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Abstract

We analyze the mean cost of the partial match queries in random two-dimensional
quadtrees. The method is based on fragmentation theory. The convergence is guaranteed
by a coupling argument of Markov chains, whereas the value of the limit is computed as
the fixed point of an integral equation.
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1. Introduction

Introduced by Finkel and Bentley [5], the quadtree structure is a comparison-based algorithm
designed for retrieving multidimensional data. It is often studied in computer science because of
its numerous applications. The aim of this paper is to study the mean cost of the so-called partial
match queries in random quadtrees. This problem was first analyzed by Flajolet et al. [7].

Let us briefly describe the discrete model. We choose to focus only on the two-dimensional
case. LetP1, . . . , Pn be n independent random variables uniformly distributed over (0, 1)2. We
will assume that the points have different x and y coordinates, an event that has probability 1. We
construct iteratively a finite covering of [0, 1]2 composed of rectangles with disjoint interiors
as follows. The first point P1 divides the original square [0, 1]2 into four closed quadrants
according to the vertical and horizontal positions of P1. By induction, a point Pk divides the
quadrant in which it falls into four quadrants according to its position in this quadrant; see
Figure 1. Hence, the n points P1, . . . , Pn give rise to a covering of [0, 1]2 into 3n + 1 closed
rectangles with disjoint interiors that we denote by Quad(P1, . . . , Pn).

We are interested in the partial match query. As explained by Flajolet and Sedgewick [6,
Example VII.23], given x0 ∈ [0, 1], it determines the set of points Pi, i ∈ {1, . . . , n}, with x
coordinates equal to x0, regardless of the y coordinates (that set is either empty or a singleton).
Denoting the vertical segment [(x, 0), (x, 1)] by Sx , the cost of this partial match query is
measured by the number Nn(x) of rectangles of Quad(P1, . . . , Pn) intersecting Sx minus 1
(N0(x) = 0 by convention). We will study the cost of a fixed query. Our main result is as
follows.
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Partial match queries in two-dimensional quadtrees 179

Figure 1: Two splittings of [0, 1]2 with 8 (left) and 100 (right) points.

Theorem 1. For every x ∈ [0, 1], we have the following convergence:

n−β∗ E[Nn(x)]→K0(x(1− x))β∗/2 as n→∞.
Here

β∗ =
√

17− 3

2
and K0 = �(2β∗ + 2)�(β∗ + 2)

2�3(β∗ + 1)�2(β∗/2+ 1)
.

Flajolet et al. [7] proved the convergence in mean of the properly rescaled cost of partial
match queries when x is random with the uniform law on [0, 1] and independent of P1, . . . , Pn.
See also [3] for a more precise asymptotic behavior. We will give another proof of this result
using fragmentation theory (see Corollary 1 below). As a by-product of our techniques, we
will also prove in Corollary 2 below that, when rescaled by n1−√2, Nn(0) converges in L

2 (its
convergence in mean was obtained in [7]).

The paper is organized as follows. In Section 2 we introduce the model embedded in
continuous time and present the first properties. Section 3 is devoted to the link between
quadtrees and fragmentation theory. Section 4, the most technical section, contains the proof
of the convergence at a fixed point x without knowing the limit. The identification of the limit
is done in Section 5 using a fixed-point argument for the integral equation.

2. Notation and first properties

In order to apply probabilistic techniques, we first introduce a continuous-time version of
the quadtree: the points P1, . . . , Pn are replaced by the arrival points of a Poisson point process
over R+ × [0, 1]2 with intensity dt ⊗ dx dy. All the results obtained in this model can easily
be translated into results for the discrete-time model.

2.1. The continuous-time model

Let� be a Poisson point process on R+×[0, 1]2 with intensity dt⊗ dx dy. Let ((τi, xi, yi),
i ≥ 1) be the atoms of� ranked in increasing order of their τ -component. We define a process
(Q(t))t≥0 with values in a finite covering of [0, 1]2 by closed rectangles with disjoint interiors
as follows. We first introduce the operation SPLIT: for every subset R of [0, 1]2 and every
(x, y) ∈ [0, 1]2,

SPLIT(R, x, y) = {R∩[0, x]×[0, y], R∩[0, x]×[y, 1], R∩[x, 1]×[0, y], R∩[x, 1]×[y, 1]}.
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180 N. CURIEN AND A. JOSEPH

In other words, if R is a rectangle with sides parallel to the x and y axes, then SPLIT(R, x, y)
is the set of four quadrants inR determined by the point (x, y). We may now recursively define
the process (Q(t))t≥0. Let τ0 = 0. For every t ∈ [0, τ1), define Q(t) = {[0, 1]2}, and, for
every t ∈ [τi, τi+1), denoting by R the only element (if any) of Q(τi−1) such that (xi, yi) is in
the interior of the rectangle R, let

Q(t) = SPLIT(R, xi, yi) ∪Q(τi−1) \ {R}.
Observe that, almost surely (a.s.), for every i ∈ Z+, there indeed exists a unique rectangle of
Q(τi) such that (xi+1, yi+1) is in its interior; hence, the process (Q(t))t≥0 is well defined up
to an event of zero probability. In the sequel we will assume that the points of� always fall in
the interior of some rectangle of (Q(t))t≥0. As explained in the introduction, we are interested
in the number of rectangles of Q(t) intersecting the segment Sx ; specifically, we set

Nt(x) = #{R ∈ Q(t) : R ∩ Sx 
= ∅} − 1,

so thatNt(x) = 0 for every 0 ≤ t < τ1. Recalling that τn is the arrival time of thenth point of�,
Q(τn) has the same distribution as the random variable Quad(P1, . . . , Pn) of the introduction.
In particular, for every (n, x) ∈ N× [0, 1], we have Nτn(x) = Nn(x) in distribution.

