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A nonlinear complementarity problem

in mathematical programming

in Hilbert space

Sribatsa Nanda and Sudarsan Nanda

In this paper we prove the following existence and uniqueness

theorem for the nonlinear complementarity problem by using the

Banach contraction principle. If T : K -»• H is strongly monotone and

2 2
lipschitzian with k < 2a < k +1 , then there is a unique

y (. K , such that Ty € K* and {Ty, y) = 0 where H is a

Hilbert space, K is a closed convex cone in H , and K* the

polar cone.

1. Introduction and statement of the theorem

Let H be a rea l Hilbert space and l e t K be a closed convex cone in

H with the vertex at 0 . The polar of K i s the cone K* , defined by

K* = {y € H : (x, y) 2 0 for every x t K.) .

A mapping T : H •*• H is said to be monotone on K if

{Tx-Ty, x-y) > 0 for a l l x, y Z K and s t r i c t l y monotone i f s t r i c t

inequality holds whenever x t y . T i s called strongly monotone i f there

is a constant a > 0 such that (Tx-Ty, x-y) > e||ar-j/|| . T i s said to be

l ipschi tz ian i f there i s a constant k > 0 such that ||Tx-7!/|| 5 fe||a;-zy||

for a l l x, y € H whenever x ? y , and a contraction i f 0 < k < 1 .

The purpose of th i s note i s to prove the following existence and

uniqueness theorem for the nonlinear complementarity problem.
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THEOREM. Let T : K •* H be strongly monotone and lipsahitzian with

k < 2a < k +1 . Then there is a unique y such that

(1.1) y Q € X- , TyQ IK* , and [TyQ, y Q ) = 0 .

2. Proof of the theorem

Since K is a nonempty closed convex set in H , for every y t K

there is a unique x € K closest to y - Ty ; that i s ,

\\x-y+Ty\\ < \\z-y+Ty\\

for every z € K . Let the correspondence y i—>• x be denoted by 6 . Let

z be any element of K and l e t 0 5 X 2 1 . Since K is convex,

(l-X)x + \z € # . Define a function ?z : [0, 1] •+ R+ by the rule

h(X) = \\y-Ty-(l-X)x-Xz\\2 .

Then 7z is a twice continuously differentiable function of X and

?j'(X) = 2{y-Ty-Xz-{l-X)x, x-z) .

Since x is the unique element closest to y - Ty , we must have

h'(0) > 0 , and therefore

(2.1) (y-Ty-x, x-z) 2: 0

for every z € K . Let y. and y^ be two elements of K and y ^ i/p •

Let 9(j/-,) = X-. and 9(i/2) = x2 . Putting y = y and s = 6(y2) in

(2.1) we get

(2.2) [y -Ty -8[y ) , 9(j/ )-9(j/ )) 5 0 .

Again, putting y = y2 and s = 9[y ) in (2.1) , we get

(2.3) [yp~-fy?~®{yo)•> ®{y?)~®iy-\)) - ° •

From ( 2 . 2 ) and ( 2 . 3 ) we h a v e

Hence
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y2+Ty2, e [yj -e [y2]) > (e [yj -e [y2],

Therefore,

Thus

(2.10 liefej-

Since T is strongly monotone and lipschitzian, it follows from the

inequality (2.1t) that

Since k2 < 2e < k +1 , we have 0 < ?c +l-2e < 1 . Putting

2 2a = k + 1 - 2e in the above inequality we obtain

where 0 < a < 1 . Thus 6 is a contraction. Now applying the Banach

contraction principle (see, for example, [/]) we conclude that 6 has a

unique fixed point, say y. . How putting y = y in (2.1) we get

(2.5) [TyQ, s-j/0) > 0

for every z € K . Since 0 € K we have from (2.5) that Ofy y ) < 0 .

Again since K i s a convex cone, 2yn € X and therefore putting z = 2yn

in (2.5) we get [TyQ, yQ) > 0 . Thus (2V/0, yQ) = 0 and (%0, z) =» 0

for every 3 6 X , showing that Tj/ € K* . Therefore y i s the unique

solution to the complementarity problem ( l . l ) and th i s completes the proof.
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