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Abstract

Much research shows that the ratings that judges assign to the same wine are uncertain.
And while the ratings may be independent, research also shows that they are not identi-
cally distributed. Thus, an acute difficulty in ratings-related research and in calculating
consensus among judges is that each rating is one observation drawn from a latent distri-
bution that is wine- and judge-specific. What can be deduced about the shape of a latent
distribution from one observation? A simple maximum entropy estimator is proposed to
describe the distribution of a rating observed. The estimator can express the implications
of zero, one, a few blind replicates, and many observations. Several tests of the estimator
show that results are consistent with the results of experiments with blind replicates and
that results are more accurate than results based on observed ratings alone.
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I. Introduction

Diverse research relies on the ratings that critics, judges, and consumers assign to
wines. Recent examples include Gergaud, Ginsburg, and Moreno-Ternero (2021)
method of aggregating judges’ ratings; Holle et al. (2020) finding that customers’ rat-
ings of wines online can vary due to screen position alone; Corsi and Ashenfelter
(2019) analysis of the correlation between weather data and ratings; Capehart
(2019) analysis of whether or not training improves the accuracy of ratings; Lam
et al. (2019) analysis of how ratings affect written reviews; and Malfeito-Ferreira,
Diako, and Ross (2019) identification of the sensory and chemical differences
between grand-gold and gold rated wines. In addition to such research, numerous
critics, competitions, clubs, and vendors use ratings to compare wines, convey
information, and sell wine.
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This short article focuses on a difficulty with wine ratings for the uses previously
noted that is due to the finding that each rating observed is one drawn from a latent
distribution that is wine- and judge-specific. What can be deduced about the shape of
a latent distribution from one observation? Section II summarizes research showing
that the ratings that critics and judges assign are stochastic, heteroscedastic, and may
be affected by anchoring, expectations, and serial position biases. Section III shows
that those conditions lead to a problem that is inverse, ill-posed with a sample size
of one, and partially or wholly categorical rather than cardinal. A maximum entropy
solution to that problem is posed in Section IV for sample sizes of zero, one, a few
blind replicates, and many observations. An example is presented in Section V,
and the results are consistent with the actual distributions observed for ratings
assigned to blind replicates. An application to tasting data with blind triplicates pub-
lished by Cicchetti (2014) in Section VI shows that the approach proposed has less
than 25% of the error in analyses of observed ratings alone. Conclusions follow in
Section VII.

Il. The maelstrom about a rating observed

Judges assign ratings to wines that are within a bounded set of scores or an ordered set
of categories, or a set of ranks. Examples of scores include the 50- to 100-point scales
used by Wine Advocate and Wine Spectator, UC Davis’ 0 to 20-point scale, Jancis
Robinson’s 12- to 20-point scale, and the 0- to 100-point scale prescribed by the
International Organization of Wine and Vine (OIV). Examples of categories include
the Wine & Spirit Education Trust’s (WSET) six categories of quality (faulty, poor,
acceptable, good, very good, and outstanding) and the California State Fair
Commercial Wine Competition’s (CSF) six or ten medals." Further, some systems
are forced rankings. If there are six wines in a flight, a judge must rank all six in
order of relative preference. Liquid Assets and San Francisco FOG are examples of
tasting groups that employ that approach. See reviews and comparisons of rating sys-
tems in Cicchetti and Cicchetti (2014), Kliparchuck (2013), and Veseth (2008).

Although tasters focus on the wine in the glass, much research shows that the rat-
ings that tasters assign are affected by other factors. Some of the factors are supported
by literature that is cited later. Other factors described are reported as anecdotal and,
when no literature is cited, those other factors are intended as hypotheses that remain
to be tested.

A. Stochastic ratings

First, although wine ratings are not merely random, evidence that ratings are stochas-
tic is abundant in the wine-related academic literature and trade press. Bodington
(2017, 2020) summarizes and cites four experiments with blind replicates, more
than 20 other evaluations that find uncertainty in ratings, and two texts that explain
the neurological, physiological, and psychological reasons for variance in the ratings

'Depending on the year, the CSF has awarded six (No Award, Bronze, Silver, Gold—, Gold, and Gold+)
or ten (No Award, Bronze-, Bronze, Bronze+, Silver—, Silver, Silver+, Gold-, Gold, and Gold+) ordered
medals. The author holds a WSET Level III certification.
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that the same judge assigns to the same wine. The stochastic nature of wine ratings is
not unique. Kahneman, Sibony, and Sunstein (2021, pp. 80-86, 215-258) describe
variance in wine ratings and in many other areas of human judgment including phy-
sicians’ diagnoses, forensic experts’ fingerprint identifications, and judges’ sentenc-
ings of criminals.

