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Abstract

The method suggested earlier for solving the problems of optimal design from a limited set
of elastic materials is generalized to a viscoelasticity case. The computational experiment
for the problem of free oscillations of a spherical shell shows that characteristics of a
viscoelastic layered structure may be improved due to peculiarities of wave propagation
through the boundaries of layers made of different materials.

1. Introduction

The present state of the problem of optimal design of composite structures from a
given set of materials with different restrictions on their behavior has been adequately
described in the monographs [2,4,5]. In particular, these monographs present the
method developed by the authors to solve the problems of synthesis of elastic lay-
ered cylindrical shells that provide necessary damping of oscillations under different
external effects and with the restrictions on the mass or total thickness of a structure.

The problems of free oscillations hold a specific position among the problems
of dynamics of elastic structures. This position is explained by the fact that free
oscillation characteristics (fundamental frequencies and forms) fully determine the
individual properties of a mechanical system; they are also of prime importance in
analysing its forced oscillations. In this connection, the problems of structure synthesis
from a finite set of materials, with different restrictions on free oscillation frequency,
are of particular interest. The first and the only publication concerning this aspect is
the paper by V. V. Alyokhin [ 1 ] where the problem of synthesis of the layered cylinder
and sphere of minimum mass has been considered.

The wide application of polymeric materials in machinery makes it necessary to
study the problems of optimal design of inhomogeneous structures having viscoelastic
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properties. Therefore it is of great interest to analyse the peculiarities of the problems
of optimal control of viscoelastic systems in relation to similar problems for elastic
structures. Such analysis is also important because the damping characteristics of
viscoelastic materials may be sufficient to make them preferable for the design of
some structures. The problem is to determine whether viscoelasticity is a suppressing
physical factor of reflection and refraction effects at the boundaries between different
layers.

There are many publications concerning the solution of direct problems of esti-
mating the characteristics of viscoelastic structures (see, for example, [6,9]). The
most important scientific result obtained by the authors of the above papers lies in
establishing the nonmonotonic dependence of dissipative characteristics of structures
made of viscoelastic materials on their geometric and other parameters of structure
inhomogeneity. This result can be used as the basis for stating the problem of synthesis
of layered structures from viscoelastic materials with restrictions ensuring the real-
ization of practically important structure requirements (minimum weight, maximum
damping decrement, etc.).

2. An illustrative example

As an example, let us consider a multilayered spherical shell, where each layer is
filled with a viscoelastic material, the mechanical properties of which depend on a
layer number n. We then analyse the effect of its structure (viscoelastic parameters of
materials, relative arrangement and thickness of layers), synthesized from a finite set
of viscoelastic materials, on damping of free oscillations.

Problems of free oscillations belong to a class of problems where inertial terms
fully determine material behavior. Therefore it is necessary that boundary conditions
correspond to the work of all the external forces being zero. Masses must also be
assumed to be zero.

With regard to the correspondence principle, the direct problem of free oscillations
of a viscoelastic spherical shell can be solved in the same way as the corresponding
problem of elasticity theory, with moduli replaced by the complex viscoelastic ones.

Free oscillations of a homogeneous sphere from a viscoelastic material are described
by the following boundary value problem:

)^-+2X-, (2.2)
or r

= 2 (X+ / ! ) - + X - ^ , Rt < r < R2, (2.3)
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= ar(R2) = 0.
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(2.4)

Here /?i and R2 are inner and outer radii of a spherical shell, A. and jx re viscoelastic
parameters of Lame which can be written (as in [3]) as

kn = Xn[l - rc
kn(

(2.5)

, 0 0

= / Rxn(r)cos(coRz)dz
Jo

Jo

where Xn, /xn, Rkn, /?Mn are Lame parameters and relaxation kernels of «-layer material
(for a homogeneous sphere n = 1) and OJR is a real constant.

The solution of the problem (2.1)-(2.4) for n — 1 can be presented in the form

u(r) = (C, + C2) 1-7cos(/cr) + — sin(/cr)
r2

2
I K K

— i(C\ — C2) | — cos(/cr) H sin(/cr)
\r2 r

and

ar(r) = (C, + C2)

i(C, - C2) | — sin(«T) + (^7 -

) \ sin(/cr)j ̂

2fi) j cos(Kr) | - ,

(2.8)

where /c2 = pco2/(X + 2/j,) , the bar over A and /x being omitted.
In determining constants from boundary conditions (2.4), one can obtain the char-

acteristic equation

(2.9)

In the case of elastic materials, the coefficients A. and /u. are real, which corresponds
to the equalities k = k, p. = fj. in (2.5). The solution (2.9) may now be checked

https://doi.org/10.1017/S0334270000010602 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000010602


528 E. A. Bondarev, V. A. Budugaeva and E. L. Gusev [4]

TABLE 1. Characteristics of elastic materials and corresponding frequencies of fundamental oscillations
of a spherical shell.