2.2. Main equations

Let x ∈ [0, 1]. We denote by A the set of words over the alphabet {0, 1}, i.e.

A =
⋃
n≥0

{0, 1}n,

where, by convention, {0, 1}0 = {∅}. Thus, if u ∈ A, u is either ∅ or a finite sequence of 0
and 1. If u and v are elements of A, then uv denotes the concatenation of the two words u
and v. We label the rectangles appearing in (Q(t))t≥0 whose intersection with the segment Sx is
nonempty by elements of A according to the following rule. By convention, R

∅
(x) is the unit

square [0, 1]2. The first point (τ1, x1, y1) of � splits [0, 1]2 into four rectangles, where, a.s.,
only two of them intersect Sx ; we denote the bottom rectangle by R0(x) and the top rectangle
by R1(x). Inductively, for every u ∈ A, a point of � eventually falls into Ru(x), dividing it
into four rectangles. Almost surely, only two of them intersect Sx ; denote the bottom rectangle
by Ru0(x) and the top rectangle by Ru1(x). For u ∈ A, we denote the minimal and maximal
horizontal coordinates of Ru(x) by Gu(x) and Du(x), respectively, and define the place of x
in Ru(x) to be

Xu(x) = x −Gu(x)
Du(x)−Gu(x) .

If u 
= ∅, we denote the parent of u by←−u , which is the word u without its last letter. We write
Mu(x) for the ratio of the (two-dimensional) Lebesgue measure Leb(Ru(x)) of Ru(x) and the
measure of R←−u (x), i.e.

Mu(x) = Leb(Ru(x))

Leb(R←−u (x))
.

We also set, for all x ∈ [0, 1], M∅(x) = 1. For u ∈ {0, 1} and t ≥ 0, we introduce the
‘subquadtree’Qu,x(t) = {R ∈ Q(t + τ1) : R ⊂ Ru(x)}. Then, for every t ≥ 0, we have

Nt(x) = 1{t≥τ1} + 1{t≥τ1}
∑
u∈{0,1}

(#{R ∈ Qu,x(t − τ1) : R ∩ Sx 
= ∅} − 1). (1)
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If R is a rectangle with sides parallel to the x and y axes, we denote by �R : R2 → R
2

the only affine transformation that maps the bottom-left vertex of R to (0, 0), the bottom-
right vertex of R to (1, 0), and the upper-left vertex of R to (0, 1). It should be plain from
properties of Poisson point measures that, conditionally on (Mu(x),Xu(x), Ru(x)), the process
(�Ru(x)(Qu,x(t)))t≥0 has the same distribution as the process (Q̃(Mu(x)t))t≥0, where Q̃ is
an independent copy of Q. In particular, conditionally on (Mu(x),Xu(x)), the number of
rectangles inQu,x that intersect Sx (minus 1), viewed as a process of t , has the same distribution
as the process (ÑMu(x)t (Xu(x)))t≥0, where Ñ is defined from Q̃ in the same way asN is defined
from Q. Since M0(x) and M1(x) have the same distribution, (1) yields

E[Nt(x)] = P(t ≥ τ1)+ 2E[ÑM0(x)(t−τ1)(X0(x))], (2)

with the convention that Ñt (x) = 0 whenever t < 0. More generally, if we write zk ∈ A for
zk = 0 · · · 0 repeated k times, then, for every positive integer k,

E[Nt(x)] = gk(t)+ 2kE[ÑMz1 (x)···Mzk (x)t−Fk (Xzk (x))], (3)

where gk is a function such that 0 ≤ gk ≤ 2k − 1 and Fk is a nonnegative random variable
defined by

Fk =
k∑
i=1

τ̃i

k∏
j=i

Mzj (x),

with (τ̃i)i≥1 a sequence of independent exponential variables with parameter 1.
We now compute the joint distribution of (M0(x),X0(x)), which will be of great use

throughout this work. If f is a nonnegative measurable function, easy calculations yield

E[f (M0(x),X0(x))]

=
∫ 1

0
du

∫ 1

0
dv

(
1{x<u}f

(
uv,

x

u

)
+ 1{x>u}f

(
(1− u)v, x − u

1− u
))

=
∫ 1

x

dy

y

∫ x/y

0
dmf (m, y)+

∫ x

0

dy

1− y
∫ (1−x)/(1−y)

0
dmf (m, y) (4)

=
∫ x

0
dm

∫ 1

x

dy

y
f (m, y)+

∫ 1

x

dm
∫ x/m

x

dy

y
f (m, y)

+
∫ 1−x

0
dm

∫ x

0

dy

1− y f (m, y)+
∫ 1

1−x
dm

∫ x

1−(1−x)/m
dy

1− y f (m, y). (5)

2.3. Depoissonization

The following lemma contains a large deviations argument that will enable us to shift results
from the continuous-time model to the discrete-time model.

Lemma 1. For every ε > 0, we have

E
[

sup
x∈[0,1]

|Nτn(x)−Nn(x)|21{τn /∈[n(1−ε),n(1+ε)]}
]
→ 0 as n→∞.
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Proof. Note that, for every x ∈ [0, 1], t �→ Nt(x) is nondecreasing and thatNt(x) is at most
the number of points fallen so far: Nt(x) ≤ max{i ∈ Z+ : τi ≤ t}. In particular, Nτn(x) ≤ n;
thus, we have

sup
x∈[0,1]

|Nτn(x)−Nn(x)|21{τn>n(1+ε)} ≤ n21{τn>n(1+ε)}.

