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§1. Introduction

In this paper, we study 3-dimensional locally strongly convex affine
hypersurfaces in R*. Since the publication of Blaschke’s book [B] in the
early twenties, it is well-known that on a nondegenerate affine hyper-
surface M there exists a canonical transversal vector field called the affine
normal. The second fundamental form associated to the affine normal is
called the affine metric. In the special case that M is locally strongly
convex, this affine metric is a Riemannian metric. Also, using the affine
normal, by the Gauss formula one can introduce an affine connection on
M, called the induced connection . So on M, we can consider two
connections, namely the induced affine connection V and the Levi Civita
connection ' of the affine metric A.

The cubic form C is defined by C = Fh. The classical Berwald
theorem states that the cubic form vanishes identically if and only if M
is an open part of a nondegenerate quadric. Here, we will consider
the condition that the cubic form is parallel with respect to Levi Civita
connection of the affine metric, i.e. ¥C = 0. For surfaces, this condition
has been studied by M. Magid and K. Nomizu in [MN]. There, they
proved the following theorem.

TuEOREM [MN]. Let M be a Blaschke surface in R* with VC = 0.
Then either M is an open part of a nondegenerate quadric (i.e. C = 0) or
M is affine equivalent to an open part of one of the following surfaces:

(1) xyz=1,
(i) x(*+2)=1,
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(iil)) z=xy + % y', (the Cayley surface).

A generalization of this theorem to higher order derivatives of the
cubic form is given in [V2]. In this paper, we will extend this theorem
to 3-dimensional affine locally strongly convex hypersurfaces. The Main
Theorem that we prove is the following.

Main THEOREM. Let M be a 3-dimensional affine locally strongly convex
hypersurface in R* with VC = 0. Then either M is an open part of a
locally strongly convex quadric (i.e. C = 0) or M is affine equivalent to an
open part of one of the following two hypersurfaces:

(i) xyzw =1,

(ii) (* — 22— w)x’ = 1.

The condition that C is parallel with respect to the induced affine
connection I is treated in [NP2], for surfaces, and in [V1] for 3-dimensional
affine hypersurfaces. A partial classification of higher order parallel
surfaces, i.e. surfaces which satisfy F"C = 0, for some integer number n,
can be found in [DV].

Finally, the authors would like to thank Professor K. Nomizu, for
many valuable lectures and discussions on affine differential geometry.
Nomizu’s lecture notes [N] are a modern approach to affine differential
geometry. We mostly follow his notations. We also thank the referee
for his valuable comments.

§2. Preliminaries

Let f:M*—R* be an immersion of a connected differentiable 3-
dimensional manifold into the affine space R* equipped with its usual flat
connection D and a parallel volume element w and let & be an arbitrary
local transversal vector field to f(M?®). For any vector fields X, Y, X|, X,,
X;, we write

(2-1) Dxf*(Y) = f*(VxY) + h(X, Y)& ’
(22) 0(‘Xh XZ, Xa) = (‘)(f*X.l, f*XZ, f*Xa’ 5) )

thus defining an affine connection F, a symmetric (0, 2)-type tensor A,
called the second fundamental form, and a volume element . We say
that f is nondegenerate if A is nondegenerate (and this condition is
independent of the choice of transversal vector field ). In this case, it
is known (see [N], [NP1]) that there is a unique choice (up to sign) of
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transversal vector field such that the induced connection F, the induced
second fundamental form A and the induced volume element # satisfy the
following conditions:
(1) re =0,
(i) 0= o,
where w, is the metric volume element induced by h. We call I the
induced affine connection, & the affine normal and A the affine metric.
By combining (i) and (ii), we obtain the apolarity condition which states
that Ve, = 0. A nondegenerate immersion equipped with this special
transversal vector field is called a Blaschke immersion. Throughout this
paper, we will always assume that f is a Blaschke immersion. If 4 is
positive (or negative) definite, the immersion is called locally strongly
convex. Notice that if A is negative definite, we can always replace &
by — &, thus making the new affine metric positive definite. Therefore,
if we say that M is locally strongly convex, we will always assume that
& is chosen so that h is positive definite.