The wine-related literature cited supports several findings. A rating observed is one
drawn from a latent distribution; it is one instance of, in some cases, many potential
instances. Ratings are heteroscedastic, so the distribution of ratings on a wine is wine-
and judge-specific, and different judges’ ratings on the same wine are not identically
distributed (ID). Some judges assign ratings more consistently than others, and some
wines are more difficult to rate consistently than others. Research attempts to predict
ratings from physiochemical properties have struggled to obtain statistical signifi-
cance. Experiments with blind replicates show that, on average, the standard devia-
tion of the rating that the same judge assigns to the same wine within a flight is
approximately 1.3 out of 10 potential rating categories. And while some judges inde-
pendently assign ratings that correlate well with each other, about 10% of CSF judges
assign ratings that are indistinguishable from random assignments.

Although most ratings are assigned by judges prior to any discussion of the subject
wines, pre-rating discussion sometimes occurs among panelists, and some competi-
tions require an initial rating, then discussion, and then a post-discussion rating.
According to Taber (2005, pp. 300-301), discussion of the wines took place during
the tasting at the 1976 Judgment of Paris. The CSF is an example of a competition
in which judges assign an initial rating, discuss the wines with other judges, and
then assign another post-discussion rating. Both sets of ratings are reported to CSF
officials, and the author is not aware of any correlation or other comparisons
made by the CSF. Judges can influence each other, so post-discussion ratings may
not be statistically independent (I). When combined with the heteroscedasticity, post-
discussion ratings may therefore not obtain the statistical ideal of independent and
identically distributed (IID) observations.

B. Anchoring, expectation, and serial position biases

The score-based rating systems noted previously also assign categories of quality or
award to score thresholds and ranges. For example, the OIV system sets score thresh-
olds for Bronze, Silver, and Gold medals at scores of 80, 85, and 90, 1respec:tively.2
With a sample of 8,400 ratings, Bodington and Malfeito-Ferreira (2017) showed
spikes in the frequencies of scores assigned just below those thresholds. Thus,
some judges appear to anchor at OIV’s category thresholds.

In addition to anchoring scores to category thresholds, there is anecdotal evidence
of sequential anchoring. In a taste-and-score sequential protocol, a judge may assign a

*The complete OIV award system is: Bronze for wines with a mean score of at least 80 points (up to a
maximum of 25% of all prized wines, including Gold and Silver); Silver for wines with a mean score of
more than 84 points (up to a maximum of 12% of all wines entered); and Gold for wines with a mean
score of over 90 points (up to a maximum of 6% of all wines entered). A fourth medal, Great Gold, is
awarded by a Grand Jury to the best wine in each of several categories (up to a maximum of 25% of
the number of Gold medals).
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rating to the first wine and then rate the remaining wines “around” that anchor. A lag
structure may also exist in which a judge rates around some composite of the most
recent wines. The upper and lower bounds on ratings, whether numerical or categor-
ical, may then merely bound a judge’s assessments of relative preference.

Much research shows that judges’ expectations affect the ratings they assign.
Ashton (2014) found that judges assigned higher ratings to wines from New Jersey
when told the wines were from California and lower ratings to wines from
California when told the wines were from New Jersey. On that evidence, regardless
of actual quality, an expectation of good quality may lead to a central tendency in rat-
ings within whatever range of scores or categories indicates good quality. In addition,
information provided about wines may alter expectations and ratings. For example,
the pre-printed forms provided to CSF judges list the grape variety, vintage, alcohol
by volume, and residual sugar of a wine next to spaces where the judge writes in a
comment and then a rating.” Whether or not such judgments should be represented
as “blind” is open to debate. Whether or not having that information affects judges’
ratings remains to be tested.

Some critics and competitions employ a sequential, step-by-step, or taste-and-rate
protocol. A critic or judge tastes a wine and assigns a rating, then tastes the next wine
and assigns a rating to that wine, and so on. The Judgment of Paris, the CSF, and
many publishing critics employ a sequential protocol.* The possibility that ratings
assigned during taste-and-rate protocols are affected by serial position, rather than
the intrinsic qualities of the wines and judges, is difficult to assess and rule out.
Serial position bias may occur in wine competitions due to palate fatigue, rest breaks,
meal breaks, physiological, and psychological factors.” There are anecdotal reports
from judges who say there is temptation to assign a high rating to a dry and high-acid
wine because it is refreshing in a sequence just after several off-dry and alcoholic
wines. UC Davis’ class for potential wine judges warns of position bias affecting dif-
ferences in ratings due to the sequence of wines, breaks, and lunch.® Filipello (1955,
1956, 1957) and Filipello and Berg (1958) conducted various tests using sequential
protocols and found evidence of primacy bias. Mantonakis et al. (2009, p. 1311)
found that “high knowledge” wine tasters are more prone than “low knowledge”
wine tasters to primacy and recency bias. The sequence of wines tasted at the 1976
Judgment of Paris has never been disclosed, so what effect position bias may have
had on the results remains unknown.”

