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NON-DEGENERATE REAL HYPERSURFACES IN COMPLEX

MANIFOLDS ADMITTING LARGE GROUPS OF PSEUDO-
CONFORMAL TRANSFORMATIONS II

KEIZO YAMAGUCHI

Introduction

This is the continuation of our previous paper [8], and will complete,
without homogeneity assumption, the classification of non-degenerate real
hypersurfaces S of complex manifolds M for which the groups A(S) of
pseudo-conformal transformations of S have either the largest dimension
n? 4+ 2n or the second largest dimension,

Our result is stated as follows

THEOREM 3.4. Let M be a complex manifold of dimension n, let S be
a connected non-degenerate (index r) hypersurface of M (0 <r< [@;—1]>

Assume that A(S) attains the second largest dimension, then we hove the
following classificationtable :

S
k dim A(S) homogeneous | inhomogeneous
n=8&r=1 | 1l(=n2+2) Q¥
n=5&r=2 | 26(=n2+1) | QFfQ2 or QF Q:\{o}
n>2&r=0 n?+1 Q¥
otherwise n?+1 Q¥ @-\{o}

Q = {0+, € PO) | —V=Ta, — 3 222
n—1
+ iz lzizt + V12,2, = 0} ’

Q;k ={(zoy "'}zn)eerzoz\F 0} )
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Qik(l) ={(z0, '--,Za)GQIHZOI + lzl - z2| X 0} ’
F(2) = {20y - -+, 2) € Qel]20] + |20 — 2] + |2, — 25| % 0},
6=(,---,0,DeqQ,,

where P*(C) is the complex projective space of dimension n with its
homogeneous coordinate (Z, -+ +,%,).

This combined with Theorem 7.4 [3] gives the desired classification.

Section I is devoted to the classification of proper graded subalgebras
of g(r) of the minimum codimension (The result of this section is already
announced in Proposition 4.7 [3]). In section II we study the null ideals
(cf. Definition 2.1) of ¢°(») and g**(r,#). In particular we will see that
they are characteristic ideals. With these preparations we will prove
Theorem 3.4 in III.

The author is grateful to Prof. N. Tanaka for his constant encourage-
ment during the preparation of this paper.

Preliminary remarks

Throughout this paper we always assume the differentiability of
class C°. We use the same notations and terminology in our previous
paper [3].

I. Graded subalgebras of g(») (cf. IV [3])

In this section we will determine the graded subalgebras ¥ of g(r)
of the minimum codimension without the homogeneity assumption (.e.
., =g, and f_, = g_,(1).

First recall the following which is purely computational: For

—u 0 0
geg_n), Eiega(r) 1=1,2), X, = ( 0 v 0) egn), wyeq® (t=1,2)
- 0 0 u
and b e g,(), we have
L.1) [§,0] =D&, (vesp. [W,al = aw)
f\,JM‘
1.2) [£1, 8] = —Im<E, &) (vesp. [y, w,] = Im <w,, wy)) ,
B ——
1.3) [Xy, &1 = wl (resp. [X,, w,] = v(w,) — uw,) ,
(1.4) [0y, £1] = — v — 1w, Wios — 27 — K, iy, -
Now we will consider a graded subalgebra f = >’__,f, of g().
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LEMmMmA 1.1. If i, =1, = {0}, then we have codimf >2n (i.e. dim ¥
< nY.

Proof. From (1.2) we see that the bracket operation g_,() X g_,(v)
3(u8) — [6,6]€g,(r) is non-degenerate. Hence we have dimf_,
<idimg_,(») =n — 1. Similarly we have dimf, < {dimg(») =n — 1.

These facts show the above. Q.E.D.
We now consider the following three cases separately (Note that
dim g_,(r) = dim g,(+) = 1).
Case 1. ¥_,=g_)(r) and f, = {0},
Case 2. T_, = g_,(r) and {, = g,(v),
Case 3. f_, = {0} and f, = g,(m).

Case 1. First we have

LEMMA 1.2 (cf. Lemma 4.1 [3]). For any 0, @, € {,;, we have {w,, w,>
= 0.

Proof. Since ¥_, = g_,(r), we get from (1.1) that
wel, for any wef, .
Hence from (1.2) and (1.4) we have
[, [, wll] = —&w, wy* €1, .
Since f, = {0} we get
{w,w) =0 for any wef; .

Let w,, w,cf,. Then from

—~ i~ _—
{w1+w2=w1+w2 et ,

[wv ﬁ'2] =N _l(<wzy w1> - <w1, 'w2>) € fz ’

we have {w;, + w,, w, + w,» = 0 and {w,, w,> = {w,, w,>. Hence we get
{wy, wyy = 0. Q.E.D.

Next we consider the complexification ¥ of f,. More precisely we
consider the complex vector subspace k° of C*~! spanned by the vectors
in k=07'(f) (.e. k* =k + +v—1k), where §,:C* s w—w e g,(r). We set
¥ = 07(k°). Then we have

LEMMA 1.3 (cf. Lemma 4.3 [3]).
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(i) ¥ is an abelion subalgebra of g(r).
(i) 67'(¥) is a complex isotropic subspace of (C*™%, <, D).
(i) [fy, ] < H.

Proof. (i) and (ii) are obvious from (1.2) and Lemma 1.2. (iii) fol-
lows from (1.3).
We set §, = {X e g(r)|ad X)(¥) C ¥}. Then obviously we have

FCg.mMOe. (LD,
Hence from Proposition 4.6 [3], we have

PROPOSITION 1.4. Let t be a graded subalgebra of g(r) satisfying
I, =g and ¥, ={0}. Then there exists re€G'(r) such that Ad(c)
preserves the grading of g(r) and Ad (o)) C g*(r,s), where 2s = dim ¥,

Therefore in this case Proposition 4.7 [3] gives the list of the graded
subalgebras of the minimum codimension.

Case 2. Let §, be a linear isomorphism of C*! onto g_,(r) defined
by 6,(8) = ¢ §eCm .

