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ABSTRACT. The theoretical basis of subglacial channel dynamics can be traced back to the work of
Röthlisberger (1972) and Nye (1953). Röthlisberger (1972) considered the channels’ behaviour to be
governed by a mix between water friction melting back the channel walls and the viscous closure of the
surrounding ice; Nye (1953) derived a viscous closure rate for the ice. While their modelling is evidently
well constructed, two aspects of their work have gone undeveloped. The first is the consideration of a
finite glacier depth within the viscous closure law, instead of the assumption of an infinite glacier depth.
The second is the allowance of a region of open channel flow, so that a channel’s water may transition
from a region of closed channel flow to one where the water is exposed to the atmosphere. This paper
helps close these two gaps, showing how Nye’s equation for the rate of ice closure can be modified, and
how the point of transition between closed and open channel flow may be determined.
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INTRODUCTION
The drainage of water from beneath glaciers and ice sheets
is a key part of their mass balance. Thus, the study of
meltwater channels can be extremely useful in under-
standing glacial dynamics (Walder, 2010; Hewitt, 2011). In
observing water discharging from glacier margins, one can
often see it coming from wide (up to tens of square meters),
isolated channels that are carved into the base of the ice.
These observations helped Röthlisberger create his theory
for explaining subglacial channel dynamics (Röthlisberger,
1972). Alongside Shreve (1972), he proposed that the rate of
opening of a subglacial channel is the sum of opposing
effects: channel opening, caused by the melting of ice as the
turbulent water rubs past; and channel closure, caused by
the viscous flow of the overlying ice. Previous work on
tunnel closure had been conducted by Nye (1953), and was
incorporated in Röthlisberger’s modelling – although these
subglacial channels are commonly referred to as ‘Röthlis-
berger’ channels. The resulting model showed that wider
channels carried lower water pressures, hence explaining
the aggregation of water into large isolated channels.

A particularly notable success of the Röthlisberger model
has been the incorporation within the modelling of jökul-
hlaups (e.g. Nye, 1976; Evatt, 2006; Kingslake and Ng,
2013a). Here large volumes of floodwater (with fluxes of
103–105 m3 s� 1) travel many kilometres through subglacial
conduits (modelled as Röthlisberger channels) in a matter of
hours. These jökulhlaup models have shown a high degree
of accuracy in predicting and explaining observed flood
hydrographs (Fowler, 2009). However, as noted by Evatt and
others (2006), the study of jökulhlaups had unintentionally
highlighted an uncomfortable corollary of the Röthlisberger
model: in the region of the channel exit, they would be
forever opening and grow taller than the ice is thick.

This paper shows how to rectify this issue, thus ensuring
the channel’s cross-sectional area will always be bounded,
by appropriately adapting Nye’s assumption of an infinite
ice thickness to one of a finite ice thickness. Results are
computed for when the channel is in a steady state along its
full length. I then extend the Röthlisberger model to allow
for a frequently observed phenomenon towards the tunnel

exit, where the channel transitions from a region of closed
channel flow to a region of open channel flow. In doing so I
show how the issue of a forever-opening channel would not
have been removed by this assumption alone. Results and
analysis are provided for the point of transition between
closed and open channel flow.

THE OPENING PROBLEM
Röthlisberger (1972) considered a cylindrical englacial
channel that was fully filled with flowing water travelling
in the x-direction, the cross section of which is shown in
Figure 1. He proposed that the rate of change of the
channel’s cross-sectional area was governed by the oppos-
ing effects of melt-back and viscous closure. Mathematically
this was written as

@S
@t
¼

m
�i
þ

@S
@t

� �

v
, ð1Þ

where S is the channel cross-sectional area, m is the melt
rate per unit length, �i is the ice density and v denotes the
viscous closure of the tunnel. To specify the viscous closure
term, work by Nye (1953) was used. Nye showed that under
the assumptions of radially symmetric and infinitely thick
ice, the closure rate of the channel would be given by
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� �

v
¼ � KSNjNjn� 1, ð2Þ

where K is a constant, n is the Glen exponent for viscous ice
(Glen, 1952) and N is the effective pressure within the
channel. The effective pressure is defined as

