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Abstract

If Sp(V) is the symplectic group of a vector space V over a finite field of characteristic p, and r is a
positive integer, the abelian p-subgroups of largest order in Sp(V') whose fixed subspaces in V have
dimension at least r were determined in the preceding paper, in the case p 2. Here we deal with the
case p = 2. Our results also complete earlier work on the orthogonal groups.

1980 Mathematics subject classification ( Amer. Math. Soc.): 20 G 40.

Introduction

We consider the symplectic group Sp(V') of a vector space V over a finite field of
characteristic 2, and, for each positive integer s, determine the abelian 2-sub-
groups of Sp(V') of largest order fixing the vectors of an r-dimensional subspace
of V. (The corresponding problem for odd characteristic was solved in the
preceding paper.) We also apply our results to the study of the abelian 2-sub-
groups of odd-dimensional orthogonal groups in characteristic 2, a case which

was omitted in Wong (1981).
This DAPRY 1S 2 continuation of ne preceding atidie, Wong (\9%Y). We Shal

assume familiarity with the notation, terminology and methods of that article,
and quote lemmas and theorems from it without further reference.

1. Symplectic group

Let F be a finite field of characteristic 2, and consider a finite-dimensional
vector space V over F, with an alternating bilinear form H. Assume V is
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nondegenerate, so that V has even dimension 2m. For 0 < r < 2m, we consider
the set @(V, r) of all abelian p-subgroups of largest order fixing some r-dimen-
sional subspace of V, and denote the order of subgroups in @(V, r) as g/,
where g =| F| .

As for the case of odd characteristic, the analogues of Lemmas 3 and 4 hold for
Sp(V'), where now B(¢r) = F for all 1. If 4 is an abelian p-subgroup of Sp(V)
fixing an r-dimensional subspace X, and x is a nonzero vector in rad X, then S
can be defined as in Lemma 5, and s = dim S satisfies 0 < s < 2m — r — 1. Since
H is pow symmetric, we do not have a nondegenerate form H,, to use to show S is
totally isotropic, and so we cannot deduce s <m — 1. We have a recursion
formula, proved in the same way as Lemma 8. If 1 < r << 2m, then

f(m,r) =max{g(m,r,s)|0<s<2m—r—1),

where g(m, r,s) =1+ s+ f(m — 1, max(r — 1, 5)).
Our first result shows that we have the same order formulas as in the case of
odd characteristic.

THEOREM A. Let Sp(V') be the symplectic group of a 2m-dimensional vector space
V over a field F of q elements having characteristic 2, and let g™ be the largest
order of an abelian 2-subgroup of Sp(V') fixing an r-dimensional subspace of V.

(@) If r = m, then f(m,r) =41Q2m — r)2m — r + 1).

) If r < m, then f(m,r) =1m(m + 1).

PrROOF. The result holds for m =0 or r =2m. We may suppose m = 1,
1 < r < 2m, and use induction on m.

First suppose r=m. If 0<s<2m—r— 1, then g(m,r,s)=1+s5+
1@2m — r = 1)(2m — r), by inductive hypothesis. The maximum in the recursion
formulaoccursat s = 2m — r — 1, and f(m, r) = 12m — r)2m — r + 1).

Now suppose r <m. If0<s<m — 1, theng(m,r,s) =1+ s+ 3(m — I)m,
by inductive hypothesis, so that the maximum value of g(m, r, s) in this range is
im(m + 1),occurringat s =m — 1. If m — 1 <s<2m —r — 1, theng(m, r, s)
=1+s+ 12m—s—2)2m — s — 1), by inductive hypothesis. This is a con-
vex function of s, so its maximum in this range occurs at s =m — 1 or
s = 2m — r — 1. A check of values shows that the maximum value is 3m(m + 1),
occurring only at s = m — 1, unless m = 2 and r = 1, when it occurs at s = 1 and

= 2. This proves Theorem A.

Again we denote by 5(V) the set of all r-dimensional subspaces X of V" such
that X C X* or XD X, and write A(X) for the subgroup of Sp(V') of all
elements fixing X. If X C Y, we write A(X, Y/X) for the subgroup of Sp(}') of
all elements which fix both X and Y/ X.

https://doi.org/10.1017/51446788700018760 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700018760

131 Finite symplectic groups 347

If ¢ = 2 and m = 2, we also define a special subgroup as follows. Let X C X',
where X’ is a totally isotropic subspace of dimension 2 in V, and X is a subspace
of dimension 1 in X’. Then A(X, X’'/X) is a subgroup of order 16 in Sp(V)
(actually a Sylow 2-subgroup), and we let A*(X, X'/X) be the subgroup of
A(X, X'/X) generated by all its elements of order 4. Choose another totally
isotropic subspace Y’ of dimension 2 such that V' = X’ @ Y’, take a basis x, x’ of
X’ with x € X, and let y, y’ be the basis of Y’ dual to x, x’ relative to H. Then the
elements of A*( X, X’/X) are just the linear transformations on V of the form

X - X,

x' - x'+ ax,

y =y +ax' +(a+ c)x,

y—-y+tay +cx’ + bx,
where a, b, ¢ € F, and A*( X, X' /X) is abelian of order 8.