LEMMA 1.5. We have [t_,,L] =1, and [L,f,]1=1%. In particular
o7t = 67'(F) c L

Proof. Obviously we have [f_,,f,] Cf_; and [f,,f_,] Cf. On the other
hand we have [f_,, £l = [g_.("), 6.(1)] = RE,, where E, is the element of
g,(7) which defines the grading of g(») (cf. 1.3 [3]). Hence we get

B, B0 D [E, [fp Bl = I, EL Bl =% .

Therefore we have [f,, f_ ;] = f,. Similarly we have [f_,, {,] ={f_..
Q.E.D.
We set C*'Dk = 6:'(f) = 6:1(f_). Since we are classifying f under
the group of automorphisms of the graded Lie algebra g(r), we have
only to classify k¥ as a (real) subspace of (C*,{,>) (cf. the proof of
Lemma 4.4 [3]).

LEMMA 1.6.

(i) If there exists w, €k such that {w,, w,y 3 0, then k is a complex
vector subspace of C* 1.

(i) Otherwise, we have
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Re<{w, w,y =0 for w,w,ek .
In particular we have dim k < 2r.

/—\__/
Proof. (i) From (1.4), we have [W,[W, w,]] = —3v —1{w,, wepw,
c¢¥. Hence we get v/ —1w,ek. Moreover we have

e P ~
[Wo[ g, w1l = — & — 1<'w0: W)W — 24/ — 1<'w’ weyw, €ty

for we k. Therefore we get v —1w ek for any wek.
(i) We have <w,w) = 0 for any we k. Hence we have

{wy + Wy, Wy + Wy = Wy, Wy + Wy, w1y =0 for w,w,ek.

This shows Re {w,,w,> = 0. Note that Re (w,, w,> defines an indefinite
inner product of C* (= R**Y) of type (@r,2(n — r — 1)). Q.E.D.
In particular we note that % is necessarily a complex vector subspace
in case r = 0.
Now we consider the complexification k¢ of k (i.e. k* =k + +—1k).
And we study the following two cases separately.

Case 2.1. kE°=C*!' and Case 2.2 dim k*=s<mn-—1
Case 2.1. First we have
LEMMA 1.7. If k= k(= C*™Y), then ¥ = g(»).

Proof. k= C"*' means {, = g,(r) and f_, = g_,(r). Hence the asser-
tion follows immediately from Lemma 4.1 [3]. Q.E.D.

Hence we further suppose k < k° in the following. Then % cannot
be an arbitrary (real) subspace of C*! as Lemma 1.6 shows.

Let {€;<i<n_1 be the natural base of C*"'. We set v, = %(ei —€,1)

75
and w; = _:/;Tz_l(ei +e,)(@=1,2,.---,7). Let k() be the 2r-dimensional

real vector subspace of C* ! spanned by the 2r vectors v, ---,v,,w,, -+,
w,. Then we have

LEMMA 1.8. If kC k® = C™, then we hove r = n—;l(n: odd integer)

and dimk = 2r =n — 1, Moreover there exists g € U(l,) such that o(k)
= k(r).
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Proof. From Lemma 1.6, we have dimk < 2r < 2[”—451] On the

other hand we have C* ' = k¢ =k + + —1k. Hence we have r = 7}_2‘-} and

dim k& = 2r. In particular k£ is a real form of k¢ = C*"'. Though the
last assertion follows immediately using the Witt’s theorem, we briefly
sketch the proof of it. Let {, be an arbitrary element of k. Since {, >
is non-degenerate, there exists 5 ek such that <¢,n)> =+ —1. Let k,
be the real vector subspace of &k spanned by ¢, and 7. Then k{ is a
non-degenerate subspace of C*'. Hence we have

C" ' = kD (kH)+ (direct sum) .

We easily see that (k)1 = (k9)L, where ~ is the conjugation with respect
to the real form k of C*'. Hence there exists a subspace k] of k& such
that (k9)+ = (k). Then we have

E=k®Ek (direct sum) .

For an arbitrary ¢, ek, we repeat the above procedure for (%;)°. Then
we get the base {{;, 7:}<i<r 0f k& which satisfies <{;,{,> = <vi, v, i 9>
= v, wyy, and {p;, 7, = {w,w;» ¢,7=1,2,---,7). Then we have only
to define ¢ by o) = v; and o(p) = w; € =1,2,.-- 7). Q.E.D.

We set f_, = 6;'(k(1), f,=587"(k(), f, = {X € gy(r) [ad (X)(f) <, G = —1,
D}, and f(r) = g_,(r) DI DT DT D g).

From Lemma 1.8, we get
PROPOSITION 1.9. Let t be a graded subalgebra of g(r) satisfying
f,=0..0),L=q@),k=C"" and k* 2 k. Then we have r = 7’5—;} n:

odd number), and there exists e G'(r) such that Ad (c) preserves the
grading of g(r) and Ad ()t C{(r).
In particular dim ¥ < dim §(») = @r + D> + 3) < »* + 1.

The proof is quite similar to that of Lemmas 4.4 and 4.5 [3], hence
is omitted. Note that dimf(») =n?+ 1 if and only if » =3 (and r =1).

Case 2.2. We set ¢, = §;1(k%), £ = 5;'(k%), §, = {X e g |ad (X)(¥) C £
(G=-11), and =1, , {E,DEDY,. Then obviously we have (cf.
(iii) of Lemma 1.3)
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LEMMA 1.10. ¥t is a proper graded subalgebra of g(r) such that
fct

Hence we will classify such ¥ under the group of automorphisms
of g(r). Note that f is completely determined by k¢ < C*~!. Therefore
in order to classify ¥, we have only to classify k¢ under the group U(,)
(cf. the proofs of Lemmas 4.4 and 4.5 [3]). However this is attained
by the Witt’s theorem as in the following.

Let s,a and b be natural numbers satisfying a + b <s<n —1,
s—a<n—rand s—b<r. Let{e}<icn be the natural base of C*'.

