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ON THE CONDUCTOR OF AN ELLIPTIC CURVE
WITH A RATIONAL POINT OF ORDER 2

TOSHIHIRO HADANO

l Introduction

Let C be an elliptic curve (an abelian variety of dimension one)
defined over the field Q of rational numbers. A minimal Weierstrass
model for C at all primes p in the sense of Neron [3] is given by a
plane cubic equation of the form

y2 + aλxy + a3y + xz + a2x
2 + a4x + aQ — 0 , (1.1)

where α̂  belongs to the ring Z of integers of Q, the zero of C being the
point of infinity.

Following Weil, we define the conductor N of C by

all p

where Δ denotes the discriminant of C, and np is the number of com-
ponents of the Neron reduction of C over Q without counting multi-
plicities. It is well-known that the p-exponent of N is

0 for non-degenerate reduction
1 for multiplicative reduction

p + " Up = 2 for additive reduction and p Φ 2,3
^2 for additive reduction and p = 2,3 .

Therefore both JV and Δ of a minimal model are divisible exactly by
those primes at which C has degenerate reduction. (See Ogg [6], [7]).

We consider the problem to find all the elliptic curves over Q of
given conductor N. As we may reduce this problem to find the rational
solutions of the diophantine equation y2 = x3 + k with k e Z, there are
only finitely many such curves by virtue of Thue's theorem. Ogg [5],
[6] has found all the curves by showing that they have a rational point
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of order 2 for N = 2m, 3 2m 9 2m, while Velu [8] found all the curves

ofN— l l m under the WeiPs conjecture for Γ0(N). On the other hand,

Miyawaki [1] has culculated all the curves of prime power conductor

with a rational point of finite order > 2 .

In this paper we treat the curves of N = pm and 2mpn (for this

case, see [101 as resume) with a rational point of order 2. For N — pm,

we can find all admissible p, and, a fortiori, all the curves for each p.

(Section 3). For N = 2mpn, we can find all the curves under an assump-

tion which can be eliminated for 'non-large' p with p = 3 or 5 (mod 8).

Moreover, we get some results on the elliptic curve which has multipli-

cative reduction at 2 and p, and these are generalizations of the results

of Ogg [6]. (Section 4). In Appendix all the elliptic curves of 3-power

conductor are determined.

2. Diophantine lemma

We prepare all the diophantine results we need afterwards.

LEMMA. The only non-zero integral solutions of the equations below

for a given odd prime p are as follows:

1) // X2 - 1 = 2 V , then (|X|, 2ψ) = (2,3), (3,23), (5,233), (7,243), (9,2*5),

(17,2532) for p = 3 or 5 (mod 8), and β = 1, p = 2a~2 ± 1 (a ^ 5) for p = 1

or 7 (mod 8).

2) If X2 + 1 = 2apβ, then (|X|, 2βp0 = (1,2) forp = S (mod 4), ami eiίfter

a = 0, β — 1 or α = 1, β = 1,2,4 /or P Ξ I (mod 4). In particular we

have β = 4 if and only if p = 13, |X| = 239.

3) // 2X2 — 1 = pa, a > 0, then there is no solution for p = 3 or 5 (mod 8).

4) // 2X2 + 1 = p% a > 0, tfeen α = 1,2 or (|X|, pa) = (11,35) forp~l or

3 (mod 8), cmd ί/iere is no solution for p ~ 5 or 7 (mod 8).

5) TFβ assume here that p satisfies the conjecture of Ankeny-Artin-

Chowla and the analogy (See [2], Chapter 8) for p = 3 or 5 (mod 8). //

I ±p« - X2\ = 2>, ίΛen (±^MX|) = (1,3), (-1,1), (3,2), (-3,1), (32,1), (32,5),

(33,5), (34,7) or a = β = lforp = S (mod 8), and (±p% \X\) = (1,3), (-1,1),

(52,3), (53,11), a = 1, 0 = 0 or or = 1, β = 2 /or p = 5 (mod 8).

6) // p X 2 - Γ = : ±2% and Y = ±2^, ίΛen dίΛβr 2 |X,4 |Γ , or (|X|, 7)

- (1,4),(1,2),(1,1),(1, - 1 ) /or p = 3, (1,4), (1,1) /or p = 5, and ^ e r e is

no solution for p Φ 3, 5.

7) // X2 - 64 = p% then (|X|,pa) - (9,17).