A large deviations argument ensures that n2 P(τn > n(1 + ε)) tends to 0 as n → ∞. On the
other hand, applying the Cauchy–Schwarz inequality, we obtain

E
[

sup
x∈[0,1]

|Nτn(x)−Nn(x)|21{τn<n(1−ε)}
]

≤
√

E[(max{i ∈ Z+ : τi ≤ n})4]
√

P(τn < n(1− ε)).

As E[(max{i ∈ Z+ : τi ≤ n})4] = O(n4), large deviations ensure that the quantity on the
right-hand side tends to 0 as n→∞. This completes the proof.

3. Particular cases and fragmentation theory

We give below the definition for a particular case of fragmentation process. For more details,
we refer the reader to [1, pp. 6–65]. Let ν be a probability measure on {(s1, s2) : s1 ≥ s2 >
0 and s1+s2 ≤ 1}. A self-similar fragmentation (Ft )t≥0 with dislocation measure ν and index of
self-similarity 1 is a Markov process with values in the set S↓ = {(s1, s2, . . . ) : s1 ≥ s2 ≥ · · · ≥
0 and

∑
i si ≤ 1} describing the evolution of the masses of particles that undergo fragmentation.

The process is informally characterized as follows: if at time t we have F(t) = (s1(t), s2(t), . . . )
then, for every i ≥ 1, the ith ‘particle’ of mass si(t) lives an exponential time with parameter
si(t) before splitting into two particles of masses r1si(t) and r2si(t), where (r1, r2) has been
sampled from ν independently of the past and of the other particles. In other words, each particle
undergoes a self-similar fragmentation with time rescaled by its mass. In the next section we
establish a link between fragmentation theory and the process Nt(U), where U is a random
variable uniformly distributed over [0, 1] and independent of (Q(t))t≥0. This connection will
provide a new proof of a result of [3] and [7]. See also [4] for another recent application of
fragmentation theory to a combinatorial problem where the exponent (

√
17− 3)/2 appears.

3.1. The uniform case

We consider here the case where the point x is chosen at random uniformly over [0, 1] and
independently of (Q(t))t≥0.

Proposition 1. Let U be a random variable uniformly distributed over [0, 1] and independent
of the quadtree (Q(t))t≥0. Let u ∈ A, and denote by u0 = ∅, u1, . . . , uk = u its ancestors.
Then Xu(U) is uniform over [0, 1] and independent of (Mu1(U), . . . ,Muk (U)), which is a
sequence of independent random variables all having density 2(1−m)1{m∈[0,1]}.

Proof. We prove Proposition 1 by induction on k. Let u ∈ A. Denote by u0 = ∅, u1, . . . ,

uk = u its ancestors. Integrating (4) for x ∈ [0, 1], we deduce that, for every v ∈ {0, 1},Xv(U)
and Mv(U) are independent and distributed according to

1{u∈[0,1]} du⊗ 1{m∈[0,1]}2(1−m) dm. (6)

Recalling thatQu1,U (t)={R ∈ Q(t + τ1) :R ⊂Ru1(U)}, conditionally on (Xu1(U),Mu1(U)),
the process �Ru1 (U)

(Qu1,U ) has the same distribution as (Q̃(Mu1(U)t))t≥0, where Q̃ is an
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independent copy ofQ. SinceXu1(U) is uniform over [0, 1], we deduce by induction on the sub-
quadtreeQu1,U thatXu(U) is uniform over [0, 1] and independent of (Mu2(U), . . . ,Muk (U)),
which is a sequence of independent random variables all having density 2(1−m)1{m∈[0,1]}.
Furthermore, it is easy to see that

E[(Xui (U),Mui (U))2≤i≤k | (Xu1(U),Mu1(U))] = E[(Xui (U),Mui (U))2≤i≤k | Xu1(U)].
Hence, by (6), Xu(U) is also independent of Mu1(U).

Letting m̂(t) = E[Nt(U)] (recall that, when t < 0, Nt(x) = 0 for all x ∈ [0, 1]), (2)
becomes

m̂(t) = P(t ≥ τ1)+ 2E[m̂(M(t − τ1))], (7)

where M is independent of τ1 and has density 2(1−m)1{m∈[0,1]}.
Proposition 2. Let U be uniform over [0, 1] and independent of (Q(t))t≥0. We have the
following convergence:

lim
t→∞ t

−β∗ E[Nt(U)] = �(2(β∗ + 1))

2�3(β∗ + 1)
, where β∗ =

√
17− 3

2
.

Proof. We consider an auxiliary fragmentation process (Ft )t≥0 with index of self-similarity
1 and dislocation probability measure ν given by∫

ν(ds1, ds2)f (s1, s2) = E[f (M1(U) ∨M0(U),M1(U) ∧M0(U))].

In other words, the dislocation measure is given by the law of the decreasing ordering of
{M0(U),M1(U)}. More precisely (Ft )t≥0 takes its values in S↓ and satisfies the following
equation in distribution which completely characterizes its law:

(Ft )
d= ((1{t<τ })+̇(1{t≥τ }M0(U)F

(0)
M0(U)(t−τ))t≥0 +̇ (1{t≥τ }M1(U)F

(1)
M1(U)(t−τ))t≥0)

↓.

Here (F(0)t )t≥0 and (F
(1)
t )t≥0 are two independent copies of (Ft )t≥0 also independent of

(M0(U),M1(U), τ ), and τ an independent exponential variable with parameter 1. The symbol
‘+̇’ means concatenation of sequences and (·)↓ is the decreasing reordering (and erasing of
0s). Then, it is straightforward to see that the expectation of the number #Ft of fragments of Ft
minus 1 satisfies the same equation as E[Nt(U)], namely letting m(t) = E[#Ft − 1] for t ≥ 0
and m(t) = 0 for t < 0, we have

m(t) = P(t ≥ τ1)+ 2E[m(M(t − τ1))], (8)

whereM is independent of τ1 and has density 2(1−m)1{m∈[0,1]}. By (7) and (8), the functions
m̂ and m satisfy the same integral equation:

f (t) = 1− e−t + 2
∫ 1

0
dm2(1−m)

∫ t

0
dse−sf (m(t − s)).