Condition (i) implies that D,& is tangent to f(M®) for any tangent
vector X to M. Hence, we can define a (1, 1)-tensor field S, called the
affine shape operator by

(2.3) Dxs = — f(8X).

M is called an affine sphere if S = 1I. We define the affine mean curva-
ture H by H = 1/n trace(S). The following fundamental equations of Gauss,
Codazzi and Ricci are given by

24) R(X,Y)Z=h(Y,Z)SX — h(X,Z)SY (Equation of Gauss)

25) FhX,Y,Z)=Th) (Y, X, Z) (Equation of Codazzi for h)
26) FySY=F,SX (Equation of Codazzi for S)
@27 h(X,SY)=h(SX,Y) (Equation of Ricci).

If dim(M) > 2 and M is an affine sphere, it follows from (2.6) that 2 is
constant. If 12 = 0, we say that M is a proper affine sphere and if 2 = 0,
we call M an improper affine sphere. From (2.5) it follows that the cubic
form C(X, Y, Z) = (Ph)(X, Y, Z) is symmetric in X, Y, Z. The Theorem of
Berwald states that C vanishes identically if and only if M is an open
part of a nondegenerate quadric.

Let // denote the Levi Civita connection of the affine metric A. The
difference tensor K is defined by
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KX, Y)=V,Y—-V,Y,

for vector fields X and Y on M. Notice that K is symmetric in X and
Y. We also write K;Y = K(X, Y). From [N], we have that

2.8) mem=_%axxm

(29 RX Y)Z= —;—(h(Y, Z)S8X — (X, Z)SY + h(SY,Z2)X — h(SX,2)Y)
- [KX’ KY]Z

where R denotes the curvature tensor of /. Notice also that the apolarity
condition together with (2.8) implies that trace K, = 0 for every tangent
vector X. In the special case that M is an affine sphere, ie. S = 11,
equation (2.9) becomes

(2.10) R(X,V)Z = a(W(Y, 2)X — WX, 2)Y) — [Ky, Ky Z.
Further, if M is an affine sphere, we have from [N] that
(2.11) 7 K)X, Z) = (7 xK)(Y, Z),

where (V,K)(X, Z) =V (KX, Z)) — K(V,X,Z) — K(X,V,Z). Finally, we
need the following results from [BNS], [Y].

THEOREM 2.1 [BNS]. Let M be an n-dimensional Blaschke hypersurface
in R, If FC = 0, then M is an affine sphere.

THEOREM 2.2 [Y]. Let M*® be a locally strongly convex affine hypersphere
in R* such that the affine metric h has constant sectional curvature. Then
M is an open part of a quadric or M is affine equivalent to an open part
of x,%,%,%, = 1

A generalization of this last theorem to arbitrary dimensions is given
in [VLS].

§3. Proof of the theorem

Throughout this section, we will always assume that M is a 3-dimen-
sional, locally strongly convex affine hypersurface in R* which has parallel
cubic form, i.e. which satisfies 'C = 0. Notice that (2.8) implies that this
is equivalent with FK = 0. From Theorem 2.1, we deduce that M is an
affine sphere. First, we remark that if the cubic form C vanishes identi-
cally, then from the Berwald theorem it follows that M is an open part
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of a nondegenerate locally strongly convex quadric. Hence from now on,
we will assume that C does not vanish identically. Since C is parallel
with respect to F/, it follows that C vanishes nowhere.

We now choose an orthonormal basis with respect to the affine metric
h at the point p in the following way. Let UM, = {ue TM,|h(u, u) = 1}.
Since M is locally strongly convex, UM, is compact. We define a function
f on UM, by

f(w) = h(K,u, u),

for ue UM,. Notice that because of (2.8), the function f does not vanish
identically. Let e, be an element of UM, at which the function f attains
an absolute maximum. Thus f(e,) > 0. Let ve UM, such that (v, e = 0.
Then, we define a real function g by g(¢) = f(cos(t)e, + sin(¢)v). Since g
attains an absolute maximum at ¢ = 0, we have that g’(0) = 0 and g"’(0) < 0.
Using (2.8) these equations give

3.1) h(K.e,v) =0,
(3-2) h(Ke,eu el) - 2h(Ke;v9 U) 2 0 ’

for all v satisfying (v, e, = 0. Hence e, is an eigenvector of K, , say with
eigenvalue 4. Then, we choose e, e; as the other eigenvectors of K, with
eigenvalues respectively 1, and ;. Using this, (2.8) and the apolarity we
obtain the following formulas for the difference tensor.