N ¼ pi � pw ð3Þ

where pw is the water pressure and pi is the overburden
pressure of the ice, both evaluated at the ice/water interface.
Coupling together these equations provides an equation that
helps describe subglacial channel dynamics:

@S
@t
¼

m
�i
� KSNjNjn� 1

: ð4Þ

This equation has been widely used in the modelling of
jökulhlaups. However it is typically only applied in the
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upstream region near the lake, as jökulhlaup models do not
critically depend upon the dynamics of the tunnel exit
(Fowler, 1999). As such, it is understandable that the
following anomaly went unnoticed: at the terminus of the
channel, xe, there is no overlying ice and thus the effective
pressure is zero, which from Eqn (4) implies

@S
@t
¼

m
�i
> 0 at x ¼ xe: ð5Þ

This strictly positive rate of opening at the tunnel exit is
physically impossible. To rectify the situation one might be
tempted to modify m so that it also equals zero at xe.
However its value will necessarily be positive in the limit of
x! xe. Another possibility is that if a region of open channel
flow towards the channel exists, the issue might be
removed. In this case the effective pressure would be given
by the ice pressure, and so

@S
@t

� �

v
¼ � KSpni : ð6Þ

However, since pi must equal zero at the exit, there would
be no creep closure and thus we would still have the issue of
a strictly positive rate of channel widening. And so with no
easy fixes to hand, we must return to the original modelling
assumptions behind the closure law (Eqn (2)), to see how
they can be improved in order to remove the issue of a
forever-opening exit.

ICE CLOSURE
We return to the model of Nye (1953) for the creep closure
of ice surrounding a cylindrical cavity of radius R1, but this
time I shall allow for a finite ice thickness to exist, of radius
R2. This geometry is highlighted in Figure 1, showing

S ¼ �R2
1, ð7Þ

which, upon differentiation with respect to time (represented

by the raised dot), gives

2
_R1
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¼
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This means that if I can solve for _R1 then I shall be able to
find the viscous closure rate for the channel.

I make use of the Stokes slow-flow equations for viscous
ice, which represent the conservation of ice momentum and
mass, respectively:

rp ¼ r � � þ �ig,
r � u ¼ 0:

ð9Þ

Here p is the ice pressure, � is the deviatoric stress tensor, g

is gravity and u is the ice velocity. I retain Nye’s simplifying
assumption of radially symmetric ice, centred on the middle
of the channel, where the outer glacier field is simulated by
treating gravity as falling radially inwards. In maintaining
this assumption, the whole problem becomes radially
symmetric, u ¼ ðuðrÞ, 0, 0Þ, where r is the radial distance
from the midpoint of the channel. Converting Eqn (9) into
polar coordinates allows me to write

@p
@r
¼

1
r
@ðr�rrÞ
@r

�
���

r
� �ig,

1
r
@ðruÞ
@r
¼ 0:

ð10Þ

With a simple integration (and using uðR1Þ ¼ _R1) this
second equation can be reduced to

u ¼
R1 _R1

r
: ð11Þ

In addition to the two slow-flow equations, I need a third
equation to close the model. This is given by the generalized
Glen flow law for viscous ice:

_�ij ¼ A�n� 1
e �ij ð12Þ

where A is an ice flow coefficient, �e is the effective stress
defined as

2�2
e ¼ �

2
rr þ 2�2

r� þ �
2
��, ð13Þ

and _� is the strain rate tensor, given by

_�ij ¼
1
2
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þ
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� �

: ð14Þ

In cylindrical coordinates with radial symmetry (so
_�r� ¼ �r� ¼ 0), Eqns (12) and (14) give the relations

@u
@r
¼ A�n� 1

e �rr,
u
r
¼ A�n� 1

e ���:

ð15Þ

The above equations can then be added together and
equalled to zero, via the incompressibility constraint
(Eqn (102)), to provide