THEOREM B. Let Sp(V') be the symplectic group of a 2m-dimensional vector space
V over a field F of q elements having characteristic 2, and let @(V, r) be the set of
all abelian 2-subgroups of Sp(V') of largest order fixing an r-dimensional subspace of
V.

@ Ifr=m, then @(V, r) = {A(X)| X € 5(V)}.

bYIfr<mandm # 2, then &V, r) = Q(V, m).

(c) If m = 2 and q > 2, then Q(V, 1) consists of €(V,2) together with all groups
A(X, X* /X), where X € 5 (V).

(d)Ifm = 2 and g = 2, then @(V, 1) consists of Q(V, 2), the groups A(X, X* /X),
and the groups A*(X, X'/ X), where X €S (V), X' € 5,(V), X C X".

PROOF. It is easy to see, as in Theorem 2, that the groups named do lie in
€ (¥, r) in each case.

Conversely, let 4 € &(V,r), where we may assume 1 <r<2m. Take a
degenerate r-dimensional subspace X fixed by A4, choose a nonzero vector x in
rad X, and set up the situation of the proof of Lemma 6.

If r = m, thenweknowthats =2m —r— 1<r— l,andso 4, € &(Z, r — 1).
Since f(m — 1,r) <f(m — 1,r — 1) from Theorem A, and A, fixes both S and
the (r — 1)-dimensional subspace W, it follows that S C W. Since § and W are
orthogonal to each other, S is totally isotropic, and the proof of Theorem 2(a)

applies.
Now let r < m. We recall the crossed homomorphism method of Wong (1981).
Ifp € 4, set

C,={reZ|o(p,t,b) €A, someb}.

i
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Then p - C, is a crossed homomorphism y: A4, - Z/S. If K is the kernel of v,
K={u€A|C =S},

then | K|>| 4, |/q*™ 2. Theorem A now gives an upper bound on the dimen-
sion of the subspace
T= () ker(p—1).
neK
The image of y lies in 7/S, and so we obtain a new lower bound |K|=>
|4, |/q¥™T~*, then a new upper bound for dim T, and so on.

Take s = m — 1, which is the case except possibly when m = 2 and r = 1. If
m>2 or m=2 and K # 1, then the method leads to the conclusion that
dimT<m—1, so that T=S, and 4 = {o(p, t,b)|p €A, tES, bE F}.
Since 4, € &(Z, m — 1), it follows from part (a) that S is totally isotropic, and
hence A4 fixes (x)® S, so that 4 € &(V, m).

If m=2,5 =1, and K = 1, then fix a hyperbolic pair x’, y’ € Z, with x’ € §.
Each element of A, has the form p(a), where a € F, and

pla)x’ = x',
p(a)y =y +ax’.
We can then write y(u(a)) = g(a)y’ + S, where g is a map of F into itself. The
equations (p — 1)’ = (p’ — )¢, H(pt', t) = H(p't, t’) of Lemma 4 give
g(a)ax’ = g(a)a'x’,
gla)g(a’)a’ = g(a’)g(a)a,
for all a, a’ € F, Takea’ = 1, and let k = g(a’). Then
g(a) = ka, ka = k%a?,
for all a € F. Since K = 1, we have k # 0, so that ¢ = @? for all a € F. Hence
g = 2.Since k = 1, we see that C, ,,) = {@’ + cx’|c € F}, and so
A = {o(p(a), ay’ + cx',b)|a, b.c € F}.

Thus, 4 = A¥(X, X'/X), where X = (x), X" = (x, x').

We finally have the case m = 2,5 = 2. Then 4, = 1, S = Z, 4 = {o(1, ¢, b} |
t€Z, be F}=A(X, X*/X), where X = (x). This completes the proof of
Theorem B.

All the groups occurring in Theorem B are elementary abelian, except for the
groups A*(X, X’/X), which have exponent 4. The existence of the groups
A(X, Xt /X) (X €5(V)) in €(V, 1) in the case m = 2 can be explained in the
theory of groups of Lie type. Here Sp(V') is a group of type B,, and has a
nontrivial graph automorphism which transforms the groups in @(V,2) into the
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groups A(X, X'/X). Also, it can be shown that Sp(V') has a third class of
maximal abelian 2-subgroups, of order 2¢2, which are the groups A*( X, X' /X)
when g = 2. Thus the existence of these groups in €(V, 1) may be regarded as
following from the “accidental” equality 2¢2 = ¢°.