Kelex = Ae,
Kelez = 2292 s
K. e, = Ae,,

K€2e2 = Xe, + ae;, + be,,
K.,e; = be, — ae,,
K,.e, = 3¢, — ae, — be,,

where a, be R and, because of apolarity, 1, + 1, + 1, = 0. Further, since
f(e) >0, we have 2, >0 and from (3.2) it follows that 2, > 21,, where
i =2, 3. Furthermore, by changing the sign of e, or e, if necessary, we
may assume that @, b > 0. The next two lemmas will improve further
our choice of orthonormal basis.

Lemma 3.1. If A, = 2, then we can choose e, and e, in such a way
that b = 0.
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Proof. If 2, = 2, then every ue UM, which is orthogonal to e, is an
eigenvector of K, with eigenvalue 4, = 1, Hence, the choice of e, and e,
which we made earlier was not unique. So we can still choose e, as a
vector in which the function f restricted to B = {uec UM, |h(u, e) = 0}
attains its maximal value. Finally, we pick e, such that {e, e, e} is an
h-orthonormal basis. Since, f, restricted to B, attains a maximal value
in e, we have h(K,,e, e;) = 0. Hence b = 0. O

LEmMmA 3.2. For i = 1,2, we have A, > 22,.

Proof. Let us assume that 2, < 24,, We will derive a contradiction.
Since then 2, = 21, we have 1, = —22,. Now, we put u = (1// 2)(—e, —e,).

Then
f(w) = »2%(— fle)) — 3h(K., e, e;) — 3h(K, e, ;) — f(es)
_ 1 /7 9
-m2ﬁ< A+ 2zl+b).

Hence we obtain that f(uz) > 2,. This contradicts the fact the function f
attains an absolute maximum in e,.

LEMMA 38.3. Let M?® be a locally strongly convex affine hypersurface in
R* for which VC =0 but C+0. Then M is a hyperbolic affine sphere,
i.e. S= 1l with 2<0. Furthermore, let {e,, e,, e,;} be an orthonormal basis
as defined above. Then either one of the following holds:

(i) Ko, e) = e, K(ey e) = — %z.ez
K(e, 0) = — -;-uel ~VZe) Ke,e) = — %zles
K(ey e) = — é—zm +V2e)  Kleye) = — V%zlez
(ii) K(eu e1) = Ae K(en ez) = — %2162
1 1
K(eZa ez) = — —A4e K(en 63) = — = A6
2 2
K(ey ) = — %zle, Kl e) =0,

where 2, = 24/ — /3.
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Proof. Since 'K = 0, we get R K= 0; we obtain for vector fields
X, Y, Z, W that

(33) 0= R(X, V)K(Z W) — K(R(X, Y)Z, W) — K(Z, R(X, ")W).
Applying this formula for X =Z = W=1r¢, Y = e, ‘i = 2, 3, then gives
(3.4) 0 = R(e, e)de, — 2K(R(e,, e)e,, e,) .

By using (2.10), we see that

R(ela ei)el = - zei - [Kela Kei]el
= — le; — Xe;, + hie
=(—2—-2+ 1d)e;.

By substituting this into (3.4) we see that
A —22)(— 2 — 2+ 42)=0.
By applying Lemma 3.2 this gives
(3.5) —2A—=2+ 242,=0.
By subtracting the equations obtained for i = 2, 3, we see that
(A — 3)(A — 2, — 2) = 0.

Since it follows from Lemma 3.2 that 2, — 4, — 4, # 0, we obtain that
A, = 4. Hence by Lemma 3.1, we may assume that b = 0. Since by

apolarity also 4, = — 1, — 4, (3.5) becomes
(3.6) —2—%ﬁ:0.

Since 1, = 0, we deduce that 1< 0. Hence M is a hyperbolic affine
hypersphere. Moreover it then follows from (3.6) that i, = 2¢ — /3.
Using the previous results, we find that

}%(629 e3)el = - [Keg, Keg]el
= — L K(e, ;) + 2,K(es, ) =0
é(ez, e)e, = — Ae; — KegKl’geZ + Ke:;KEQeZ

= (— 1 — 20> 4+ XA)e,.