8) // X2 + 64 - r , then ( |X | , r) - (15,172) or a = 1 for all p.
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This lemma except 7) and 8) is a generalization of Diophantine lemma

of Ogg [6]. The methods for solving these equations are standard and

elementary. We refer to each parts of this lemma as D19 ,D 8 . Dλ is

easy by [2], Chapter 30. D2 may be solved by factorization in ZW — 1]

and Ljunggren's result in [2], Chapter 28. Dz is easy. D4 and Dδ may

be solved by the congruence method and the results of Pell's equation.

DQ and D7 are easy. D8 may be solved by factorization in Z[Λ/~^Λ].

3. The case of N = pm

Let C be an elliptic curve of conductor N — pm with a rational point

of order 2. Then we have m = 1 or 2 from Section 1 if p Φ 2,3 (cf.

Appendix) and we have a defining equation for C of the form

y2 + x3 + a2x
2 + a4x = 0 (3.1)

with dj e Z, minimal at all p Φ 2, and such that we do not have 221 a2

and 24 |α4. This curve is isomorphic to

,/ + χy + χ* + (^±λy + ̂ x = 0 , (3.2)

minimal at all p. If these coefficients are not integers, they can be made

integers by a translation.

Now we propose to find all possible p such that the discriminant

of (3.2) is

Δ = 2 - 8 a ^ — 4a4) = ±pλ .

This result will give the determination of all C above up to isomorphisms.

At first, dividing the curve (3.2) by the group generated by (x, y) = (0,0),

we have an isogenous curve of degree 2 given by

y2 + xy + x3 -

which also has a rational point {x, y) = (0,0) of order 2. Its discriminant

is 2-4α4(αϋ - 4α4)
2 = ±pu212k (JceZ,k^0), since (3.3) is not necessarily

minimal at p = 2 and there is a relation, in general, 121 (ordp J
7 — ordp Δ)

between the discriminant Δf of a non-minimal model and the discriminant

Δ of its minimal model. Hence we have p2X = ±21 2 f e~1 2cφw, and so |α 4 | = 1,

16, pa or 16pα and fc = 0 or 1. On the other hand, either α2 is odd or
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2||α2 as we see below, and we see that only if a2 = 3 (mod 4) or a2 = 2

(mod 8) according as 2\a2 or 2||α2 respectively, we may rewrite the

equation (3.3) to the minimal equation of integral coefficients by a suitable

translation.

If α4 = ± 1 , then α2 = 2&2 is even, so \b\ ± 1| = 2%p\ and by Dx and

D2 we get (p,α2,α4) = (17,66,1). If α4 = ± 16, then \a\ ± 641 = pλ by D7

and D8 we get (p,a29a,) = (17, -9,16), (17,15, -16), or (X2 + 64, X, -16).

If α4 = ±pa, then a2 = 262 is even, so |&! ± Pα | = 2Qpλ~2a. Suppose first

λ = 2αr, then |&1 ± 641 = pa; by D7 and D8 we get (p,α2,α4) = (17,18,17),

(17, -30,172) or (X2 + 64, -2X, X2 + 64). Henceforth put b2 = p% (p\c2)

so that \p2tc\ ± pa\ = 2βpλ~2a. If αr ̂  4, then £ = 1 since otherwise we

can find a better model, so c\ ± pa~2 = ±26px~2a-2 and by Z)7 and D8 we

get (p,α2,α4) = (17, -510,174). If a = 3, then |c» ± p 3 " 2 ί | - 2 V 2 ί " 6 or

| ^ - 3 c 2 ± 1| = 2ψ~\ and by D7 and Ds we get (pfa2,aj = (17,306,173),

(X2 +64,2X(X 2 +64), (X2 + 64)3) or (7,-294,-7 3 ) . If α = 2, then

\c\ ± p2~2t\ = 2y- 2 ί " 4 or |p2ί"2c2

2 ± 1| = 2V"6, and by D19D29D7 and D8 we

get (pfa29a4) = (17,66-17,172). If or = 1, then I p 2 ^ 1 ^ ± 1| = 2V~3 and

we get (p,α2,α4) = (7,42, —7). Lastly if α4 = ±16pa, then |αl ± 2Qpa\ =

pλ~2a. Therefore similarly to above, we get (p9a2,a4) = (17,-33,16-17),

(17, -17-9,16-172), (17,17-15,-16-172), (17,17-33,16-173), (7,147,16-73),

(X2 + 64,X(X2 + 64), -16(X2 + 64)2) or (7, -21,16-7). This completes all

cases.