Differentiating with respect to t , we see that both m̂ and m are solutions of the Cauchy problem
for the integro-differential equation

∂tf (t) = 1− f (t)+
∫ 1

0
dm2(1−m)f (mt), f (0) = 0.
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The uniqueness of the solution of this kind of integro-differential equation is known; see,
e.g. [9]. We deduce that, for every t ≥ 0, m(t) = m̂(t). We now focus on m(t). Following [2,
Section 3], we let, for every β > 0, ψ(β) = 1− ∫

ν( ds1, ds2)(s
β
1 + sβ2 ). An easy calculation

yields

ψ(β) = β2 + 3β − 2

(β + 1)(β + 2)
.

In particular, the Malthusian exponent associated to ν, which is characterized by ψ(β) = 0
(see [1, Section 1.2.2]) is

β∗ =
√

17− 3

2
.

Applying [2, Theorem 1], we obtain

lim
t→∞ t

−β∗ E[#Ft ] = �(1− β∗)
β∗

4

2β∗ + 3

×
∞∏
k=1

(
1− β

∗

k

)(
1− β∗

k +√17

)(
1+ β∗

k + 1

)(
1+ β∗

k + 2

)
.

Finally, we use the Weierstrass identity for the gamma function: for every complex number
z ∈ C \ Z−,

�(z+ 1) = e−γ z
∞∏
k=1

(
1+ z

k

)−1

ez/k,

where γ is the Euler–Mascheroni constant. We conclude that

lim
t→∞ t

−β∗E[Nt(U)] = 4

β∗(2β∗ + 3)

�(
√

17+ 1)

�(
√

17− β∗ + 1)

1

�2(β∗ + 2)

1

1+ β∗/2
= �(2(β∗ + 1))

2�3(β∗ + 1)
,

which completes the proof.

Remark 1. We can derive the following equality in distribution from (1):

Nt(U)
d= 1{τ1≤t} +N(0)

M0(U)(t−τ1)
(X0(U))+N(1)

M1(U)(t−τ1)
(X1(U)).

Here (N(0)
t )t≥0 and (N(1)

t )t≥0 are independent copies of the process (Nt )t≥0. We have already
noted that X0(U) and X1(U) are also uniform and independent of (N(0)

t )t≥0, of (N(1)
t )t≥0,

and of (M0(U),M1(U)). If X0(U) and X1(U) were independent then Nt(U) would satisfy
the same distributional equation as (#Ft − 1)t≥0. However, this is not the case since we have
X0(U) = X1(U). This explains why we had to work with expectations.

Corollary 1. ([3], [7].) We have

lim
n→∞ n

−β∗ E[Nn(U)] = �(2(β∗ + 1))

2�3(β∗ + 1)
.

Proof. This is a straightforward application of Lemma 1 and Proposition 2.
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Remark 2. Observe that Chern and Hwang [3] obtained a more precise asymptotic behavior
of E[Nn(U)]. They proved that

E[Nn(U)] = �(2(β∗ + 1))

2�3(β∗ + 1)
nβ
∗ +O(1).

3.2. The x = 0 case

As a further example of the connection with fragmentation theory, we derive asymptotics
properties for Nt(0). In this case, the sequence of the areas of the rectangles crossed by S0
is a fragmentation process, enabling us to state a convergence of Nt(0), once rescaled, in L

2.
A convergence in mean has already been obtained in [7, Theorem 6] and [8].

Theorem 2. The random variable

Mt =
∑
u∈A

Leb(Ru(0))
√

2−11{Ru(0)∈Q(t)}, t ≥ 0,

is a uniformly integrable martingale which converges a.s. to M∞ as t →∞. The distribution
of M∞ is characterized by

E[M∞] = 1 and M∞
d= M0(0)

√
2−1M(0)∞ +M1(0)

√
2−1M(1)∞ , (9)

where M
(0)∞ and M

(1)∞ are two independent copies of M∞ also independent of (M0(0),M1(0)).
Furthermore, we have the following convergence in L

2:

t1−
√

2Nt(0)→ �(2
√

2)√
2�3(
√

2)
M∞ as t →∞.

Proof. It is easy to check from properties of Poisson measures that the rearrangement in
decreasing order of the masses of the rectangles living at time t and intersecting S0,

(Leb(Ru(0))1{Ru(0)∈Q(t)})
↓
t≥0,

is a self-similar fragmentation with index 1 and dislocation probability measure given by the
decreasing ordering of {M0(0),M1(0)}. As in the proof of Proposition 2, we introduce, for
every β > 0, �(β) = 1− E[M0(0)β +M1(0)β ], which is easily computed:

�(β) = (β + 1)2 − 2

(β + 1)2
.

Thus, the Malthusian exponent p∗ of this fragmentation satisfying �(p∗) = 0 is

p∗ = √2− 1.

The first two points of the theorem follow from classical results of fragmentation theory; see
[1, Theorem 1.1]. We refer the reader to [10] for the characterization of the law of M∞ via the
distributional equation (9) and to [11] for some of its properties. The last point comes from [2,
Corollary 6] and the Weierstrass identity for the gamma function used in a similar manner as
in the proof of Proposition 2.
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Corollary 2. We have the following convergence in L
2:

n1−√2Nτn(0)→
�(2
√

2)√
2�3(
√

2)
M∞ as n→∞.

Proof. This proposition is easily derived from Lemma 1 and Theorem 2.