We set ¢, = -1—2(ei te, ) G=12--5—(+b). And let k'(a,b)

be the complex vector subspace of C*~! spanned by the s vectors &, -,
Comtastys Corimcaitys ** %1 Cs—ps €re1s ** 3 €rsp. Then k'(a,b) is an s-dimensional

subspace of C"! and the restriction to k%(a,d) of the hermitian inner
product of C*! defined by I, is a (possibly degenerate) hermitian inner
product of type (a, b) (cf. 1.3 [8]). We say that the complex vector sub-
space of (C*%,1,) is of type (a, b) if the induced hermitian inner product
from (C %, 1,) is of type (a,b).

LEMMA B (WITT’S THEOREM). If dimsk*=s<n—1 and k° is a
subspace of type (a,b), then there exists oc U(l,) such that o(k°) =
k(a, b).

We Set b;l(s’ a, b) = gr(ks(a'r b))’ b}-(s! a, b) = 61(]53((1/; b)), e?‘(s’ a, b)
= {X e g(]ad X)) Cd* (( = —1, 1} and g)(s,a,D) = g_()Dd;' e, D
@ g,(r). Then we have

PROPOSITION 1.11. Let f be a graded subalgebra of g(r) satisfying
L, =g, L=g@) and dimgk* =s<n — 1. Then there exists r € G'(r)
such that Ad (z) preserves the grading of g(r) and Ad (z)f C ¢(s, a, D),
where (a,b) is the type of k¢ im (C*4,I1,). In particulor dimi<
dimg’(s,a,0) = (@ + b —8)?*+ 28 —2s(n —3) + (n —1)* +3 < n* + 1.

The proof is quite similar to that of Lemmas 4.4 and 4.5 [3], hence
is omitted. Note that dimgl(a,d) =n?+ 1 if and only if s=n— 2,
oa=r—1and b =n—r—2. We will write ¢d(n — 2, —1,n —1r — 2)
simply as ¢(r) (cf. Remark 4.8 [3]).

Case 3 can be treated quite similarly as Case 1.

And we obtain
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PrOPOSITION 1.12. Let ¥ be a graded subalgebra of g(r) satisfying
f,=1{0} and f, = g,(). Then there exists e G'(r) such that Ad(z)
preserves the grading of g(r) and Ad (2)X) C g**(r, s), where 2s = dim f¢ ,.

g™ (1, 8) = ¢f(1) @ b (1) D gi(r) D go(7) .
Here
() = {£ e g€ e (M)}
and
b¥(r) = {X e g ]ad (OCF@) C (1)} (=0b,) .

Summarizing the above discussion we obtain the classification of the
graded subalgebras of g(r) of the minimum codimension.

PROPOSITION 1.13 (cf. Proposition 4.9 [3]). Let f be a proper graded
subalgebra of g(r).

(1) The case n =3 and r = 1. dimf < n® 4 2 = 11.

The equality holds if and only if there exists r <€ G'(1) such that Ad (z)
preserves the grading of g(1) and

Ad (0)f =g*@,1) or g**1,1).
(2) The case n =5 and r = 2. dimf < n® + 1 = 26.

The equality holds if and only if there exists ¢ e G'(2) such that Ad ()
preserves the grading of g(2) and

Ad ()t =g*%2,2), ¢**2,2), ¢*@), g@ or Q.
B) The case n > 2 and r = 0. dimf<n®+1

The equality holds if and only if there exists te G'(0) such that Ad(z)
preserves the grading of g(0) and

Ad (0)f =g*0) or ¢'(0).
(4) Otherwise. dimf < »? + 1.

The equality holds if and only if there exists e G'(r) such that Ad ()
preserves the grading of g(r) and

Ad (@t =g*(r), g or g .
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II. Radicals and null ideals of ¢°(») and g**(r, r)
In this section we will seek the explicit form of the radicals and the

null ideals (cf. Definition 2.1) of g°(»)(r > 1) and g**(s, r)(fr =" ; 1).

DEFINITION 2.1. Let g = ,g, be a graded Lie algebra, and set
g = > p208p- Then we call an ideal n the null ideal of g if it is the
maximal ideal of g contained in g¢'.

Let n° be the null ideal of g'(r) = g_,(r) ® d7(r) ® e(r) ® d(7r) + g,().
Then we have

LEMMA 2.2, n° = {Xee()|ad (X)(g_,(r) = ad X)(7'() = 0}. In
particular dim n® = 1.

Proof. Since ¢°(r) contains FE,ee(r), which defines the grading of
g%(r), it is easily seen that any ideal of g°(») is a graded ideal of g'(»).
Hence we have n° = n} ® n @ nj, where n) = n° N e(), n} = n° N d'(), and
ny =n’ N g,(r). From [g_,(r),n’] C n’, we get

[g_.(m, ] =0, [g_,®,nl=0, and [g_(n),[g_.(r),n]]1 =0.

On the other hand we have [g_,(7),g,(r)] = RE, and the map bd'(r)> @
~ [g, @] € () is injective for g 2 0 e g_,(). Hence we have nj =n]=0
(i.e. n° C e(r)). Moreover from [b7(r),n"] C n’, we get [07'(#), n’] = 0.
Hence 1’ C MM = {X ee(®)|ad (X)(g_,1) = ad (X)(d7'(r)) = 0}. It is easy
to see that M is an ideal of e(r), [N, b'(r)] = 0 and [IM, g.,(v)] = 0. There-
fore M is an ideal of g%r). The maximality of n’ implies n® = M. The
last assertion follows from the explicit matrix representation of n’.
Q.E.D.
Next we will study the radical t* = >3} ;1) of g°(r) (Note that 1° is
a graded ideal).