By identifying the isomorphic curves each other we have

THEOREM I. There are elliptic curves of conductor N = pm

9 {where

p Φ 2 and m = 1 or 2), with a rational point of order 2 for p — Ί, 17

and primes p such that p — 64 is square.

The minimal models with integral coefficients for p = 7,17,73 are
following:

Table 1.

AT

72 y2 + xy H

y2 + xy -

y2 + xy -

y2 + xy -

minimal equation

h xz - hx2 + Ίx = 0

h * 3 _ 5 a ; 2 _ 2 8 ί ( ; + 3 . 7 2 = = 0

μ it?3 + 37#2 + lzx = 0

μ x* + 37#2 — 4 73# — 3 7δ = 0

Δ

- 7 3

73

- 7 9

79

2-division points (x,y) Φ 00

(0,0)
/91 91 \

(0,0)

/ 1 4 7 147\
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N

17

172

73

732

y2

y2

y2

y2

y2

y2

y2

y2

y2

y2

y2

y2

+ xy -

+ xy -

+ xy -

+ xy -

+ xy -

+ xy -

+ xy -

+ xy -

+ xy H

+ xy -

+ xy -

+ Λ?2/ H

minimal equation

ha;3

hxz

h a;3

!-«•

!-«•

h Xs

hx3

- xz

- aj3

-x*

- 2x2 + x = 0

+ lβίu 2 — 8a? + 1 = 0

+ 4x2~x = 0

- 20a;2 + 13β# - 172 = 0

- 38a;2 + 172a; = 0

+ 268a;2 - 8 172a; + Γ73 = 0

- 140a;2 + 173a; = 0

344a;2 -f- 8 173a; 17^== 0

+ a;2 — x = 0

+ a;2 + 4a; + 3 = 0

+ 55a;2 - 732a; - 0

+ 55a;2 + 4 732a; + 3 733 = 0

Δ

17

17

Γ72

- 1 7 4

177

177

178

- 1 7 1 0

73

- 7 3 2

737

- 7 3 8

2-division points (x,y) Φ °°

(0,0), (1,0), ( 1 , - 1 )

(τ 4)
(0,0),(-4,2),(l,-l)

(^,-|),(0,±17)

(0,0), (-17,9-17),
(-17,-8-17)

/17 17\
\Ίf 8V

(0,0),(68,-34),(1J,-l|i)

ίVP_ _17 2 \

(0,0)

(~s s)

(0,0)

/ 219 219\

V Ύ'T'

Remark. We see that the members in each N above are isogenous

to each other. (See Velu [9]). For p = 2, see Ogg [5]. It is well known

that N Φ 7.

4. The case of JV = 2mpn

In this section we deal with the case N = 2mpn for odd prime p and

generalize the results of Ogg using his ideas ([6], §2).

Let K = Q(C2) be a Galois field generated by the group C2 of 2-divi-

sion points on the elliptic curve C defind over Q. For each prime p,

ep denotes the ramification degree of K/Q at p. Then we know the fol-

lowing results:

LEMMA (Ogg [6]). (1) // C has non-degenerate reduction at each

pψ2, then ep = 1.

(2) // C has multiplicative reduction at all p, then ep = 1 or 2.

(3) Suppose C has no non-zero point of order 2 in rational coordinates,

then K/k is cyclic of degree 3 over a field k of degree 1 or 2 over Q.

Suppose furthermore ep = 1 or 2 for all p. Then the class number of

https://doi.org/10.1017/S0027763000016147 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000016147


204 TOSHIHIRO HADANO

k is divisible by 3.

Now let p be an odd prime such that none of the class numbers of

four fields Q(V±p), Q(V±2p) is divisible by 3, and fix this p. Suppose

C has non-degenerate reduction (i.e. good reduction) at all primes q Φ 2,

p. Then eq = 1 by (1) in Lemma, and if the first conditions of (3) in

Lemma is satisfied, then k in (3) is Q, Q(Vr=:ΐ), Q(V±2), QiVΊtp) or

Q(V±2p). Hence 3|e2 or 3\ep. Therefore 3|e2 by virtue of (2) in

Lemma if N = 2mp, that is, C has a rational point of order 2 if e2 = 1

or 2 and N — 2mp. In particular by (2) in Lemma C has a rational

point of order 2 if JV = 2p. So we can generalize Ogg's result:

THEOREM II. // none of the class numbers of four quadratic fields

QW~±p)> QW±2p) for a prime p = 3 or 5 (mod 8) is divisible by 3, then

there are no elliptic curves of conductor N = 2p.