�rr þ ��� ¼ 0: ð16Þ

It then follows from Eqn (13) that

�e ¼ j�rrj: ð17Þ

The explicit forms for � and �rr can now be found by
applying Eqns (11) and (17) to Eqn (15), to produce

�e ¼
jR1 _R1j

Ar2

� �1=n

ð18Þ

Fig. 1. A cross section of a cylindrical Röthlisberger channel, where
the inner section is fully filled with water flowing out of the page,
and the outer annulus is a finite-width ice layer.
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and

�rr ¼ � sgnð _R1Þ
jR1 _R1j

Ar2

� �1=n

: ð19Þ

With the form of the deviatoric shear stress now known, I
apply it to the momentum equation in Eqn (10) in order to
find the effective pressure, N, thereby linking it to the
channel closure rate. At the boundaries of the ice (Fig. 1),
force balances exist between the radial component of shear
stress, �rr ¼ � pþ �rr, and the atmospheric and water
pressures (pa and pw):

�rr ¼ � pa at r ¼ R2,
�rr ¼ � pw at r ¼ R1:

ð20Þ

With these conditions, I integrate Eqn (101) between R1 and
R2, and make use of the fact that pi ¼ �igðR2 � R1Þ, to find

N ¼ 2
Z R1

R2

�rr

r
dr: ð21Þ

Here I have taken the atmospheric pressure to be negligible
compared with the weight of the ice. By making substitutions
from Eqns (19) and (8), I can integrate Eqn (21) to find our
improved closure law for a cylindrical channel within ice:

@S
@t

� �

v
¼ � K

SNjNjn� 1

1 � S
Sf

� � 1
n

� �n , ð22Þ

where K ¼ 2A=nn and Sf ¼ �R2
2.

There is an obvious similarity between this modified
closure law and that originally derived by Nye for infinitely
thick ice, Eqn (2) (in the limit Sf !1 we regain Eqn (4)). Yet
now we see a denominator term has appeared, where this
denominator contains information regarding the overlying
ice thickness. Crucially, it ensures that while S is growing, it
is bounded above by Sf and the issue of a forever widening
exit is removed. Further, since the denominator is <1, the
closure rates of Röthlisberger channels are larger than
previously thought.

CHANNEL EVOLUTION EQUATION
To be able to solve for the channel cross-sectional area
(Eqn (1)) with our improved closure law (Eqn (22)), I first
need to specify the melt rate per unit length, m, and the
effective pressure, N. I shall make use of the melt rate
function as used by Fowler (2009) and Evatt (2006) (its
thermodynamic-based derivation is outside the scope of the

current paper), the form of which can be taken as

m ¼
Q
L

�þ
@N
@x

� �

: ð23Þ

Here Q is the water flux within the channel, L is the latent
heat of melting and � is the background hydraulic gradient,
given by

� ¼ � �ig
@

@x
ðR2 � R0Þ � �wg

@R0

@x
, ð24Þ

where R0 is the height of the ice/bedrock interface (which is
also the centre line of the channel).

In regard to the effective pressure, one can make use of
the Manning flow law for turbulent water (as did Nye, 1976)
which can be rearranged to produce

�þ
@N
@x

� �

¼ f�wg
QjQj
S8=3 ð25Þ

where f is a constant and �w is the water density. The
boundary condition for this equation is given by

N ¼ 0 at x ¼ xe: ð26Þ
With these equations I am able to write the evolution

equation for S as

@S
@t
¼

f�wg
L�i

Q2jQj
S8=3 � K

SNjNjn� 1

1 � S
Sf

� � 1
n

� �n , ð27Þ

where N is given by Eqn (25). Once S is determined, one can
find the channel radius, R1, via Eqn (7).

CLOSED CHANNEL RESULTS
To compute R1 I shall employ the indicative parameter
values given in Table 1, where Q is prescribed, and assume
that the ice surface and base are parallel to one another
(thereby allowing easy replication of the results). Further, at
the tunnel exit I simply prescribe S ¼ Sf, as any smaller
initial size will eventually reach this (steady-state) value. All
results are found using an iterative root-finding scheme to
find a steady value of S from Eqn (27) (i.e. where the time
derivative is set to zero), while simultaneously using a
simple finite-difference numerical scheme for Eqn (25).