LEMMA 23, %, =1 =0

Proof. Since g°(r) /1 =g_,(1) /%, @ d7}(r) /%, De(r) /1) D dY(r) [ 1) D g, (1) /13

is a semi-gsimple graded Lie algebra, it is well known that dim g_,(r)/t%,
= dim g,(r)/13. Hence if 1%, % 0 (i.e. %, = g_,(1)), then we have 1] = g,().
On the other hand we have [g_,(r), g.(¥)] = RE,. Setting 3 =%, + [1°,, 17]
+ 13, we get 3 C t® and [3,8] = 8. This contradiction proves the Lemma.
Q.E.D.
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Let {€;}ci<n_: be the natural base of C*™'. We set {;= 1 (e, + e,
V2

and 7, = «/17(61 — €,_). Let D(r) be the (n — 2)-dimensional subspace

of C*! spanned by the (n — 2) vectors e, ---, e,, and (D®@)

=k %r — 1,n — r — 1) in the notation of I). Hence by definition D(#)
= 071(07'(1) = §7'(d0'(r)). We set DL(r) = {w e D(»)|<{w,&> = 0 for any &
e D(r)}. Then obviously we have Di(r) = C¢,.

LEMMA 2.4. §:'(x%,) = ;') < D(r)

Proof. From [g_,1),1l] < %, and [g,(1),t%,] €, we get [g_,(r), 1]
=1, and [g,(),1%,] = ¢ similarly as in Lemma 1.5. Hence we have
571 =67, Let éeD(r) and wed*(x). From [6Y(r),l] C 1§ = {0},
we get [, w] =0 and [«/?fs, w] = 0. Then from (1.2) we obtain <&, w)
—{w, &) =0 and V—1&w) — (w, vV —16) = 0. Hence we have (&, w)
= 0. Q.E.D.

We set v, = §, (D), v, = 5,(D+(1)), t, = {X e e(r)|ad (X)(@_,(1)) = 0
and ad (X)(0'(r) Cr_y}, and t =1, @1 P 1. Then we have

LEMMA 2.5. =1

Proof. Obviously we have t*Ct. It is also easy to see that ¢ is an
ideal of g%»). Hence we have only to show that ¢ is solvable. For this
purpose we take a base {e;, {;, 71}sci<n_z 0 C*! explained before Lemma 2.4,
and represent elements of 1, as matrices with respect to this base. Note that

B = {X € g(r) | ad (X)(g_,()) = 0}

—3trv O 0
= Xeg®|X = 0 v 0 yveud,)
0 0 —itrwo

(which we several times denoted by u(Z,)). Hence in this proof we identify
§, with u(Z,). With respect to the base {e;, {;, )1}ci<cn-» I, 18 represented
as a maftrix of the following form:

I 0 0
0 0 1} where I¥ = (—E’"l 0 ) .
0 10 0 Bur

Then from (1.3), D(r) = <€y, -+ +, €45, { D¢ and §7'(x_) = CZ,, we get
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0 0 w
ro={Xebo|X=(—‘wI;" a V—la)aeR,aeC,weC”'a}.
0 0 —a

On the other hand for §eg_,(r) we have [¢, «//:1/51] =[W=-1¢,81=0

[, 80,61 = V=16, V=10 6] = —2V=1E, 0% (of. (423D .

Hence a direct calculation shows
Pr=[t,tl=1,+1+1 and D% = [Dr, D] =1

where 1§ = {X e1)|a = 0} and 1f = {X eyl = w = 0}. Therefore we get
2% = {0} Q.E.D.
In the above proof we note that v} = n’. Hence we obtain

PROPOSITION 2.6. 1’ = 2%°. In particular n° is a characteristic ideal
of g(r).
We add the following which is needed in III.

LEMMA 27. Let X=x0enu For Yem(r) = g_,r)Dg (),
[X-Y] =0 ¢f and only if Y eg_,(r) ® d~'(v).

Remark 2.8. As we will show in III, g%(#) is isomorphic with g*(v)
= D p<08,(®) (* % 0). On the other hand we have an obvious Levi decom-
position of g*(r) as follows; Let 3 be the center of §, = u(,) (as in the
proof of Lemma 2.5 we identify b, with u(Z,)). We set t* =g_,(r) D g_,(»)
@ RE,®3 Then t* is obviously a solvable ideal. Hence a decomposi-
tion

g*(r) = v* + 3u(l,)
gives a Levi decomposition of g*(»). In this connection n° of g'(r)
corresponds to g_,(r) of g*(r).
Now we will turn to the case of g**(r,7r). First recall the following;

g**(r, 1) = cF(r) Db¥(r) @ g,(r) @ gy(r), where 5;'(c¥(r) = C,(r) (=k(0,0) in
the notation of I.) and

b*(r) = {X e go(r)|ad (X)(c¥(r) C cf (1)} (cf. Remark 4.8 [3]) .

We set n, = {Xeb¥()|ad (X)(F(@) =0} and n, = {weg()|ad (®)
(c¥() C g}

https://doi.org/10.1017/5002776300001792X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001792X

20 KEIZO YAMAGUCHI
LEMMA 2.9. (i) n, = {®eg)|we (C.(r)},
(i) [ne, a1 C .

Proof. (i) By definition @ eg,(r) is in n, if and only if [[®,§]5,]
=0 for &,&, ¢ C,(r). On the other hand we have [[%, §,], §,] = v — I<w, §,)§,
+ v =1 w, &>&,. (i) follows immediately from these facts.

/—v

—-% 0 0
(ii) Let X = ( 0 v 0) en,. Then from (1.3) [X,&]l =v(8) + u& =0
0 0 u —

for ¢eC,(r). For weg((r) we have [X,®] = mv On the other
hand {v(w) — uw, &) = —<w,v(€) + uE) =0 for £eC.(r). Hence from
(i) we get [X, @] € n,. Q.E.D.

Let n** be the null ideal of g**(r,7). Then n** is a graded ideal
since g**(r,r) contains F, e b¥*(r), which defines the grading of g**(r, 7).
We set n =n,®n, P g.(r). Then it is easily seen from Lemma 2.9 that
1 is an ideal of g**(r,7) (Note C,(r) < (C,(1)1). Hence we obtain

LEMMA 2.10. n** = n.

Next we will study the radical t** = >3__, tF* of g**(r,7r). (Note
that v** is a graded ideal.)