So if we then substitute X =Z = W =¢, and Y = ¢, in (3.3), we get
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0 = R(ey, e)(he, + ae)) — 2(— 1 — 2a* + W2) K(e,, e)
= 3a(—" 2 - 2@2 + 2223)63

= 3a<— A — 2a® + %Zf)eg
= 3a(— 2a% — —4—2)93.
3

Hence ¢ = 0 or a = +/ — 22/3. ]

LEmMMmA 3.4. If Lemma 3.3 (i) holds at a point p then all sectional
curvatures (w.r.t. R and h) are zero. Moreover h(K, K) = 6. If Lemma
3.3 (i) holds at a point p then h(K, K) = (10/3) 2%

Proof. From (2.10) and Lemma 3.1, we obtain that

R(en e)e, = ﬁ(en e)e; = l%(ez, epe; =0,
I%(eh e)e; = R(eb e)e, = R(es, e)e, =0.

Linearization then implies that R=0. The remaining claim follows
straightforwardly from Lemma 3.3. O

Since A(K, K) is different for the cases (i) and (ii), it follows that
Lemma 3.3 (i) holds at every point p of M or Lemma 3.3 (ii) holds at
every point p of M. Notice that if Lemma 3.3 (i) holds at every point p
of M, then from Lemma 3.4 it follows that M has constant zero sectional
curvature. Applying Theorem 2.2 then shows that M is affine equivalent
to an open part of xyzw = 1. So from now on, we will assume that
Lemma 3.3 (ii) holds at every point p of M. The following lemma then
shows that we can extend the basis we found differentiably to a neighbour-
hood.

LeMMA 3.5. Let M be an affine 3-dimensional locally strongly convex
affine hypersurface in R* with FC = 0. Assume that Lemma 3.3 (ii) holds
at every point of M. Then around any point, there exists a local basis
{E,, E,, E;}, orthonormal with respect to h, such that

1

K(En El) = 21E1 ’ K(Eh E2) = - —2-21E2 ,
K(E, E) = — %zE K(E, E) = — %AE
K(E, E) = — .;_z, E, KE,E)=0,
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where A, = 24 — /3.

Proof. Let pe M. We take the orthonormal basis {e,, e,, e;} given by
Lemma 3.3 (ii). We extend this basis, by parallel translation along geo-
desics (with respect to /) through p to a normal neighbourhood around p.
By the properties of parallel translation this gives an h-orthonormal basis
defined on a neighbourhood of p. Since VK = 0, it also follows that K
has the desired form at every point of a normal neighbourhood. O

LEmmA 3.6. Let M be as in Lemma 3.5, let pe M and let {E,, E,, E;}
be the local orthonormal basis given by Lemma 3.5. Then for any vector
field X on M we have that

VyE, =0.

Moreover (M, h), considered as a Riemannian manifold, is locally isometric
to R X H, where H is the hyperbolic plane of constant negative curvature
#1.  Also, after identification, the local vector field E, is tangent to R.

Proof. Let pe M. We take the h-orthonormal basis given by Lemma
3.5. Since 'K = 0, we have that

0= (ﬁEiK)(EU El)
= ZlﬁEiEl - 2K(¢EiEn E1) ’

fori =1,2,3. Since F z. B 18 h-orthogonal to E,, this last equation implies
that

0=210E,.

In order to show that M is locally isometric to R X H, we define
two local distributions T, and T by

T,:q——> T,|, = span{E(q)} ,
T, :q—>T,|, = {ve TM,|h(v, E(q)) = 0} .

Since V.E, = 0, we have VToTo c T, and VTITO c T,. Since T, and T, are
h-orthogonal this then implies that also V/,T, c T, for any vector field X.
Therefore, it follows from the de Rham decomposition theorem ([KN])
that (M, A) is locally isometric to R x H, where H is a surface. Moreover
since F, e T,, after identification FE, is tangent to the R-component.

Finally, we notice from (2.10) and Lemma 3.5 that
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5 4

R(E, E)E, = 3 AE, .
Hence H has constant negative curvature $1 and therefore, H is locally
isometric to the hyperbolic plane. O

Finally, we have the following lemma.