Proof, If there exists such a curve, we can choose an equation

y2 + x3 + a2x
2 + a±x = 0

with aό G Z, minimal at all p Φ2, We also assume that we do not have

22 |α2 and 24 |α4. Since we have multiplicative reduction at 2 and p,

ord2y < 0 and pJ(a2 (cf. [3]), where j = 212 (α^ — SαJ3^"1 is the invariant

of the curve with the discriminant A = 24al(al — 4a4) = ±2μpv. Henqe

we have μ = ord2 Δ > 12. If a2 is odd, then at — 4α4 = ±p% ord2(4α4) > 6.

If p I α4, then ĉ  ± 1 = 4α4 = 2αp^, which is impossible by Dx and D2 since

α > 6. If p | α 4 , then | ± p α — a\\ — |4α4| = 2 ,̂ j8 > 6, which is also impos-

sible by D5 (without the assumption there). Then we see that this

theorem can be proven by the same method as used by Ogg to show

N Φ 10, 12 in [6], § 4. (Replace Diophantine lemma there with our Dλ

and D6! Of type CY in his proof should be Of type C2\)

For example, we have p = 37,43,67,197,227 etc. except p = 3,5,11.

However, it is well-known that this is not true for p = 1 or 7 (mod 8),

but on the other hand we have

THEOREM III. // none of the class numbers of four quadratic fields

Q(V±p), Q(V±2p) for a prime p = 1 or 7 (mod 8) is divisible by 3, then

the elliptic curves of conductor N = 2mp, (m > 0), have a rational point

of order 2.
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Proof, As a defining equation for a curve C of N = 2mp> we can

take

2/2 + xz + α2#
2 + a4x + α6 = 0

with djβZ, minimal at all p Φ 2. If 3 |α 2 , then we get an equation

y2 + x3 + a,x + a6 = 0 (4.1)

with dj e Z, minimal at all p Φ 2, 3 and such that we do not have 241 α4

and 26 |α6. The discriminant Δ of this curve is

Δ = -24(4α4

3 + 27αjp = ± 2 " 3 V , (μ, p > 0) .

Suppose that C has no rational point of order 2, then an irrational point

(x, y) of order 2 is (r, 0), where r is a root of f(X) = X3 + α4X + α6 and

r g β . Therefore the ramification degree e2 at the prime 2 of Q(r)/Q is

3 under the assumption as we have seen. Considering the discriminant

of this cubic field, we see that α6 is even. If α4 is odd, then x = 0 re-

fines to a root r of f(X) in Q2 by Newton's method. This is a contra-

diction. Put α4 = —2tt, α6 = 2i;. Then 8π3 - 27v2 = ±2"-β312py, so t; is

even, since otherwise 8^3 — 27i;2 = ± 31 V , which is impossible modulo 8

for p Ξ 1 or 7 (mod 8). Put v = 2^x. Then we have f{X) = Z 3 - 2^Z

+ 22Vχ, hence u is even by e2 = 3. Put u = 2ul9 then 16^ — 27^i =

+ 2μ-*3L2pv, so t;χ is even, since otherwise 16ul — 2Ίv\ — ±S12p% which is

impossible as above. Therefore we have 22 |α4 and 23 |α6. Thus to solve

f(X) = 0 is the same thing as to solve

2-3/(2X) = X3 + 2-2α4X + 2"3α6 .

Hence repeating the above arguments, we have 24 |α4 and 26 |α6, and this

is a contradiction. If 3|α2, then we get (4.1) with a3eZ, minimal at

all p Φ 2, such that the discriminant

Δ = -24(4α3 + 27O = ±2"p y (μ,i> > 0)

and such that we do not have 24 |α4 and 26 |α6. In the same manner as

above, we can complete the proof of this case, too.

For example we have p = 7,17,41,47,73,97 etc. as such p.

In another direction:

THEOREM IV. All the elliptic curves of the conductor N = 2mpn,

where p = 3 or 5 (mod 8) and p Φ3, that have a rational point of order

https://doi.org/10.1017/S0027763000016147 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000016147


206 TOSHIHIRO HADANO

2 are effectively determined under the conjecture of Ankeny-Artίn-Chowla

and the analogy. In particular if p — 2 or p — 4 is a square number,

then the assumption on the conjecture can be eliminated.

Proof. We can take a defining equation for C of the form

y2 + x3 + a2x
2 + a4x = 0 (4.2)

with aj e Z, minimal at all p Φ 2, and such that we do not have 221 a2

and 24 |α4. The discriminant of this model is

Δ = 24α4

2(α* - 4α4) = ±2"pp . (4.3)

It is sufficient to find all the pairs (α2, α4) satisfying (4.3) for a given p.