LEMMA 2.11. *f =0

Proof. Assume the contrary, then we get t*¥ = ¢¥(r) since b} acts
irreducibly on c¢¥*(r). Considering the semi-simple graded Lie algebra
g**(r, ) [t**, we obtain t¥* = g,(r) and t}* = g,(r) (cf. the proof of Lem-
ma 2.3). On the other hand for &+ 0 e c¥(r), we can find @,¢c g,(r) such
that (&, w,> = v —1 and {w,, w,> = 0 (Note (&, &> = 0). Then it is easily
seen that the subspace 8 of r** spanned by the three elements &, 1,
(&0, @o] = E, (cf. (4.2) [3]) forms a subalgebra satisfying [3,8] = 8. This
contradicts the solvability of r**, Q.E.D.

Hence we get v** C n**., More precisely we have

n—1

ProPOSITION 2.12. If r = , then n** = ** In particular n**
is a characteristic ideal of g**(r,r).

Proof. We have only to show n** is solvable provided » = n= 1.
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However since n** = n,®n, ® g,(v), it is sufficient to show n, is solvable.
For this purpose we take a suitable base {fi}ici<n-y 0f C"™' such that
{fih<i<r forms a base of C.(r) and that I, is represented as a matrix of
the following form
0 E,
(2. o)

Then each X en, is represented as follows;

—a 0 O
X=| 0 v 0 v:(‘“ET B) aeR, Beul) .
0 aF,
0 0 «a

Hence n, is obviously solvable. Q.E.D.

Remark 2.13. In the case n =5 and r = 2, we get dim’ = 11 and
dim t** = 10 from Lemmas 2.5 and 2.10. Hence ¢(2) and g**(2,2) are
not isomorphic.

Finally we add the following which is needed in III.

LEMMA 2.14. Assume r="— 1 Let Xen*™ such that X &[n**,

n**],  Then for Yem(r) =g_,@) ®g_(r),expad (X)(Y¥Y) =Y (mod. g'(r)
= > p208,(") if and only if Y eck().

Proof. From the proof of Proposition 2.12 it is easily seen that
[, g(M] = gx(1), [y, ] = n, and
0 0 0 0 B
[N, n] =X =0 v 0)en|v= 0 0 Beu(; .
Hence X = X, + & + b en** is not in [n**, n**] if and only if a # 0,

0 0 0

where

—a 0 0 _aE, B

Xo o 0 ’Uo 0 /vo = ( O aE ) .
0 0 a T

Let Y = ¢ + £em(r). Then the g_,(r)-component of exp ad (X)(Y) is equal
to expad (X)(¢) = ¢c. Hence if expad(X)(Y)=Y (mod. g'(r)), we
have ¢ = 0. Moreovﬁ the m(r)-component of expad (X)(§) is equal to
exp ad (X)(§). Hence if exp ad (X)(§) = § (mod. ¢'(r)), we have exp ad (X)(§)
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=§, i.e. [X,£1=0. On the other hand we have [X,¢] = v,(§) + aé.
If we represent & as & = (?) (;€eC” i =1,2) with respect to the base
2
given in the proof of Proposition 2.12, we have v,(§) + a& = (ggg)) Hence
2
from [X,, £] =0 we get & =0 (i.e. £ e cf(r)). The converse is trivial since
[e¥ (), n**] C nh*, Q.E.D.

III. The proof of the main theorem

In this section we use the same notation as in V [3].

Throughout this section we assume that S is a connected non-degen-
erate (index 7) hypersurface. Let (P,w, {) be the normal pseudo-conformal
connection over S with the projection n. Let A(S) be the group of all
the pseudo-conformal transformations of S. We set a(P) = {X € Z(P)|Lxw
=0,R,,X = X for ae G'(r) and X is complete}. (cf. Proposition 5.6 [3])
Recall that a(P) is isomorphic with a(S), the Lie algebra of A(S) (cf. II
[3D.

From Proposition 1.13, Lemmas 2.3 and 5.5 [3], and Proposition 5.6
[3], we easily obtain

PrOPOSITION 3.1 (c¢f. Theorem 5.8 [3]). Let M be a complex manifold
of dimenston n. Let S be a connected non-degenerate (index r) hyper-
surface of M, and let p, be an arbitrary point of S. Assume that
dim A(S) < n? 4 2n;

(1) Thecasen=3andr=1. dimANS) <n*+ 2=11. The equality
holds if and only if there exists z,€ n~'(py) such that —w,, its a Lie algebra
isomorphism of a(P) onto g*(1,1) or g**(,1).

(2) Thecasen =5and r=2. dimA(S) <n*+4+1=26. The equality
holds if and only if there exists z,€ z~'(p,) such that —w,, is a Lie algebra
isomorphism of a(P) onto g*(2,2), ¢**(2,2), ¢*(2), ¢’(2) or g’2).

(8 The case n>2 and r=0. dimAS) < n*+ 1. The equality
holds if and only if there exists z,en ' (p,) such that —o,
algebra isomorphism of a(P) onto g*(0) or ¢'(0).

@) Otherwise. dim A(S) < n* + 1. The equality holds if and only
if there exists z,en ' (p,) such that —w,, s ¢ Lie algebra isomorphism
of a(P) onto g*(r), ¢’(r) or g°(r).

s a Lie

0

Now we will study again the model spaces given in VI [3]. Let G*(r, )
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and G*(r) be the analytic subgroups of G(r) with the Lie algebra g*(r, )
and g*(r) respectively. Then @, has the orbital decomposition by these
groups as follows (cf. Remark 6.3 [3]).

Q, = QFf¥(r) U Ri(r) by G**(r,r)
Q, = QFf U {0} by G*(0)
Q- =QFf URLO U {0} by G*(n) r =1

Recall that Ri(r) is a compact submanifold of dimension 2r and R2Z(0) is
a (regular) submanifold of dimension 2n — 3 (cf. the proof (3) of Proposi-
tion 6.6 [3]). We naturally identify (G(r), ") with the normal pseudo-
conformal connection over @,, where " is the Maurer-Cartan form on
G(r) (cf. Proposition 6.4 [3]). Note that a(G(r)) coincides with the Lie
algebra of all the right invariant vector fields on G(r).