No. of the material
1

2
3

P
1

2
4

A

6
16
34

V-
6
16
34

a>
7.04
8.14
8.39

using results obtained by V. V. Alyokhin [1]. The values of parameters are given in
Table 1. It is also assumed that R{ =0.8 and R2 = 1.0. Natural frequency values for
each material presented in Table 1 perfectly coincide with V. V. Alyokhin's results.
While describing viscoelastic materials, volume strain has been considered to be pure
elastic, that is, modulus of volume compressibility K = A. + |/x is a constant. To
describe shearing strain, the Rzhanitsyn-Koltunov's relaxation kernel has been used
[7] as the most common one in mechanics of polymers:

R^ =Aexp(-pt)/t1-".

Solutions (2.7) and (2.8) can be easily generalized to a case of a multilayered
sphere. Denote

An = (<:„(/•„_,)&„(/-„_,) - rfn(rn_,)«„(/•„_,))

A _ A (a"(r) ibn(r)\ (-dn(rn_{) b,
"~ n\cn(r) idn{r))\-icn(rn_x) ia

(n = TjV) and (2.10)

(2.11)

Here

K K
an = — - cos(Knr) + — sin(*rnr),r r

K K

bn = —"- cos(/cnr) sin(/cnr),

ncn = —
r

dn = —
r

4-Lt K (A-LL \ "1
— — cos(Knr) - ( — ^ - /on<w2 j sin(/cnr) ,

4/in sin(A<:nr) + I — - pnuf I sin(/cnr) rn, [n =

Then from the conditions of displacement and normal stress continuity at the bound-
aries of layers one obtains

(uN(r)\ (Ul(r0)\
\aN(r)J W^o);'

where G is a square matrix and

G (£11

S21
= An

(2.12)

(2.13)
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In this case the boundary conditions (2.4) are satisfied:

°7v(rAf) = o'i(ro) = 0. (2.14)

From the solution (2.12), with regard for the boundary conditions (2.14), one can
obtain a characteristic equation to determine frequency a>:

g2l=0. (2.15)

Its roots can be determined by Muller's method [8], while the natural frequency of
elastic oscillations is taken as the initial guess.

The solutions obtained can be verified by comparing them with the calculations
of V. V. Alyokhin [1], made for a sphere consisting of three elastic materials, the
physical characteristics of which are presented in Table 1. The first, second and third
layers are composed of the third, second and first materials of Table 1, respectively;
r0 = 0.7718, r, = 0.7901, r2 = 0.8266, rN = 1.0. Calculations lead to the square of
a base natural frequency equal to 65.01, which is equal to V. V. Alyokhin's result [1].

3. An optimization problem

Consider the problem of synthesis of a multilayer spherical shell from the given set
of viscoelastic materials that provides maximum damping of free oscillations. The
inner and outer radii of shell are fixed, aT and u play the role of phase variables.

Selecting a function 9{x) characterizing material structure, that is, presence at
a given point x of some material from the set, one can formulate the optimization
problem as follows. Among the piecewise-constant functions 9(x) with a range of
values belonging to the given finite discrete set W,

9(x)e w={eu...,em),

where m is a number of different materials, find the control 9(x) which maximizes
the functional

F = lm[a>(0)]. (3.1)

For harmonic oscillations the system (2.1)-(2.4) can be reduced to the boundary
value problem for a vector equation

z2(0) = Z2(l) = 0, (3.2)
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where a new variable x € [0, 1] is introduced which is related to the former one by
r = r0 +x(rN — r0). The prime means differentiation with respect to x, the vector
z — [zi = u, zi = or} and the matrix A is given by

A =
gr2

4/j,(3k + 2/i)g - pco2(rN - r0) 4fj.gr

where g = (rN — ro)/r
2(X + 2fi).

The square of the frequency can be expressed in phase variables (the Rayleigh
method). Let us multiply the first equation of the system (3.2) by Z\r2 and integrate
over x from 0 to 1. Using the rule of integration by parts and the first equation of the
system (3.2) one obtains

<o2(9)= I Mt,e)dx/ f J2Ct,e)dx, (3.3)
Jo I Jo

where

( 4 ^ + 2 ^ ^ ^ l ^ t ) = pz2r2. (3.4)

To derive necessary optimality conditions let us first find variations of the functional
= a)2(9) determined by the perturbed control

6 (x) =
\9(x),

It follows from (3.3) that

= t [Ji (~tJ)- J\ (~t,e) - o?Ji (t, 6) + co2J2 (f, 6)] dxl I J2 dx
JM I Jo

o Id Z
(3.5)

The last term in braces corresponds to variations of phase variables ~z • By virtue of
(3.4) it can be transformed as follows:

L
Jo \k + 2fi r(\ + 2n) J Jo \_rn-r0 \dx J J
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Using the first equation of the system (3.2), after a number of transformations one
obtains

- BiLt- - ' •

Here / i is the right-hand side of the first equation of the system (3.2).
Substituting (3.6) into (3.5) one obtains

SF, (M, 6) = f L (6) - J, (9) - co2 (J2 (§) - h (0))
JM L

- ^ ~ (/i (0) - / . (0)) ]dx/ f hdx. (3.7)
?N — fO J / JO

Then, varying the functional (3.1), one can write

SF = lmS(co) = Im ( -±\.

