

P(X > u) du
→ 0

as x → ∞, since the distribution of X is long tailed.
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By Corollary 2.1, we have

lim
x→∞

P(M > x)∫ ∞
x

P(Mσ > u) du
= − 1

E Sσ
.

Moreover, Wald’s identity (see Chow et al. (1965)) gives that if either E|X1| < ∞ or E σ < ∞,
then E Sσ = µE σ . Now, using Veraverbeke’s theorem, we derive that

lim
x→∞

∫ ∞
x

P(Mσ > u) du∫ ∞
x
F (u) du

= E σ.

Step 2. That F s is subexponential follows from the converse to Veraverbeke’s theorem,
proved in Korshunov (1997).

3.3. Proof of Proposition 2.1

Let us consider the sequences of stopping times {σk}k≥0 and cycles

{Sn+σk−1 − Sσk−1}0≤n<σk−σk−1

defined in step 1 of Section 3.2. We now writeVn+σk−1 = Sn+σk−1 −Sσk−1 for 0 ≤ n < σk−σk−1
and k ≥ 1, Yn = max0≤k<σn−σn−1(Sk+σn−1 − Sσn−1), and Nn = ρ(Sσn−1 − Sσn). By the
regenerative structure of the random walk, ({Vn+σk−1}0≤n≤σk−σk−1 , Nk)k≥1 are again i.i.d. and

Mϕ = max
n≥1

Sϕn = max
k≥1

max
0≤n<σk−σk−1

(Vn+σk−1 −�k−1).

According to Corollary 2.1,

lim
x→∞

P(Mϕ > x)∫ ∞
x

P(Y > u) du
= 1

E ρ(−Sσ1)

and, according to Corollary 2.2,

lim
x→∞

∫ ∞
x

P(Y > u) du∫ ∞
x
FX(u) du

= E σ1.

These observations complete the proof of Proposition 2.1.
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