Then for the Lie algebras obtained in Proposition 3.1, we have

PrROPOSITION 3.2. (1) Thecasen=3 and r=1. g¢g*(1,1) and g**(1,1)
are conjugate under an element of G(1).

@) The case n =5 and r =2. ¢g*2,2) and ¢**(2,2) are conjugate
under an element of G(2). g*(2), ¢'(2) and g"(2) are mutually conjugoate
under elements of G(2). Moreover g*(2,2) and g*(2) are not isomorphic.

(B) The case n > 2 and r = 0. g¢g*0) and ¢’(0) are conjugate under
elements of G(0).

(@) Otherwise. g*(r), ¢’(r) and ¢(r) are mutually conjugate under
elements of G(r).

Here we say that two subalgebras g, and g, of g(r) are conjugate
under z e G(r) if Ad (7)g, = g,.

Proof of Proposition 3.2. We consider the subalgebra a(G) of a(G(r))
induced by G (= G*(r,7) or G*()), i.e. each X ¢ a(@) is a right invariant
vector field on G(r) induced by the l-parameter subgroup a(f) e G such
that a(0) = X,, where e is the unit of G(r). Note that =,, X is an infi-
nitesimal pseudo-conformal transformation of @, induced by the action of
a(t) on @Q,, and that —w! is a Lie algebra isomorphism of a(G) onto g,
the Lie algebra of G. Let ce G(r) and set §, = —w’(a(G)). Then j, is
a filtered subalgebra of g(r) = Z_,(r) (cf. Proposition 2.4 [3]). Let a(®
be the associated graded Lie algebra of a(G), and set §j, = v,(@(@)) (cf.
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Lemma 2.5 [3]).

We will only prove the case (2). The others can be proved similarly.
First we consider the case G = G*(2,2). Then @, has the orbital decom-
position by G*(2,2);

Q, = QFf (2 U Ry(2) .

Take an arbitrary point p,e Ry}2). Let cen;'(p,) (i.e. o(0) = p,). Since
RY?2) is a 4-dimensional orbit of G*(2,2), we have dim8,/(5,), = dim ((§,)_,
@®(@®,).) =4. On the other hand we have dim§, = dim g*(2,2) = 26.
Hence from Proposition 1.13, §), must be isomorphic with g**(2,2). (Note
that dim (g_,(2) @ g_,(2) =9, dim ¢f(2) =4 and dim (g_,(2) P >7(2)) = 1).
In other words there exists g, n7'(p,) such that §,, = g**(2.2). Then the
composite (—wo,)o(—w,) ' is a Lie algebra isomorphism of ¢*(2,2) onto
g*%(2,2). Let Aea(G*2,2)) and set X = —0,(4)€g*2,2), Y = —o,,4)
€g**%(2,2). Since A is a right invariant vector field we get Y
= —0,R, A) = —R}o,(A,) = —Ad (67 V0. (A,) = Ad (6;)(X). Therefore
a**(2,2) = Ad(e;7)g*(2,2).

Next we consider the case G = G*(2). Then @, has the orbital de-
composition by G*(2);

Q. = QF U R30) U {d} .

Take an arbitrary point p, e R0). Since R%0) is a 7-dimensional orbit
of G*(2). We can conclude similarly as above that there exists ¢, ¢ 7;(p))
such that §, = g°(2). Hence we have g°(2) = Ad(s7)g*(2). Take the point
0 e @, Then since 6 is a common fixed point of G*(2), we get similarly
g’ (2) = Ad (67)g*(2) for any ocen;%(6). The last assertion follows imme-
diately from Remark 2.13. Q.E.D.

Now we will mention about the ‘“canonical metric” for the normal
pseudo-conformal connection (P,w), following I. Naruki [1], which is
necessary for the proof of Theorem 3.4, Let us fix a positive definite
inner product (,) on g(v). Since o defines an absolute parallelism on
P, it defines a Riemannian metric ¢ of P by

93X, Y) = (0,(X), 0,(Y)) X, YeT,P)

g is called the “canonical metric” for (P,w). We denote by dp the dis-
tance function of P with respect to the canonical metric for (P, w). Note
that each right translation R, (¢e¢ G'(r)) is uniformly continuous with
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respect to dp (c¢f. Lemma 1.4 [1]). We consider the completion P of P
for the metric dp. We call (P, ds) the completion of (P,w). Then P is
an open dense subset of P and the right action of G'(») on P extends
uniquely to that of P. 1In general P is not a manifold, nor Pisa prin-
cipal G’(r)-bundle.

Next we consider a closed submanifold R of S such that dim R
< dimS — 2. Then S\R is a connected open submanifold of S. Hence
(= '(S\R), wg) is the normal pseudo-conformal connection over S\R, where
wg is the restriction of w to z~'(S\R) = P\zr"!(R). Note that =~'(R) is a
closed submanifold of P such that dimz '(R) < dim P — 2. Then the
completion of (z~!'(S\R), wz) coincides with that of (P,w) (cf. Lemma 1.1
[1D.

Now we study the normal pseudo-conformal connection over Q* and
Q*(). Let =, be the projection of G(r) onto Q, (i.e. 7,.(0) = o(0) for
ge G). We set P*(r) = z;}(Q¥) and P*(r) = z;Y(Q*(r)). Then (P*(r),
o |prry) (resp. (PH(r), o |pxr)) 18 the normal pseudo-conformal connection
over QF (resp. Q¥(r)). Note that dim R2(0) =2n — 3 =dimQ, — 2 and
dim Ri(r) = 2r < dim @, — 2. Hence from the above argument we have
Pl N Pl P

- P*r) = Gr)\n;Y(0) = G(r) and P¥(r) = G(r). On the other hand the
canonical metric for (G(r), w") is nothing but the left invariant metric on
G(r). Hence G(») is a homogeneous Riemannian manifold with respect

to the canonical metric. In particular G(r) is complete, i.e. G(r) = G(7).
Therefore we obtain

P Pl
LEMMA 3.38. P*(r) = P*(r) = G(r)
Now we will prove the main theorem of this paper

THEOREM 3.4. Let M be a complex manifold of dimensionn. LetS be

a connected non-degenerate (index v) hypersurface of M (0 <r< [n ; 1]>

Assume that dim A(S) < n? + 2n,

(1) Thecase n=38 and r=1. dimANS) <n*+4+ 2=11. The equal-
ity holds if and only if S is pseudo-conformally equivalent to QF(1).