Bearing (3.7) in mind, the last expression takes the form

where

H (-, 0) = 7, (-, 0) - o?J2 (-, 9) - - ^ - / , (•, 0) . (3.9)

Using (3.8) as a variation of the functional (3.1), one can formulate the necessary
optimality condition 8F(~?, 9) < 0 in the form of the maximum principle : let [9opt]
be the optimal control in the problem (3.1), (3.2), (3.3), (3.5) having a nontrivial
solution of the system (3.2). Then the Hamiltonian function (3.9) takes a minimum
over the argument 9 for the optimal control #opt almost at each x € [0, 1], that is,

H(;90pt)=minH(;9). (3.10)
v ' 0eW

In the problem considered, the Hamiltonian (3.9) does not include conjugate variables.
The existence of the problem considered has been proved in [5]. The proof is based

on the introduction of new control variables which change the vector diagram of the
controlled system from concave to convex.
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TABLE 2. Characteristics of viscoelastic materials and corresponding values of Re co and Im w.

No. of the material
1
2
3

P
1
2
4

E
15
40
85

V

0.25
0.25
0.25

A
0.01
0.01
0.01

a
0.5
0.5
0.5

P
0.05
0.05
0.05

Re a;
7.04
8.13
8.35

Ima>x 103

9.00
9.70
9.89

4. Particular examples

The foregoing enables a computational algorithm to be formulated as follows:

(1) Using the uniform mesh of points {xn}, divide the interval [0,1] into a sufficiently
large number of small segments of length h = xn+l—xn, simulating a set of small
measure M.
The initial guess of control [0(x)} being known, determine the natural frequency
by solving (2.15).
Using the frequency obtained, solve the system (2.12) assuming that the values
of a vector of phase variables on the segment M, are characterized by its value
in the middle of the segment x = xn + h/2.
Assign a new control {6} on Mn from the condition

(2)

(3)

(4)

H ["?(*„ + h/2), 6] = min H [~t {xn + h/2), 8].
OeW

The process is considered to be over if the control does not change on any of the
segments. When the control 6{x) takes the same value on two or several adjacent
segments M, these segments are combined in one macrolayer. The convergence of the
algorithm and its rate were carefully checked for the corresponding elastic problem [5].
Several direct calculations which we performed showed that the rate of convergence
improved in the case of viscoelasticity.

Consider some typical examples. For all the variants it is required to synthesize a
spherical shell with maximum damping of free oscillations.

(1) There is a set of three viscoelastic materials, characteristics of which (in a
dimensionless form) are presented in Table 2. The internal and external radii of
a shell are fixed: r0 = 0.8 and rN = 1.0.
This variant is characterized by the fact that rheological parameters of all the
materials are the same. The last two columns in Table 2 show the real and
imaginary parts of the natural frequency of corresponding one-layer shells. A
three-layer shell synthesized with the help of the described algorithm has the
following parameters: Rea> = 8.47 and Imw = 9.94 x 10~3. Its structure is
presented in Figure l(a) where the inside numbers correspond to the number of
a material in Table 2.
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(a)

0.8 0.920 0.968 1.0

(b)

0.8 0.988 1.0

(c)

0.8 0.960 1.0

FIGURE 1. The schematic representation of the designed shells (letters a, b and c correspond to three
variants in the text).

TABLE 3. Relaxation parameter of materials and corresponding values of Re 10 and Im u>.

No. of the material
1
2
3

a
0.10
0.12
0.15

Reco
6.89
8.00
8.28

Ima x 103

25.7
27.0
25.3

(2) In this example all the characteristics of materials are the same as in Table 2,
except for the parameter a. Its values and corresponding real and imaginary parts
of complex frequency are shown in Table 3.
Maximum damping of natural frequency is provided by a two-layer spherical
shell with Reco = 8.0, Imco = 27.2 x 10~3 presented in Figure l(b).

(3) Three materials are given, the parameters of which are presented in Table 4. The
synthesized shell obtained is a two-layer one (Figure l(c)) with the following
characteristics: Reco = 5.96 and Imco = 7.6 x 10~3.

5. Conclusion

The analysis of the results leads firstly to a positive answer to the question for-
mulated at the beginning of the paper: damping capability does increase due to
peculiarities of wave propagation through the boundaries of different viscoelastic ma-
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TABLE 4. Characteristics of materials and corresponding values of Re co and Im a>.

No. of the material
1
2
3

P
1
4
8

E
15
48
42

V

0.25
0.20
0.15

A
0.01
0.01
0.01

a
0.8
0.5
0.5

0.05
0.05
0.05

Re co

7.05
5.77
5.50

Imw x 103

4.4
7.3
6.5

terials. However it must be mentioned that in all the cases considered the increase of
damping is not large in comparison to that in a one-layer shell of "the best" material
(maximum value of Im&> in Tables 2-4). Secondly, in all the layered shells the first
inside layer always consists of this "best" material, its thickness as a rule being much
larger than that of the other layers. This can be seen in the second example in particular
(Figure l(b)).
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