Lemma 3.7. Let M be as in Lemma 3.5. Then, M is affine equivalent
to an open part of the affine hypersurface described by

(3 — 28 — uwdiat = 1.

Proof. By Lemma 3.3, we know that 1< 0. Hence, by applying a

suitable homothetic transformation, we may assume that 1= — 1. Let
peM and let {E, E,, E;} be the basis given by Lemma 3.5. First, we
notice that if we put U, = cos §E, 4 sinfE, and U, = — sin0E, + cos 6E,,

then the new h-orthonormal basis {E,, U,, U;} also satisfies Lemma 3.5.

Further, we will denote the immersion of M into R* by x. Then,
after applying a translation, we may assume that & = x. Next, by Lemma
3.6, we know that M is h-isometric to R X H, where H is the hyperbolic
plane with constant negative curvature —¢, and E, is tangent to the
R-component. So, using the standard parametrization of the hypersphere
model of H, we see that there exist local coordinates {u, v, w} on M, such
that E, = x,, and such that x, and (1/sinh(2/v 3 u))x,, together with «,
form an h-orthonormal basis. So by the remark made in the beginning
of the proof, we may assume that E, = x, and sinh(2/v Sw)E, = x,. A
straightforward computation then also shows that

ﬁzuxu = 0 ’
5 5 2 2
oty = Pty = th(— 2 ).
X X NE3 co N} u)x
Vzvx,, = — \/% sinh( é_ u)cosh(%u)xu.

So, using the definition of K, we get the following system of differential

I

equations, where in order to simplify the equations, we have put ¢ = + 3.

3.7) Koo = 2%y + %,
C

(3'8) Xuw = — ‘}‘ Xy »
c
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(39) Xyw = -~ ‘1" X,y
¢
. 1
(3'10) Xyy = — — Xy + x B
c
(3.11) Xyy = Ecoth<~2— u)xv ,
c ¢
Xyp = — l—(sinh(?— u))zxw — zsinh(—z— u)cosh<—2— u)xu
c ¢ c c c
(3.12)

+ (sinh(g- u>>-x .
c
First, we see from (3.7) that there exist vector valued functions P.(u, v)
and P,(u, v) such that

x = P/(u, v)exp(cw) + Pyu, v)exp<_ 1 w) )
c

From (8.8) and (3.9) it then follows that the vector valued function P, is
independent of © and v. Hence there exists a constant vector A, such
that P(u, v) = A,. Next it follows {rom (3.10) that P, satisfies the following
differential equation:

(Pz)uu: Pz»

ol

Hence we can write

Lo, v) = ({1(0)(:()51_}( 4 u) -+ Qz(l))sil]h(z n) .
¢

c

From (8.11), we then deduce that there exists a constant vector A, such
that @,(v) = A,. Finally, from (3.12), we get the following differential
equation for @,:

N 4
2)py — T ()2 .
(@) 5 @

This last formula implies that there exist constant vectors A, and A,
such that

Q) = A, cos<l§. v) + oA, sin(f- v) .

bince M is nondegenerate, M lies Iinecarly full in R'. Hence A,, A,, A,, A,
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are linearly independent vectors. Thus there exist an affine transformation
such that

X = (exp(cw), cosh(—2— u)exp(— 1 w),
c c

cos(—g— v)sinh(3 u)exp(— lw), sin<—2~ v)sinh(-z- u)exp(— —1—w>)
c c c c c ¢
So clearly the image of M lies, upto an affine transformation, locally on

(»* — 2 — wx* = 1. The analyticity of this last hypersurface then com-
pletes the proof. O

So, by combining this lemma with the previous results we see that a
3-dimensional locally strongly convex hypersurface M in R* with /C = 0
is either a quadric or else satisfies Lemma 3.3 (i) at every point p or
satisfies Lemma 3.3 (ii) at every point p. In the second case, we see
from Lemma 3.4 that M has constant sectional curvature. So by applying
Theorem 2.2, we see that M is affine equivalent to the affine hypersurface
given by xyzw = 1. Finally, in the last case, Lemma 3.7 completes the
proof.
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