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CRITERIA FOR COMMUTATIVITY IN LARGE GROUPS

A. MOHAMMADI HASSANABADI AND AKBAR RHEMTULLA

ABsTRACT.  Inthis paper we prove the following:
1. Letm > 2,n > 1beintegers and let G be agroup such that (XY)" = (YX)" for
all subsets X, Y of szemin G. Then
a) Gis abelian or a BFC-group of finite exponent bounded by a function of m
and n.
b) If m > nthen Gisabelian or |G| is bounded by afunction of mand n.
2. The only non-abelian group G such that (XY)2 = (YX)? for all subsets X, Y of
size 2in G is the quaternion group of order 8.
3. Let m, n be positive integers and G a group such that

X1 X% C U X Xon)

oeS\1

for all subsets X; of sizemin G. Then G isn-permutable or |G| is bounded by afunction
of mandn.

1. Introduction. Let m, n be positive integers. Call a group G an (m, n)-group if
(XY)" = (YX)" for all subsets X, Y of sizemin G. Thus (1, 1)-groups are precisely the
abeliangroupsand Gisa(1, n)-groupif andonly if G" < Z(G). Thiseasy resultisproved
inLemma2.1. In particular, groups of exponent n are (1, n)-groupsand for large values of
n, they include finitely generated infinite simple groups. We note that (m, 1)-groups were
considered in [4]. There it was proved that an (m, 1)-group is either abelian or of order
less that 2m. Of course, every abelian group is an (m, n)-group and we shall prove that
an (m, n)-group G, m > 1, is either abelian or a BFC-group of finite exponent bounded
by a function of mand n. Recall that agroup G is aBFC-group if there exists a positive
integer b such that every element of G has at most b conjugatesin G. We also prove that
an (m, n)-group G, with m > 1 and the extra condition of m > n s either abelian or of
finite order bounded by afunction of mand n. We note that this result no longer holdsin
general if m < n; for examplelet G = Qg x C, where Qg isthe quaternion group of order
8 and C isthe direct product of an infinite number of cyclic groups of order 2. Thenitis
easy to see that G is a (2, 4)-group which is neither abelian nor has bounded order. We
shall also show that the only non-abelian (2, 2)-group is the quaternion group Qs.

Our second topic deals with a natural extension of permutable groups which have
been studied by a number of people—see[1], [2], [3], [5] and [6]. Recall that a group
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G iscaled n-permutable if given any sequenceXy, ..., X, of elementsof G, x; - - - X3 =
Xo(1) - - - Xo(n) fOr somepermutationo # 1of theset{1,...,n}. Themainresult for infinite
groupsin this classwas obtained by Curzio, Longobardi, Maj and Robinsonin [3] where
it was shown that such groups are finite-by-abelian-by-finite.

Let m, n be positive integers. Call agroup G, (m, n)-permutable if

Xi-- X% C U X Xom)

oeS\1

for all subsets X; of G where|X;| = mforalli = 1,...,n. Thus(1, n)-permutable groups
are precisely the n-permutable groups.

We shall show that if G is (m, n)-permutable then it is n-permutableif |G| > n! (mn)".
Thisresult is another addition to many results of similar type and naturally leads to the
following general question.

Let U,V be setsof wordsin n variables xy, ..., X, and let X bethe class of groups G
suchthat for all g,...,0,inG

{u(@,...,gn);ue U} C{v(g1,...,0n) ;VEV}

Next let mbeapositiveinteger and X (M) the class of groups G such that for all sequences
X1, ..., X, of melement subsets of G,

{u(@s,...,gn);uel,g eX,i=1...,n}
C{v(g,...,gn);veV,g eX,i=1...,n}

For which sets U, V of words can one say that groups of large ordersin theclass X (M) all
liein X ?1t would appear that thiswould be the caseif thewordsin U and V are semigroup
words—words that involve only non-negative powers of the variablesxy, ... ., X,.

The (m, n)-permutable groups may be viewed in this context, where U consists of one
word u(Xy, ..., Xn) = X1 - - - X @nd V consists of the words v (X, . . ., Xn) = Xo(2) * - * Xo(r)
where o runs through the non-identity permutations of the set {1, ...,n}.

The main results of this paper are as follows.

THEOREM 1. Letm > 2,n > 1beintegersand let G be an (m, n)-group. Then

(a) Gisabelianor a BFC-group of finite exponent bounded by a function of m and
n.

(b) I1f m> nthen Gisabelian or |G| is bounded by a function of mand n.

THEOREM 2.  The only non-abelian (2, 2)-group is the quater nion group of order 8.

THEOREM 3.  Supposethat m, n are positive integersand let G be an (m, n)-permut-
able group. Then G is n-permutable or |G| is bounded by a function of mand n.

The proofs of Theorems 1, 2 and 3 are given in Sections 2, 3 and 4 respectively.
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2. (m,n)-groups.

LEMmMA 2.1. Gisa(l,n)-groupif and only if G" < Z(G), where Z(G) denotes the
centre of G.