Remark 3. Observe that Corollary 2 implies the following convergence in distribution:

n1−√2Nn(0)→ �(2
√

2)√
2�3(
√

2)
M∞ as n→∞.

Remark 4. It is worthwhile to note that the behavior of the cost of the partial match query in
the x = 0 case is drastically different from its behavior in the case when x is uniform or x is
fixed in (0, 1) (see Theorem 1 and Proposition 2).

3.3. An a priori uniform bound

This subsection is devoted to the proof of an a priori uniform bound on s−β∗E[Ns(x)] over
(x, s) ∈ (0, 1)× (0,∞) that will be useful in many places.

Lemma 2. There exists a C <∞ such that

sup
x∈(0,1)

sup
s>0

E[s−β∗Ns(x)] ≤ C. (10)

Proof. As a first step, we start by proving that there exists a C1 < ∞ such that, for every
x ∈ (0, 1),

sup
s>0

E[s−β∗Ns(x)] ≤ C1

x ∧ (1− x) . (11)

Combining (2) with the densities computed in (4), we deduce that, for every x ∈ (0, 1),

t−β∗E[Nt(x)] = t−β∗ P(t ≥ τ1)+ 2

(∫ 1

x

dy

y

∫ x/y

0
dmE[t−β∗Nm(t−τ1)(y)]

+
∫ x

0

dy

1− y
∫ (1−x)/(1−y)

0
dmE[t−β∗Nm(t−τ1)(y)]

)
.

(12)

By the monotonicity of t �→ Nt(x) we have E[t−β∗Nm(t−τ1)(y)] ≤ E[t−β∗Nt(y)]. Fur-
thermore, recalling that β∗ < 1, there exists a constant C′ such that, for every t > 0,
t−β∗ P(t ≥ τ1) ≤ C′. Hence,

t−β∗E[Nt(x)] ≤ C′ + 2

(∫ 1

x

x dy

y2 E[t−β∗Nt(y)] +
∫ x

0

(1− x) dy

(1− y)2 E[t−β∗Nt(y)]
)

≤ C′ + 2

x ∧ (1− x)
∫ 1

0
dyE[t−β∗Nt(y)]

= C′ + 2

x ∧ (1− x)E[t−β∗Nt(U)].

It has been shown in Proposition 2 that E[t−β∗Nt(U)] has a finite limit as t →∞, and, for every
t > 0, E[Nt(U)] ≤ t . Thus, the quantity E[t−β∗Nt(U)] is bounded over (0,∞). Inequality
(11) follows from these considerations.
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Introducing S(x) = sups>0 s
−β∗E[Ns(x)] for every x ∈ [0, 1], we have just shown that

S(x) ≤ C1(x ∧ (1− x))−1. Using (12), we have, for every x ∈ ( 1
2 , 1),

S(x) = sup
t>0

{
t−β∗ P(t ≥ τ1)+ 2

(∫ 1

x

dy

y

∫ x/y

0
dmE[t−β∗Nm(t−τ1)(y)]

+
∫ x

0

dy

1− y
∫ (1−x)/(1−y)

0
dmE[t−β∗Nm(t−τ1)(y)]

)}

≤ C′ + 2 sup
t>0

{∫ 1

x

dy

y

∫ 1

0
dmE[t−β∗Nt(y)] +

∫ 1/2

0

dy

1− y
∫ 1

0
dmE[t−β∗Nt(y)]

}

+ 2 sup
t>0

∫ x

1/2

dy

1− y
∫ (1−x)/(1−y)

0
dmmβ

∗
E[(mt)−β∗Nmt(y)]

≤ C′ + 8 sup
t>0

∫ 1

0
dyE[t−β∗Nt(y)] + 2

∫ x

1/2

dy

1− y
∫ (1−x)/(1−y)

0
dmmβ

∗
S(y)

≤ C2 + 2

β∗ + 1
(1− x)β∗+1

∫ x

1/2
dy

1

(1− y)β∗+2 S(y). (13)

Let us show that this implies that, for everyx ∈ (0, 1), S(x) ≤ 100C2. Arguing by contradiction,
suppose that there exists an a ∈ ( 1

2 , 1) such that S(a) > 100C2. Let S = supx∈[1/2,a] S(x).
By (11), S is finite; there exists a b ∈ [ 12 , a] such that S(b) ≥ 0.9S. In particular, S(b) ≥
0.9 supx∈[1/2,b] S(x) and S(b) > 90C2. Applying (13) at b, we obtain

S(b) ≤ 90−1S(b)+ 2

β∗ + 1
(1− b)β∗+1

∫ b

1/2
dy

1

(1− y)β∗+2 0.9−1S(b)

≤ 90−1S(b)+ 2 · 0.9−1

(β∗ + 1)2
S(b),

leading to a contradiction since (β∗ + 1)2 > 2 · 0.9−1/(1− 90−1). Finally, S(x) ≤ 100C2 for
every x ∈ (0, 1).

4. The convergence at fixed x ∈ (0, 1)

We prove in this section that, when x ∈ [0, 1] is fixed, t−β∗E[Nt(x)] admits a finite limit
as t →∞. The results of the preceding section do not directly apply since the place X0(x) of
x in the rectangle R0(x) highly depends on x. Recall the notation zk for the word composed
of k 0s, 0 · · · 0 ∈ A. The guiding idea is that the splittings tend to make Xzk (x) uniform and
independent of Mzk (x).