(2 The case n =5 and r=2. dimANS) <n*+1=26. The equal-
ity holds if and only if S is pseudo-conformally equivalent to Q¥F(2), QF
or Q,\{0}.

B) The case n>2 and r=0. dimA(S) <n*+ 1. The equality

https://doi.org/10.1017/5002776300001792X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300001792X

26 KEIZO YAMAGUCHI

holds if and only if S is pseudo-conformally equivalent to the hyperconic
Q.

(4) Otherwise. dim A(S) < n* + 1. The equality holds if and only
if S is pseudo-conformally equivalent to QF or Q,\{0}.

R¥(r) and QFf are homogeneous hypersurfaces of P*(C), whereas
Q- \{0} (* > 1) is an inhomogeneous hypersurface of P™(C) for which
A(Q,\{6}) coincides with A(Q}) as a group of projective transformations
(cf. Proposition 6.5 [3]).

Proof of Theorem 3.4. We will only prove the case (4). Others can
be proved similarly. Let S be a connected non-degenerate (index )
hypersurface such that dim A(S) = %> + 1. Let p be an arbitrary point
of S. Then from Proposition 3.1, there exists z ez '(p) such that —-o,
is a Lie algebra isomorphism of a(P) onto g*(r), ¢’(») or g%(»). (Note that
from Proposition 3.2 (2), in the case (2), we have two cases (a) and (b)
for a given S;

(@) —o,a(P) = g*(2,2) or g**(2,2)

(b) —w(aP)) = g*(2), g'(2) or g"2).

Now the proof is divided into several lemmas. Let a(S) be the Lie
algebra of infinitesimal pseudo-conformal transformations which generate
(global) 1-parameter subgroups of A(S). Then a(S) is naturally isomorphic
with the Lie algebra of A(S) and z, is an isomorphism of a(P) onto a(S).
Hence we have

LEMMA 3.5. (i) —w,(a(P)) = g*() if and only if p belongs to an
open orbit of A%S).

(ii) —o,(aP) =g () if and only if p is a common fixed point of
A'(S).

(i) —w,(a(P)) = g°'(») if and only if p belongs to a (2n — 3)-dimen-
sional orbit of A%S).

Now we claim

LEMMA 3.6. There exists an open orbit S, of A%S). Moreover S,
18 pseudo-conformally equivalent to QF.

Proof. Assume the contrary. Then the case (i) of Lemma 3.5 never
occurs. Let N be the analytic subgroup of A%S) corresponding to 2%(S)
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of a(S), where 2%¢(S) is the second derived algebra of the radical 1(S)
of a(S). Then from Proposition 2.6 and Lemma 3.5, N acts trivially on
S. Since A%S) acts effectively on S, this contradiction shows the exist-
ence of an open orbit S,. Let o e A'(S). Then ¢ induces an automorphism
é of (P,w). From o(S,) = S,, we have 6(z7(S)) = 77(Sy). (@ (S, ®le-1(s0)))
is the normal pseudo-conformal connection over S,. Hence if o|s, = idg,,
Gle-1sy = 1d,-15y. Since ¢ is an automorphism of the absolute parallel-
ism defined by o, we get ¢ = idp, i.e. ¢ = idg. Hence A%S) acts effec-
tively on S,. Then S, is a connected non-degenerate (index ) homoge-
neous hypersurface such that dim A(S,) = n* + 1. Therefore from Theo-
rem 7.2 [3], S, is pseudo-conformally equivalent to Q. Q.E.D.

In the cases (1) and (a) of (2), we can prove the analogous assertion
using Proposition 2.12 in place of Proposition 2.6.

Next we will show the regularity of singular orbits. First we have

LEMMA 3.7. Let M be a manifold, and let N be a submanifold of
M. Let f be a diffeomorphism of M onto M satisfying the following;

1 f@) =z for xeN

@2 For XeT, (M),xeN,

J+X) =X if and only if XeT,N).

Then N is o regular submanifold of M. Moreover for each xe N,
there exists an open neighbourhood U of M at x such that f has no
fized point in U\N.

Proof. Take an arbitrary point x, of N. From the implicit func-
tion theorem there exist a coordinate neighbourhood V of N at x, with
the coordinate (%!, --.,¥™ and a cooydinate neighbourhood U of M at z,
with the coordinate (x%, ---,2™) such that ¥* = 2fo¢ 1 =1,2,.--,n) and
for t =W, -,y eV, we have ¢«(®) =, ---,%%0,---,0), and «(x,) =
©,---,0), where n = dim N, m = dim M and ¢ is the inclusion of N into
M. Moreover if we take V and U sufficiently small we may assume (V) =
{xeUlzi@)=0(C=n+1,---,m)}. Now we will show that if we take U
sufficiently small f has no fixed point in U\«(V). Then the assertion follows
immediately. We set fif=alof (1=1,2,.-.,m). From (1) we have

)4 fi(xl,""xn,o,"",o):xi (’i:l,Z,...’n)
fi(xl,...,xn,O,...,O)zo @G=n+1,.--.,m).
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If we represent f, — idy,n, with respect to the coordinate base, we
have

(a It — 5) _ I(O (%g_f(x)ysl;m

ol 1<i,j<m ( af’ z)
0 {—(x) -9
l 8xf( ) " ariciism

aa.} forms a base of T,(N), (2) is rewritten as follows
2t Jici<n

xzedV).

Since {

@)Y {dz* — df%,.1<i<m are linearly independent at x e «(V).
Hence if we take U sufficiently small we may assume that {d*? — df%},.1<i<m
are independent on U. We set

V={geUlg'@) =fi@E=n+1,---,m)} and F ={zecU|f(x) =a}.