PROOF. Foranyx,ginGlety = x1g. Then (yx)" = (x 1gx)" = x 1g"x. Since G is
a(1,n)-group, g" = (xy)" = (yX)" = x 1g"x. Thus G" < Z(G).

The converseis equally easy. For any X,y in G, (xy)" = x 1(xy)"x = (yX)". So Gisa
(1, n)-group.

From now on in this section we assume that m > 1, n > 1 and aim to prove that a
non-abelian (m, n)-group is a BFC-group of finite exponent bounded by a function of m
and n. Moreover under the extra condition of m > n that such a group is finite bounded
by afunction of mand n. Most of the notations used are standard. For instance, we denote
the centre of G by Z(G); the centralizer of the set X in G by Cg(X) and so on.

LEMMA 2.2.  Let Gbean (m, n)-groupwherem > 1.1f x € Gand |[(x)| > 4n(m— 1)
then (x) < Z(G). In particular every element of G/Z(G) has order at most 4n(m— 1).

PROOF. Let X = {1,X,....,x™ 1y tandY = y{1,%,...,x™ 1} Then (XY)" =
{X<; 0 <k < 2n(m— 1)} and (YX)" = y(XY)"y~2. Both the sets (XY)" and (YX)" are of
size 1+ 2n(m— 1) and thereis an injective functionf on {0, 1,...,2n(m— 1)} such that
y Xy = X0 0 <k < 2n(m—1).

Now y~Ixy = (y" X< y)(y Ixky) 1 = x +D=F0) for all k and f(0) = 0. Thusx'® =
x3 for some integer d > 1. Since

{1,2,...,2n(m— 1)} = {d, 2d, ..., 2n(m— 1)d} mod |(x)|,

d=1ord > |(x)] — 2n(m — 1). In the second case d > 2n(m — 1). Alsod < |(X)].
Thisis not possible since such ad is not congruentto any of 1,2,...,2n(m— 1). Thus
y Iy = x.

If gZ(G) has order greater than 4n(m — 1) in G/Z(G), then |(g)| > 4n(m — 1) and
henceg € Z(G). This provesthe last claim of the lemma.

LEMMA 2.3. Let G beanon-abelian (m, n)-group wherem > 1. Then every element
of Z(G) hasfinite order bounded above by (2n(m - 1)) ™ In particular the exponent of

G divides [2(2n(m— 1))"]1.

PrROOF. Let X,y be non-commuting elements of G and let z € Z(G). Put o =
2n(m — 1) and write z forz"i, i=0,1,...,n

Consider thesets X = {x2,j = 0,1,...,m—1}and Y = {yz,x'2 ;j = 0,1,...,
m— 2}. Thenxyz € (XY)" = (YX)" sothat xy = (yx)'z" where0 < ) < 2n(m— 1) and
r > 0.But \; = 0 only if xy = yxwhichwe haveruled out. Thus1 < \; < 2n(m—1) =
.

Now let i run from O to n so that for somer, xy = (yx)rz‘.’\' = (yx)fq\j where0 <i <
j<n
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Since zf" =2,2" =2V and ad\j > o > o*! > al ), it follows that ¢ = 1 for

somek, 0 < k < ad*? < (Zn(m— 1))n+l which completesthe proof of thefirst part. The
second part follows easily from this and Lemma 2.2.

LEMMA 2.4. Supposethat G is an (m, n)-group wherem > 1. Then G is a BFC-
group.

PROCF. Let X,y beanon-commuting pair in G. Choosecy, ..., Cyin G and consider
the m-sets

X={xtex?t. ..,eext}, Y={xy,xt ... xc ).

Theny € (XY)" = (YX)" C xWx~1, where W is the set of wordsiny, c; 1, ..., cit of
length at most 2n. Thusy* € W and |W| < (2m)?". Therefore each conjugacy classin G
has order at most (2m)?", and G is a BFC-group.

Thus far the proof of part (a) of Theorem 1 is completed.

From now on welet A = (2m)?",

p=2[2n(m—1)]™? and
v = (4n(m— 1)>2)\1/2(3+5Iog)\)

where the logarithm is to the base 2.

Since by Lemma 2.4, |G : Cg(x)| < A, for al elements x in an (m, n)-group G,
with m > 1, the order of G’ is bounded. Certainly |G'| < AY/23*5!99%) a5 was shown
by P. M. Neumann and M. R. Vaughan-Leein [7]. Let x,y be a pair of non-commuting
elementsof G and let H = (x,y). Notice that |(x)| and |(y)| are both at most 4n(m — 1)
sincethey donotlieinZ(G). Also |H'| < |G/|. Thus|H /H'| < (4n(m—1))2 and|H| <w.

Supposethat m > nand |Z(G)| > p**A™D. Then there exists a subgroup D of Z(G)
that is a direct product of 2m — 2 non-trivial cyclic subgroups C, ..., Com—1 such that
HND=1Pickl#c¢inCj,i=2,...,2m— 1andlet

X = {X,XCg,XC4, . . ., XCom—2},

Y = {y,x c3,x tcs, ..., x teom-1}

Theng = xycuCsz - - - o1 € (XY)" = (YX)". Taking the projection of g in the group D
we seethat if g = y1X1y2X2 - - - YnX, then

{yn,...,¥n} = {y,xtca,...,x teon1}  and
{Xt, ..., %n} = {X,XCp, ..., XCon—2},

so that only one of they;’s equalsy and we obtain [x,y] = 1 which is a contradiction.