4.1. A key Markov chain

Fix x ∈ (0, 1). To simplify notation, for every k ≥ 1, we write Xk for Xzk (x) and Mk

for Mzk (x). We will focus on the process (Xk,Mk)k≥0, which is obviously a homogeneous
Markov chain starting from (x, 1)whose transition probability is given by (4) or (5). Let k ≥ 1.
We denote by Fk the filtration generated by (Xi,Mi)1≤i≤k . It is easy to see that the transition
probability depends only on Xk , that is,

E[(Xk+i ,Mk+i )i≥1 | Fk] = E[(Xk+i ,Mk+i )i≥1 | Xk].

https://doi.org/10.1239/aap/1300198518 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1300198518


188 N. CURIEN AND A. JOSEPH

Proposition 3. Fix x ∈ (0, 1). There exists a coupling of the chain (Xk,Mk)k≥0 with a random
time T ∈ Z+ such that, for any k ≥ 0, conditionally on {T ≤ k}, the random variable Xk is
uniformly distributed over [0, 1], independent of (Mi)1≤i≤k and of T . Furthermore, we have

E[1.15T ] < +∞.
Proof. For any k ≥ 1, we consider the event

Ek = {Mk < Xk−1 ∧ (1−Xk−1)}.
Using the explicit densities (4) and (5), we see that, conditionally on Fk−1 and on the event Ek
of probability −(Xk−1 ∧ (1−Xk−1)) ln(Xk−1(1−Xk−1)), the conditional distribution of Xk
is

1

− ln(Xk−1(1−Xk−1))

(
1

1− y 1{y∈(0,Xk−1)} +
1

y
1{y∈(Xk−1,1)}

)
dy.

In particular, conditionally on Ek and Fk−1, the variable Xk is independent of Mk and has
a density bounded from below by −1/ ln(Xk−1(1 − Xk−1)). Thus, we can construct simul-
taneously with (Xk,Mk)k≥0 a sequence of random variables (Bk)k≥0 ∈ {0, 1}Z+ as follows.
Suppose that we have constructed (Xi,Mi, Bi)0≤i≤k−1. Then, independently of Fk−1, toss a
Bernoulli variable of parameter−(Xk−1∧(1−Xk−1)) ln(Xk−1(1−Xk−1)). If 0 comes out, we
consider that we are on the eventEc

k, then putBk = 0 and sample (Xk,Mk)with the conditional
distribution on Ec

k and Fk−1. If 1 comes out, we consider that we are on the event Ek and we
proceed to the following.

1. First sample Mk from its distribution conditionally on Ek and Fk−1

2. Then, independently ofMk , toss a Bernoulli variable Bk of parameter −1/ ln(Xk−1(1−
Xk−1)). IfBk = 1, sampleXk uniformly from [0, 1] and independently of (M1, . . . ,Mk).
Otherwise, sample Xk with density

1

− ln(Xk−1(1−Xk−1))− 1

((
1

1− y − 1

)
1{y∈(0,Xk−1)} +

(
1

y
− 1

)
1{y∈(Xk−1,1)}

)
dy,

independently of (M1, . . . ,Mk).

The device provides us with a Markov chain (Xk,Mk, Bk)k≥0 such that the first two coordinates
have the law of the process introduced before Proposition 3. We then let

T = inf{k ≥ 0, Bk = 1}.
By the definition of T , the random variable XT is sampled uniformly over [0, 1] and in-
dependently of (M1, . . . ,MT ). We deduce that the process (XT+i ,MT+i )i≥1 has the same
distribution as the process (Xzk (U),Mzk (U))k≥1 defined in Proposition 1; hence, an easy
adaptation of Proposition 1 shows that, for every positive integer i,XT+i is uniformly distributed
over [0, 1] independent of (M1, . . . ,MT+i ) and of T . This proves the first part of Proposition 3.

For the second part, we need to evaluate the tail of the random time T . We introduce the
following variation. Let (X̂k)k≥0 be a Markov chain with space state (0, 1) ∪ {∂}, where ∂ is
a cemetery point. Informally, this chain is the chain (Xk) until we reach the time T , then it is
killed and sent to the cemetery point. Thanks to the calculation presented at the beginning of
the proof, it should be clear that, givenXk−1 and conditionally on {T ≥ k− 1}, the probability
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of the event {T = k} is Xk−1 ∧ (1−Xk−1). Thus, the transition probability for the chain (X̂k)
is defined as follows: for every x ∈ (0, 1),

p(x, dy) = x ∧ (1− x)δ∂ +
(

1− x
(1− y)2 1{y∈(0,x)} + x

y2 1{y∈(x,1)} − x ∧ (1− x)
)

dy

and p(∂, dy) = δ∂ . By the construction of this chain, the stopping time T̂ = inf{k ≥ 1 : X̂k =
∂} has the same distribution as T . In order to estimate T̂ , we define the potential function
V : (0, 1) ∪ {∂} → [1,∞] as

V (x) = 1{x=∂} + 10√
x

1{x∈(0,1/2)} + 10√
1− x 1{x∈[1/2,1)}.

Then we can show that, for every x ∈ (0, 1) ∪ {∂},
∫
p(x, dy)V (y) ≤ 0.85V (x)+ 1{∂}(x),

so that [12, Theorem 15.2.5] may be applied: there exists a ε > 0 such that, for all x ∈ (0, 1),

E

[T̂−1∑
k=0

V (X̂k)1.15k
]
≤ ε−11.15−1V (x),

from which we deduce that
E[1.15T̂ ] <∞

(note that the last quantity is not uniformly bounded for x ∈ (0, 1)). This completes the proof.

In the remaining part of this section, x is fixed in (0, 1). Returning to (3) and writing
M̄k = M1M2 · · ·Mk for the Lebesgue measure of Rzk (x), we have

t−β∗E[Nt(x)] = t−β∗(gk(t)+ 2kE[ÑM̄kt−Fk (Xk)1{T>k}] + 2kE[ÑM̄kt−Fk (Xk)1{T≤k}]).
(14)

We will treat the last two terms of (14) separately.