A Sylow 2-subgroup P of Sp(V') is determined by a sequence of totally
isotropic subspaces

0=W,CW,CW,C---CW,,

such that dim W, = i, as the group P(W,, W,,..., W, ) of all elements of Sp(V')
fixing all W,/W,_, (1 <i =< m). The proof of the following result is omitted.

THEOREM C. Let P = P(W,, W,,...,W,,) be a Sylow 2-subgroup of the sym-
plectic group Sp(V') of a 2m-dimensional vector space V over a finite field of g
elements having characteristic 2.

(a) If m + 2, then A(W,,)) is the unique abelian subgroup of largest order in P.

(b) If m =2 and q > 2, then the abelian subgroups of largest order in P are
A(W,) and A(W,, Wi /W)).

(c) If m =2 and q = 2, then the abelian subgroups of largest order in .P are
A(W,), AW, Wt /W) and AX(W,, W,/ W)).

2. Orthogonal group, odd dimension

We can now complete the work on the orthogonal groups in Wong (1981),
where the case of odd dimension and characteristic 2 was omitted. Let V be a
vector space of dimension 2m + 1 over a finite field F of characteristic 2, with a
nondegenerate quadratic form Q. Then Q has defect 1, that is, the radical V* of
V relative to the alternating bilinear form B associated with Q has dimension 1,
by Dieudonné (1955), page 35. Also, the orthogonal group O(V) fixes V* and
acts faithfully as the symplectic group of degree 2m on the quotient space
V= V/V*, which has a nondegenerate alternating bilinear form inherited natu-
rally from B.

LEMMA. Leto € O(V'), x € V. Then o fixes x if and only if o fixes the image x of
xinV.

PROOF. Suppose o fixes X, that is, ox — x € V' . Then B(x, 6x — x) = 0, and
so Q(ox) = Q(x) + Q(ox — x). Since o is orthogonal, we have Q(ox — x) = 0.
By nondegeneracy of Q, ox — x = 0, so that ¢ fixes x. The converse is trivial.
This proves the lemma.
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It follows that the fixed subspace in ¥ of a subgroup 4 of O(V') is the preimage
of the fixed subspace in ¥ of A as a subgroup of Sp(¥). Now our results on the
symplectic group translate immediately into results on the orthogonal group
O(V). Let §(V') denote the set of all r-dimensional subspaces X of ¥ such that
XD X!t or V*C X C X+, where X* is the orthogonal complement of X in ¥
relative to B, and write A( X) for the subgroup of O(}") of all elements fixing X.
If X C Y, we write A( X, Y /X) for the subgroup of O(V') of all elements which fix
both X and Y/X. For ¢ =2, m=2, XE€5,(V), X' €5(V), XC X, let
A*( X, X’ /X) be the subgroup of A(X, X’/ X) generated by its elements of order
4,

THEOREM D. Let O(V') be the orthogonal group of a (2m + 1)-dimensional vector
space V over a finite field of q elements having characteristic 2, let €(V, r) be the set
of all abelian 2-subgroups of largest order fixing an r-dimensional subspace of V, and
let ¢/*™") be the order of a subgroup in &(V, r).

@ If r>m, then f(m,r)=1Cm—r+ D2m—r+2), and AV, r) =
(A(X)| X €5V)).

b)If r<mand m # 2, then

fim,ry=im(m+1), and QV,r) =&V, m+1).

© If m=2 qg>2, r<2, then f2,r) =3, and &V, r) consists of (V,3)
together with all groups A(X, X" /X ), where X € S,(V).

DIfm=2,qg=2,r<2 then f(2,r) = 3, and Q(V, r) consists of A(V, 3), the
groups A(X, X* /X), and the groups A*(X, X'/ X), where X € S,(V), X' € §4(V),
Xcx.

References

J. Dieudonne (1955), La géométrie des groupes classiques (Springer-Verlag, Berlin).

W. J. Wong (1981), ‘Abelian unipotent subgroups of finite orthogonal groups,’ J. Austral. Math. Soc.
Ser. A 32,223-245.

W. J. Wong (1982), ‘Abelian unipotent subgroups of finite unitary and symplectic groups,” J. Austral.
Math. Soc. Ser. A 33, 331-344,

Mathematics Department Department of Mathematics
Our Lady of Mercy College University of Notre Dame
Carysfort Park Notre Dame, Indiana 46556
Blackrock Co. Dublin US.A.
Ireland

https://doi.org/10.1017/51446788700018760 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700018760