Noting that p\a2 (resp. p\a2) if iV = 2mp (resp. iV = 2mp2), we can get

all the pairs (α2,α4), up to isomorphisms, by virtue of Diophantine lemma

Dlf"-,Dβ in view of the fact that 22J(a2 and 2 4 |α 4 . (For details, see

Ogg [6], §3.)

Remark. We know that n = 1 or 2 only if p ^ 5. For p = 3,

Ogg [6] has found all the curves of conductor 2V = 3 2m and 9 2m by

showing that they have a rational point of order 2 (cf. [4]), and Coghlan

has found in his thesis all the curves of conductor N = 2m3n. For ex-

ample, if N — 2m5 in our case, then 2 <̂  m <; 7 and there are 56 curves

with a rational point of order 2. We can prove, in general, that the

integer m is not larger than 8. Moreover, we see that the equation (4.2)

is minimal at all p (including p = 2), in fact, otherwise we can consider

the same situation as in Section 3 for N — 2mpn to show that we can-

not find the pairs (α2,α4) of the equation (3.2) since the equation \X2 ± pa\

— 2β, β> 6, has no integer solutions for p = 3 or 5 (mod 8) by Dδ. For

p = 1 or 7 (mod 8), it seems to be difficult to solve the equations of D3,

Dδ (especially Z>5) in general, but the theorem remains valid for all p > 3

so long as those equations are solved.

5. Supplementary discussions

We can find all the curves of some other conductors N with a

rational point of order 2 so long as the corresponding diophantine equa-

tions can be solved as in the previous sections. In fact, for example,

we can find all the curves of conductor N = pmqn, where m, n > 0, p

and q are primes such that p = 3, q = 5 (mod 8), with a rational point
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of order 2. By solving the equations

X2 ± 64 = ±paqβ

|pα ± 2

X2 ± 1 = 2 W , \VaX2 ± 1| = 2 V >

I = ^ 2 , | P α ^ 2 ± 641 = qβ

induced from the defined equation (3.2) in Section 3 with Δ = ±pμq%

we get 136 curves of (p, g) = (3, 5), (3,13), (11,5), (19,5), (3,37), (3,61),

(59,5), (11,53) and m, n = 1 or 2. Moreover, a fortiori, we can find all

the curves of a given conductor N with a rational point of order r > 2

so long as the corresponding diophantine equations can be solved. In

fact, for example, if N — 2mpn, and r = 4 (cyclic), then such curves can

be defined by

y2 + x3 ± (s2 + 2t)x2 + t2x = 0

with s, t e Z, s > 0, minimal at all p Φ 2, and these curves are isogenous

to

x(x = 0

which have three rational points of order 2. Then we have either p =

2k ± 1 (k ̂  1) or N = 25p2, 26p2 for all p. In particular, we have only

2V = Πn for m = 0 and the curves are included in Table 1 in section 3.

As another example, suppose N = 2mpn and r = 6 (non-cyclic, that is,

curves which have both a rational point of order 2 and of order 3);

then we have N = 14, 20, 34 and 36 as Table 2 below. Note that there

exist two curves y2 + xy + xz — 45#2 + 29x = 0, y2 + xy + xz — 45x2 —

2nx + 29181 = 0 (resp. i/2 + xz + H^ 2 - x = 0, 2/2 + £3 - 22^2 + 125a; = 0

y2 + x3 - 9x2 + 27x = 0, y2 + x3 + lSx2 - 27x = 0) in addition to these

for N = 14 (resp. 20; 36), and the 6 or 4 curves for N = 14,20,36 are

isogenous to each other of degree 2 or 3.

Table 2.

N

14

14

14

14

20

20

34

1

2

3

4

5

6

7

y2

y2

y2

y2

y2

y2

y2

minimal

+ x y + y + i

— hxy + y +

— 5xy + Ίy -

— 11#2/ + 492

+ CC3 - X2 -

+ #3 +2#2 +
+ xy + xz +

model

»3 = 0

ίc3 = 0

h α;3 = 0

/ + ^3 _- 0

5x = 0

Qx2 + Sx = 0

J

-2 2 7

2 72

_ 2 6 7 3

2 3 7 6

245

- 2 8 5 2

2 6 17

i

_ 5 6 2 - 2 7 - l

δ^Ol^"^-2

534332-67-3

5 3ll 331 32- 37- 6

2 1 4 5" 1

241135~2

532932-6i7-i

2-isogenous to:

2,*

4,*

3,**
6

5

8
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N

34

36

36

minimal model

8

9

10

y2 + xy + xz - 43x - 105 = 0

y2 + x* + 3x2 + 3ίc = 0

2/2 + x 3 - 6ίc2 - Sx = 0

J

23172

- 2 4 3 3

2 83 3

j

53735932-317"2

0

243353

2-isogenous t o :

7

10

9

* (resp. **) denotes the isogeny of degree 3 between the curves with the same
symbol.