4.2. Study of t−β∗
2kE[ÑM̄kt−Fk

(Xk)1{T >k}]
We will see that t−β∗2kE[ÑM̄kt−Fk (Xk)1{T>k}] is arbitrarily small uniformly in t provided

that the integer k is chosen large enough. Observe that

t−β∗2kE[ÑM̄kt−Fk (Xk)1{T>k}]
≤ t−β∗2kE[ÑM̄kt

(Xk)1{T>k}]
= 2kE[M̄β∗

k (M̄kt)
−β∗ÑM̄kt

(Xk)1{T>k}]
= 2kE[M̄β∗

k 1{T>k}E[(M̄kt)
−β∗ÑM̄kt

(Xk) | σ(M̄k,Xk, T )]].
Letting φ be the map (s, u) �→ E[s−β∗Ns(u)], we have

t−β∗2kE[ÑM̄kt−Fk (Xk)1{T>k}] ≤ 2kE[M̄β∗
k 1{T>k}φ(M̄kt, Xk)].
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Thanks to (10), φ ≤ C, so that the quantity in the last display is at most C2kE[M̄β∗
k 1{T>k}].

Hölder’s inequality yields, for every p > 1,

C2kE[M̄β∗
k 1{T>k}] ≤ C2kE[M̄β∗p

k ]1/pE[1{T>k}]1−1/p.

The last term is easily treated: by Markov’s inequality we have E[1{T>k}] ≤ 1.15−k E[1.15T ].
Concerning E[M̄β∗p

k ] we have

E[M̄β∗p
k ] ≤ E[Mz2(x)

β∗p · · ·Mzk (x)
β∗p]

=
∫ 1

0
f (x)(y) dyE[Mz1(y)

β∗p · · ·Mzk−1(y)
β∗p],

where f (x) is the density of X1 under P. It is easy to see from (4) that f (x) is bounded from
above by (x ∧ (1− x))−1. Hence,

E[M̄β∗p
k ] ≤

1

x ∧ (1− x)
∫ 1

0
dyE[M̄k−1(y)

β∗p].

Recall from Proposition 1 that when x = U is uniform over [0, 1] and independent of (Q(t))t≥0,
thenMz1(U), . . . ,Mzk (U) are independent and distributed according to 1{m∈[0,1]}2(1−m) dm.
In particular,

E[M0(U)
β∗p] = 2

(β∗p + 1)(β∗p + 2)
,

and, thus, ∫ 1

0
dyE[M̄k−1(y)

β∗p] =
(

2

(β∗p + 1)(β∗p + 2)

)k−1

.

Gathering all these estimates, we obtain

t−β∗2kE[NM̄kt−Fk (Xk)1{T>k}]

≤ C2k
(

1

x ∧ (1− x)
)1/p( 2

(β∗p + 1)(β∗p + 2)

)(k−1)/p

E[1.15T ]1−1/p1.15−k(1−1/p)

= Kp,x
(

2

{
2

(β∗p + 1)(β∗p + 2)

}1/p

1.151/p−1
)k
,

where Kp,x is a constant that depends only on p and x but not on k. Now, we can easily prove
that, for p > 1 sufficiently close to 1, the term in the curly brackets in the last display becomes
strictly less than 1. Consequently, letting ε > 0 be fixed, there exists a sufficiently large integer
k such that, for every t > 0,

t−β∗2kE[NM̄kt−Fk (Xk)1{T>k}] ≤ ε. (15)

4.3. Conclusion

Observe that we have, for every t > 0,

t−β∗2kE[ÑM̄kt−Fk (Xk)1{T≤k}]
= 2kE[1{T≤k}E[t−β∗ÑM̄kt−Fk (Xk) | σ(M̄k, Fk, T )]]
= 2kE[1{T≤k}(M̄k − t−1Fk)

β∗
+ E[(M̄kt − Fk)−β

∗
+ ÑM̄kt−Fk (Xk) | σ(M̄k, Fk, T )]],

where y+ denotes y ∨ 0. By Proposition 3, on the event {T ≤ k}, the random variable Xk
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is uniformly distributed over [0, 1] and independent of M1, . . . ,Mk and, thus, of M̄k . It is
also independent of Fk and T . Hence, letting θ be the map s �→ E[s−β∗+ Ns(U)], where U is a
random variable uniformly distributed on (0, 1) independent of N , we have

t−β∗2kE[ÑM̄kt−Fk (Xk)1{T≤k}] = 2kE[1{T≤k}(M̄k − t−1Fk)
β∗
+ θ(M̄kt − Fk)].

Applying Proposition 2, θ(M̄kt − Fk) a.s. tends to a finite limit as t →∞. Hence, by dominated
convergence, t−β∗2kE[NM̄kt−Fk (Xk)1{T≤k}] has a finite limit as t →∞. We deduce, from this
fact, (14), and (15), that

lim sup
t→∞

t−β∗E[Nt(x)] − lim inf
t→∞ t−β∗E[Nt(x)] ≤ ε.

Since this inequality holds for every ε > 0, t−β∗ E[Nt(x)] has a finite limit as t →∞, which
we denote by

n∞(x) = lim
t→∞ t

−β∗ E[Nt(x)].

5. Identifying the limit

In this section we show that x �→ n∞(x) is proportional to x �→ (x(1− x))β∗/2 using a fixed-
point argument for the integral equation (see also [4, Section 4.1] for a similar application). The
normalizing constant will come from the L

1-norm of x �→ (x(1− x))β∗/2 and the constant of
Proposition 2.