The first result, Figure 2, shows how the channel radius,
R1, matches the height of the ice at the tunnel exit. The bulk
of the change in channel size is contained in the final 50 m
before the channel exit. To see how this channel profile
varies under a broad range of flux discharges, Figure 3
shows the profile for Q ¼ 25, 250 and 2500m3 s� 1 (corres-
ponding to increasing S). We see the region in which the
significant proportion of channel variation occurs is slowly
pushed back to �200 m before the channel exit.

To allow for a comparison between this paper’s bounded
model and the original (unbounded) Röthlisberger model
(Eqn (4)), Figure 4 plots a close-up view of the bounded
channel radius (same as shown in Fig. 2) together with the
far-upstream channel radius of the original Röthlisberger
model. This far-upstream value is calculated from Eqn (25)
with the limit @N=@x! 0 as x!1 (Fowler, 1999), thereby
ensuring this part of the original Röthlisberger channel is
bounded; since it is bounded it serves as a suitable width for
which to compare our improved model. As the result shows,
the bounded model smoothly converges from above to this
far-field value as one moves upstream. This is to be expected
as the unbounded model implicitly assumes an infinite ice

Table 1. Indicative parameter values

Description Value

Q Water flux � 25m3 s� 1

R2 Ice surface height 100 m
xe Tunnel exit location 0 m
K Ice flow coefficient 10� 24 Pa� 3 s� 1

n Glen’s exponent 3
� Hydraulic gradient � 300 Pa m� 1

�i Ice density 900 kg m� 3

�w Water density 1000 kgm� 3

g Gravitational acceleration 9.8 m s� 2

L Latent heat of melting 3:3� 105 J kg� 1

f Friction coefficient 0.05 m� 2=3 s2
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width and therefore its far-field value will have the
narrowest channel radius.

OPEN CHANNEL FLOW
It appears that the issue of a forever-opening tunnel exit has
been removed. Built within our modelling was an assump-
tion that the tunnel will remain fully filled with water, right
up to the tunnel exit. Yet this is contrary to the many
observations of a region of the water, immediately upstream
of the exit, being exposed to the atmosphere (Röthlisberger,
1972). This situation is sketched in Figure 5. Although I
showed why the open channel consideration would not
have removed the forever-opening channel issue (see
Eqn (6)), it is natural to see how this consideration will
affect our modelling. In this section I calculate if, and where,
a transition point from closed channel flow to open channel
flow will occur.

We have seen the equations that govern N and S in the
closed channel flow region are Eqns (25) and (27), respect-
ively. These allow the derivation of the analogous equations
for the open channel flow region to be conducted with ease.
As previously mentioned, the effective pressure felt by the
ice in the open channel region is the same as the overlying
ice pressure, pi (with pw ¼ pa negligible):

N ¼ pi ¼ �igðR2 � R1Þ, for x � x: ð28Þ

This open channel effective pressure can be placed into
Eqns (3) and (24) to find the hydraulic potential is given by

�þ
@N
@x
¼ � �wg

@R0

@x
, ð29Þ

which we see is defined solely by the topology of the
bedrock. Substitution of this potential gradient into Eqn (23)
provides the melt rate per unit length within the open
channel,

m ¼ � �wgQ
@R0

@x
: ð30Þ

Maintaining Röthlisberger’s principle of the channel’s

Fig. 5. A schematic profile image of a water channel flowing
underneath a glacier, where the channel transitions from a region of
closed channel flow to a region of open channel flow at x ¼ x.

Fig. 2. A profile view of a Röthlisberger channel radius, inside an
ice mass of 100m elevation. This was solved using the improved
closure law (Eqn (22)).

Fig. 4.Aclose-up profile view of a Röthlisberger channel radius (solid
line), plotted against the far-upstream radius of a Röthlisberger
channel without the modified closure law (dashed line).