We have thus shown the following resullt.
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LEMMA 2.5. If G isa non-abelian (m, n)-group wherem > 1 and m > n, then
|Z(G)| < u1/+2m—2_

LEMMA 2.6. Let G be a non-abelian (m, n)-group. Then the order of any abelian
subgroup of G isat most A/ *2m2,

PrROOF. Let A be any maximal abelian subgroup of G. Since G is non-abelian, A #
G; and (A, x) isnon-abelianif x € G\ A. Now |A : Ca(X)| < A sothat Ca(x) < Z({A, X))
has order not exceeding ;+*?™2 by Lemma2.5. Thus|A| < Ap/*2m=2,

PROOF OF THEOREM 1. (@) Follows directly from Lemmas 2.3 and 2.4.

(b) Let G beanon-abelian (m, n)-group wherem > 1 and m > n. We will show that
|G| < )\HV+2m—2 N ki

Takeany 1 # x; € Gandlet Ay = (x1) and G1 = Cg(x1). Then |G1| > |G|/ A,
and |A1| < pbyLemmas2.2and 2.3. Pick 1 # x; € Gy \ Ag, let A, = (xg,%2) and
G, = Cg, (%) sothat |G| > |G/ A2 and A; > A;. Continue this process. At i-th step,
pick1 # x € Gi—1 \ A1, let A = (Ai_1,%) and G = Cg_,(X). Then |Gi| > |G|/
and A is an abelian group. Now |A;| < Ap”*?™2 by Lemma 2.6. Thus for some integer
i < A2 A must equal G;. Therefore |G| /AT < |A] and |G| < Ay 2m=2\ ™2,

3. (2,2)-groups. In this section we show that the only non-abelian (2, 2)-group is
the quaternion group Qs.

Of course Qg itself isa (2, 2)-group. However for any non-trivial group T, Qg x T is
not a (2, 2)-group. This can be seen by observing that (XY)? # (YX)? if X = {a, b} and
Y = {a1,a7t}, where a, b are generators of Qg and tis any elementin T.

The following result about general (m, n)-groups is the key to our main result here.

LEMMA 3.1. Let G be an (m, n)-group, wherem > 1. If K isa subgroup of G and
|[K| > mthen K isnormal in G. In particular if m = 2 then every subgroup of G is
normal.

ProoF. LetK < G beof order mor greater. If 1 # x € K andy € G then consider
the sets

X={1%ks....km}y Y, Y =y{1,xks,...,kn}

where ks, ..., ky are distinct elements from K \ {1,x}. Then x € (XY)" = (YX)" =
y(XY)"y~ ! sothat ¥/ € (XY)" C K. ThusK < G.

PROOF OF THEOREM 2. Suppose that G is a non-abelian (2, 2)-group. Then by
Lemma 3.1 all subgroups of G are normal. So by the Dedekind-Baer Theorem G isiso-
morphic to Qg x T, where T is some abelian group. But as we have observed above, T
must be trivial. This completesthe proof of Theorem 2.
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4. (m,n)-permutablegroups. Wefind it easier to prove the following generalized
version of Theorem 3.

THEOREM 3. Letmy, ..., m, be positiveintegers and let G be a group such that

Xi-- X% C U X Xotn)
oeS\1
for all subsets X; of sizem inG; i = 1,...,n.Lets=m+---+m,. ThenGisn-
permutableor |G| < n!s".

Theorem 3 follows from the above result by lettingmy = mforali = 1,...,n.
We shall say that G isan (my, ..., m,)-permutable group if it satisfies the hypothesis of
Theorem 3.

PrOOF OF THEOREM 3. Weuseinductiononthesums=m +---+my. If s=n
thenm = 1for all i and G isn-permutable. So assumetheresult holdsfor all s < r. Thus
if Gisan (my, ..., my)-permutable group and my + - - - + m, = r then G is n-permutable
or |G| < n!'r". Now let G bean (my,...,m_1,m + 1, My, ..., My)-permutable group
that is not (my, ..., M—g, M, M1, ..., My)-permutable. So there exist subsets X; where
IXj| =m,j=1,...,nandelementsa € Xj suchthat g = a1 --- an & Xo(1) - - - Xo(ny fOr
dloe S\ 1

Pick any z € G\ X. Theng = by) - - - By—1)Z05(ks1) - - - Do(ry fOr some o # 1 and
o~ 1(i) = k. Then

2€ Xy XKo@ - Xoern

whichisaset of sizebounded aboveby n! r". Thus |G\ Xi| < n!r"and |G| < n! (r +1)".
Soif |G| > ni(r + 1)" then G is (my, ..., m,)-permutable and by induction, G is n-
permutable. This completesthe proof of Theorem 3'.
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