Combining (2) with the densities computed in (4), we deduce that

t−β∗E[Nt(x)] = t−β∗ P(t ≥ τ1)

+ 2

(∫ 1

x

dy

y

∫ x/y

0
dmmβ

∗
E[(mt)−β∗Nm(t−τ1)(y)]

+
∫ x

0

dy

1− y
∫ (1−x)/(1−y)

0
dmmβ

∗
E[(mt)−β∗Nm(t−τ1)(y)]

)
.

Thanks to Lemma 2, we obtain, by dominated convergence,

n∞(x) = 2

β∗ + 1

(
xβ
∗+1

∫ 1

x

dy
1

yβ
∗+2 n∞(y)+ (1− x)β

∗+1
∫ x

0
dy

1

(1− y)β∗+2 n∞(y)
)
.

In other words, if we define

gx(y) = 2

β∗ + 1

(
xβ
∗+1 1

yβ
∗+2 1{x<y<1} + (1− x)β∗+1 1

(1− y)β∗+2 1{0<y<x}
)
,

we have

n∞(x) =
∫ 1

0
dygx(y)n∞(y).

Let G be the operator that maps a function f ∈ L
1[0, 1] to the function

G(f )(x) =
∫ 1

0
dygx(y)f (y).
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In particular, n∞ is a fixed point of G. It is easy to check that x ∈ (0, 1) �→ gx(·) ∈ L
1[0, 1]

is continuous for the L
1-norm. Furthermore, Lemma 2 ensures that |n∞(x)| ≤ C for every

x ∈ (0, 1). As a consequence, x �→ n∞(x) is continuous over (0, 1). An easy computation
shows that, for every y ∈ (0, 1),

∫ 1
0 dxgx(y) = 1. Let p be another fixed point of G having

the same integral as n∞. Then
∫ 1

0
dx|n∞(x)− p(x)| =

∫ 1

0
dx

∣∣∣∣
∫ 1

0
dygx(y)(n∞ − p)(y)

∣∣∣∣
≤

∫ 1

0
dx

∫ 1

0
dygx(y)|n∞(y)− p(y)|

=
∫ 1

0
dy|n∞(y)− p(y)|,

which shows that the inequality is in fact an equality. Hence, n∞−p has an almost everywhere
(a.e.) constant sign. As we know that the integral of n∞ − p is 0, we deduce that n∞ = p a.e.
Straightforward calculations prove that p0 : x �→ (x(1− x))β∗/2 is also a fixed point of G in
the L

1-norm, so that

n∞(x) = ‖n∞‖1‖p0‖−1
1 (x(1− x))β∗/2 a.e.

Since n∞ and p0 are continuous, we can remove the a.e. statement (observe that n∞(0) =
n∞(1) = 0 by Theorem 2). Plainly,

‖p0‖1 = �2(β∗/2+ 1)

�(β∗ + 2)
.

On the other hand, (10) and the dominated convergence theorem ensure that

‖n∞‖1 = lim
t→∞ t

−β∗ E[Nt(U)],
which was computed in Proposition 2:

‖n∞‖1 = �(2(β∗ + 1))

2�3(β∗ + 1)
.

Proof of Theorem 1. To sum up, we have, for every x ∈ [0, 1],

t−β∗E[Nt(x)]→ �(2β∗ + 2)�(β∗ + 2)

2�3(β∗ + 1)�2(β∗/2+ 1)
(x(1− x))β∗/2 as t →∞.

Applying Lemma 1, Theorem 1 is proved.

6. Extensions and comments

6.1. Various convergences

In this paper we proved only a convergence in mean of t−β∗Nt(x). We may wonder whether
this quantity also converges in distribution, in probability, or even almost surely. A more
interesting question is the following: does the process ((t−β∗Nt(x))x∈[0,1], t > 0) converge in
distribution in the Skorokhod sense to a random function (C(x))x∈[0,1] as t → ∞? Observe
that if it does then there exists a random point U uniformly distributed over (0, 1) such that
C(U) = 0, where U corresponds to the point x1 of the first atom of � (Nt(x1) is indeed of
order t

√
2−1 by Theorem 2).
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Conjecture 1. We have the functional limit law (t−β∗Nt(x))x∈[0,1] → (C(x))x∈[0,1] as t →∞
in (D([0, 1]), ‖ · ‖∞), where C satisfies the distributional fixed-point equation

(C(x))x∈[0,1]
d=

(
1{x<U0}

{
(U0U1)

β∗C(00)
(
x

U0

)
+ (U0(1− U1))

β∗C(01)
(
x

U0

)}

+ 1{x>U0}
{
((1− U0)U1)

β∗C(10)
(
x − U0

1− U0

)

+ ((1− U0)(1− U1))
β∗C(11)

(
x − U0

1− U0

)})
x∈[0,1]

,

where U0, U1, C(00), C(01), C(10), and C(11) are independent, U0 and U1 are uniformly
distributed on [0, 1], and C(00), C(01), C(10), and C(11) all have the same distribution as C.

6.2. Multidimensional case

The strategy adopted in Subsection 3.1 may be generalized to higher dimensions. As for
the convergence in mean of the number of hyper-rectangles crossed by a fixed affine subspace
having a direction generated by some vectors of the canonical basis, our approach may also be
followed.

6.3. Quadtree as a model of random geometry

On top of its numerous applications in theoretical computer science, the model of a random
quadtree may be considered as a model of random geometry. More precisely, we can view,
for t ≥ 0, the set of rectangles Q(t) as a random graph, assigning length 1 to each edge of
the rectangles. We denote this graph by Q̃(t). A natural question would be to understand the
metric behavior of Q̃(t) as t → ∞. The study of the graph distance Lt in Q̃(t) between the
upper-left and upper-right corners would be a first step in understanding the global geometry
of Q̃t . Observe that Theorem 2 already shows that Lt is less than the order t

√
2−1.
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