APPENDIX

We can find all the elliptic curves of 3-power conductor defined over

Q, up to isomorphism, as listed in Table below. Coghlan found all the

curves of N = 2m3n in his thesis, in which the curves of N = Sn are

dealt with in a manner different from below.

The minimal model (1.1) in Section 1 with Δ — ±Zμ is reduced to

y2 + x3 + a,x + α6 = 0 (A-l)

with dj e Z, minimal at all p ψ 2, 3, and with the discriminant

-24(4α3

i = ±2123» .

This may be reduced to the diophantine equation

y2 = x* ± with α4 = -223α;, α6 = 2?y , (A-2)

where v ^ 3 and x, y e Z. In fact, it is well-known that there are no

elliptic curves of the conductor N — 3n with 0 <̂  n ^ 2. In order to

show that x, y eZ, we have to show that the equations y2 = x3 ± 263ί'~3

have no odd integral solutions. Since the ranks of the Mordell-Weil

groups of the elliptic curves y2 = x3 ± 1, y2 = x3 — 3 and τ/2 = ίc3 — 9 are

all zero, it is sufficient to show that y2 = x2 + & f or k = 2632, 263, -2 6 3 4 ,

and — 2635 has only integral solutions. This is easily done in a familiar

manner.

LEMMA. The elliptic curve with the conductor N = 3m is of the

form

y2 + y + %* + aAx + aQ = 0

with djβZ, minimal at all p.

Proof. By a transformation the equation (1.1) is reduced to
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(4α2 - α2)x2 + 8(2α4 - a^ 16(4α6 - α2) = 0

or

- α iα3) - (4α2 - a\)2}x

+ 33{2(4α2 - α?)3 + 16 33(4α6 - αj) - 8 32(4α2 - αi)(2α4 - α^)} = 0

with the discriminant ±2123^ or ±2123//+12 respectively. Then, since this

should coincide with (A-l), aλ is even by (A-2). If <z3 is even, then (A-2)

is minimal at 2, and so the conductor of the model is 2m3w (m > 0).

Hence we may put α3 = 1 by a transformation x -> x + r(r e Z). Finally

3|α2 in (1.1) since C has an additive reduction at 3. Hence we may

put α2 = 0.

Now we can determine all the curves of N — 3*. By the above

Lemma, the discriminant is

Δ = -26al - 27(1 - 4α6)
2 = ± 3 " ,

and so (1 — 4α6)
2 = (4c4)

3 + 3^~3 with α4 = — 3c4. We see that v is odd,

looking modulo 8. On the other hand, all the integral solutions of the

equation y2 = xz + Sn with x = 0 (mod 4), 2\n and n ^ 10 are given by:

n

solutions
(»,|y|)

0

(0,1)

2

(0,3)
(40,253)

4

(0,3^)

6

(0,33)

8

(0,3*)
(40 32,253.33)

10

(0,35)

Therefore we get the Table below by taking into consideration that we

have a better model whenever μ ^ 15. The 8 curves listed are all non-

isomorphic and the 4 curves of N = 27 are isogenous to each other of

degree 3.

Table: Curves of conductor N — Sλ and of the form y2 + y + x3 +

a^x + aQ = 0

Curve

1
2
3
4
5
6
7
8

α4

0
-30

0
-270

0
0
0
0

a6

0
- 6 3

7
1708

1
—2

-20
61

Δ

- 3 3

- 3 5

- 3 9

-311

- 3 5

- 3 7

- 3 1 1

_ 3 1 3

N

33

33

33

33

35

35

35

35

3-type

Cl
C3
C6
CS
Cl
C3
C6
CS

0

0
- 2 1 5 . 3 . 5 3

0
- 2 1 5 . 3 . 5 3

0
0
0
0

CQ,s Φ 0?

yes
yes
yes

yes
yes

3-isogenous
to:

2,3
1

1,4
3
7
8
5
6

isomorphic
/Q(V=^) to:

3
4
1
2
7
8
5
6
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