Then V’ is an n-dimensional closed submanifold of U. Obviously we have
(VYCNNUCFcCV. On the other hand V) is an n-dimensional
closed submanifold of U. Hence the connected component V, of (V)
containing z, must coincide with that of V’. Therefore if we take an
open subset U, of U such that UyNV' =V, weget NN U, =FNU, =7V,
i.e. f has no fixed point in U,\«(V). Q.E.D.

Let peS and zex'(p) be as in (ii) or (iii) of Lemma 3.5. Let
A%S) be the isotropy subgroup of A%S) at p. We consider the linear
isotropy representation of AY(S) at p. Let ¢, be the imbedding of A°S)
into P defined by ¢,(¢) = (), where ¢ is the automorphism of (P,w) in-
duced by o€ A%S). Then ¢, induces an injective homomorphism p, of
ANS) into G'(r), i.e. (o) = 2-p,(0) for oeA)S). (cf. Lemma 3.1 [3]).
Note that p,.(a,(S) = g’(7) (resp. e(r) @ d'(r) @ g,(1)) in case (i) (resp. in
case (iii)) (cf. Lemma 3.1 [3] and the remark before Proposition 3.4 [3]).
Let a, be a linear isomorphism of T,(S) onto m(r) = 37 ,.,q,(r) defined
by the following commutative diagram.

T(P) —2> g(7)

N

T ,(S) —=> m(r)

where p is the projection corresponding to the decomposition g(r) = m(r)
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@ g'(r). Let £; G'(#) - GL(n(r)) be the linear isotropy representation of
G'(r) (cf. 1.4 [3]). Then we have

LEMMA 3.8. For oc AYS), a 00, = 4(p,(0)) o ;.

Proof, This is a direct consequence of the following commutative
diagram and é*0w = o.

Ra—xo&*

T,(P) ——> T,(P)

] e
Ad(a)

g(r) — g

where a = p,(0). Q.E.D.
Now we have

LEMMA 3.9. If there are common fixed points of A'S), they form
a 0-dimensional regular submanifold F of S.

In other words each fixed point of A%S), if there is, is isolated from
others.

Proof. Let p be a fixed point of A%S), and zecz"(p) be as in (ii)
of Lemma 3.5. From Lemma 3.8 and p,(A4%S)) = Gi{(r), the identity
component of G'(r), it is easily seen that there exists ¢,c A%S) such that
0, (X) = X if and only if X =0, X e T,(S) (e.g. o, = p;* (exp Ey)). Then
from Lemma 3.7, » is an isolated fixed point of A%S). Q.E.D.

LEMMA 3.10. If there are (2n — 3)-dimensional orbits of A%S), they
form a (2n — 3)-dimenstonal regular submanifold T of S.

This can be proved quite similarly as above using Lemma 2.7, hence
the proof is omitted.

In the cases (1) and (a) of (2), we can prove the analogous asser-
tion using Lemma 2.14 in place of Lemma 2.7.

Now we consider the completion P of (P,w). With the aid of P we
will imbedd S pseudo-conformally into @,. Note that S\(T' U F) is con-
nected (c¢f. VI Proposition D [3]). Hence S, = S\(T' U F).

From Lemma 3.6 there exists a pseudo-conformal homeomorphism
of S, onto Qf. We set P,=x"'(S). Then ¢ induces a bundle isomor-

phism ¢ of P, onto P*(r) satisfying ¢*o” = w. Hence ¢ is an isometry
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of P, onto P*(r). Then ¢ is extended uniquely to a distance preserving
map ¢ of Po onto ﬁ‘?r}. On the other hand from Lemmas 3.9 and 3.10

X . A P
we have P, = P\r7!(F) = P. Moreover from Lemma 3.3 we have P*(7)
= G(r). Hence ¢ is a distance preserving map of P onto G(r). Since
¢ is a bundle map and P is an open dense subset of P, ¢ commutes with
the right action of G’(r). Then P* = ¢(P) is an open dense subset of
G(r) which is invariant under the right action of G'(#). We set @
=r,(P*). Then Q is an open subset of @, and (P*, »"|P*) is the normal
pseudo-conformal connection over Q. Since ¢ is a distance preserving
map of P onto P* and P* is an open dense subset of G(»), ¢ is an iso-
metry of P onto P* with respect to the canonical metrics for (P,w) and
(P*,w"| P*). Moreover since P, (resp. P*(r)) is an open dense subset of
P (resp. P*) and ¢*»” = @ on P, we get ¢*o" = on P. Hence ¢ in-
duces a pseudo-conformal homeomorphism + of S onto @ such that g,
= ¢. On the other hand via ¢:S;,— QF, each o< 4%S) gives rise to a
unique 7€ G*(r) (l.e. ¢ = ¢ogop™). Recall that ¢ is a (global) projective
transformation leaving @, invariant. Hence we must have ¢ = Yogo™?
on Q. Therefore @ is invariant by the action of the subgroup G*() of
G(r). Hence from the orbital decomposition of Q, by G*(r), we must
have Q = Q}, Q,\{6} or @,. However if Q@ =Q,, we get dim A(S) = »*
+ 2n. This contradiction shows that Q@ = QF or Q,\{6}. Thus we have
proved (4). Q.E.D.

Remark 3.11. In view of [2], our theorems are really the classifica-
tions of almost PC-manifolds admitting large groups of PC-automor-
phisms. In fact we don’t use essentially the real analyticity in our proofs
and the integrability condition £_, = 0 for the normal connection is re-
dundant (Note in the proof of Proposition 5.6 [3], the condition £_, =0
is not needed). In C=-category, one must replace ‘“pseudo-conformally
equivalent” by “PC-equivalent” in the sense of [2]. Moreover in Theo-
rem 7.4, one must assume that S is everywhere non-degenerate. How-
ever in Tanaka’s “Fundamental theorem” (cf. Remark 1.2 [3]) and in
Corollary 7.5 [3], the real analyticity assumption is indispensable.
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