Fig. 3. A profile view of a Röthlisberger channel radius for three
different discharge levels: for increasing S, Q ¼ 25, 250 and
2500m3 s� 1.
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dynamics being determined by a relationship between
widening due to melt and viscous closure (Eqn (1)), I may
write the open channel evolution equation as
@S
@t
¼
� �wgQ
�i

@R0

@x
� K

Spni

1 � S
Sf

� � 1
n

� �n , for x � x: ð31Þ

With N and S within the open channel defined by
Eqns (28) and (31), respectively, I can determine the
transition point between closed and open channel flow, x,
via continuity arguments. Since the melt rate per unit length
will be continuous throughout the channel (as are also S, Q,
 and @N=@x), it allows me to join up Eqns (25) and (28)
to imply

� �wg
@R0

@x
¼ f�wg

QjQj
S8=3 , at x ¼ x: ð32Þ

This extra condition (which links the closed and open
channels) determines the location of x. It is of note that this
transition point can be applied to both steady and non-
steady situations.

I now calculate steady-state solutions for the transition
point, which is achieved by solving for SðxÞ from the steady-
state version of Eqn (31), and then seeing where its solution
satisfies the transition criteria given by Eqn (32). I use the
parameters of Table 1 and take the open channel hydraulic
potential as

� �wg
@R0

@x
¼ � 150e� x=1000: ð33Þ

This prescription is for illustrative and replication purposes,
and has been chosen so as to ensure a transition point exists
(which is not the case if a constant value is used).

Figure 6 plots the transition point for different ice surface
elevations, R2. We see that for larger ice surface elevations, x
moves downstream along the tunnel in a monotonic fashion,
similar to that predicted by Weertman (1972). For ice surface
elevations above�90 m, the entire channel is fully filled with
water. To highlight the dependence of flux discharge upon
the transition point, Figure 7 plots x against Q. We see the
transition point moves upstream as the flux increases. This is
because the closed channel’s (bounded) cross-sectional area
widens for higher fluxes, thus reducing the weight of the

overlying ice and allowing the evolution equation (Eqn (31))
(with its flattening bedrock topography, Eqn (33)) to be
satisfied for a longer distance. The result reinforces the notion
that during variable water discharges one should expect the
transition point to vary (e.g. Schuler and Fischer, 2009;
Hewitt and others, 2012; Kingslake and Ng, 2013b).

DISCUSSION AND CONCLUSIONS
This paper has shown how the issue of a forever-opening
exit of a Röthlisberger channel can be removed by the
consideration of a finite ice depth. In doing so it provides a
link between channel behaviour and the overlying ice
geometry. Fortunately, the resulting equation for channel
evolution (Eqn (27)) does not add much additional complex-
ity compared with the original (infinite ice depth) equation
(Eqn (4)). I have also shown how one can incorporate a
region of open channel flow into the modelling of
Röthlisberger channels, thus allowing this common obser-
vation to be taken into account.

The behaviour of Röthlisberger channels is critically
dependent upon the form of the ice closure law used. This
paper continued the assumption of Röthlisberger (1972) by
taking the closure rate to be the same as that of cylindrical
channels with gravity falling radially inwards. However this
simplification will not always be suitable (Hooke and others,
1990), and thus criticisms of that are also applicable here
(see Benn and Evans, 2010, for further discussion).
Fortunately, the Röthlisberger model has had many suc-
cesses (not least in providing a conceptual model of the
underlying physical processes) and thus it is hoped that the
improvements presented here will also help in this regard.

A natural next step for my investigation will be the
derivation of a thermodynamic model for the melt rate per
unit length within an open channel conduit. This is because
the melt rate per unit length used here (Eqn (23)), and within
the majority of jökulhlaup studies, has implicitly assumed
temperature differences between the ice and the water to
play a minor role (Evatt, 2006). A consequence of this
temperature inclusion would be the open channel geometry
no longer being cylindrical, due to non-uniform melting at
the channel walls.

Fig. 7. The location of the transition point between closed and open
channel flow, for different flux discharges.

Fig. 6. The location of the transition point between closed and open
channel flow, for different surface elevations.
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