Standing back, within the maelstrom described earlier, what can be deduced about
a rating observed? A rating is a discrete score, ordered category, or rank drawn from a

*Form provided to the author by the CSF on July 16, 2019.

“In contrast, some competitions employ an “open” protocol in which a flight is poured and judges can
taste and re-taste the wines in any order and frequency. Liquid Assets and San Francisco FOG follow that
open protocol.

>Serial position bias is common in many fields of judging. De Bruin (2005) examined singing and figure
skating competition results and found position bias in both step-by-step and end-of-sequence sequential
judging protocols.

®The author took the class and test for potential CSF judges at UC Davis.

"The Judgment’s tasting protocol was sequential taste-and-score. The author confirmed, in email com-
munications with both Mr. Taber and Mr. Spurrier, that the sequence of pour has never been disclosed.
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bounded set. A rating is stochastic, and a rating observed is one drawn from a wine-
and judge-specific distribution. And that rating observed may have been affected by
anchoring, expectation, and/or serial position biases.

Ill. The problem with one observation

Except for rare experiments with blind replicates in a flight, critics and judges exam-
ine one wine (or each wine in a flight) and then assign one rating to that wine (or one
rating to each wine in a flight). That is an acute problem. Literature cited previously
shows that ratings are heteroscedastic, ratings are not ID, and they may not be IID, so
neither the collection of all judges’ ratings on a wine nor the collection of one judge’s
ratings on other wines can be employed to estimate the distribution of potential rat-
ings by one judge on one wine. Each distribution is unique, and only one sample
drawn from that distribution is observed.

Score increments are usually whole numbers; some competitions allow half-points,
so even score assignments are discrete. The scores, category choices, and ranks used
by critics and allowed by competitions are bounded sets. Although a rating is
observed after it is assigned by a judge, aside from being discrete and bounded, no
other information about the distribution of that rating is observed. Estimating the
shape of the discrete and bounded distribution is thus an inverse problem. The
shape and any parameters describing that shape must be inferred from the observa-
tion. And, unless the shape of the distribution can be defined by one parameter, the
problem is ill-posed. If ill-posed, there are more unknown parameters than observa-
tions, so a unique distribution cannot be defined.

There is another difficulty. Although scores appear to be cardinal, the anchoring
behaviors described earlier indicate that some judges mix the notions of cardinal
scoring and ordered categories. On that basis, treating scored ratings as cardinal
appears perilous. And trying to construct a model of a judge’s scoring behavior, at
minimum, exacerbates the inverse and ill-posed aspects of the problem.

The problem of what can be deduced about the shape of a latent distribution from
one observation is not new. Several authors have examined what can be inferred
about continuous and symmetric distributions; see Casella and Strawderman
(1981), Rodriguez (1996), Golan, Judge, and Miller (1996), Leaf, Hui, and Lui
(2009), and Cook and Harslett (2015). Their methods are summarized in
Appendix A, and the discussion that follows focuses on what can be inferred from
one observation about a bounded, discrete, ordinal scale, and probably asymmetric
distribution.

IV. A maximum entropy solution to an inverse and ill-posed problem

Hartley (1928) and Shannon (1948) posed the notion that uncertainty about some-
thing—in this case, a judge’s rating on a wine—can be expressed as information
entropy. The higher the entropy, the higher the uncertainty. Jaynes (1957a, 1957b)
then proposed the idea that a distribution that maximizes entropy assumes the
least precision in what is known about the latent distribution of the data. When
there are not enough data to estimate a unique parameter, set that parameter to
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maximize entropy so that you do not pretend to know more than you actually do.
This maximum entropy approach is often employed to solve inverse and ill-posed
problems. See, for example, Golan, Judge, and Miller (1996, pp. 7-10 in particular).

Shannon (1948) defined the amount of information (i) in a random variable (x),
in Equation (1), as the logarithm of the inverse of its probability (p). Building on that,
he expressed information entropy (H) in Equation (2) as the expectation of informa-
tion about a random variable. While the precise meaning of information entropy is
controversial, H is highest for a uniform random distribution and lowest for a single-
point, degenerate distribution. The informational difference (I) between two distribu-
tions, p and g, known as cross-entropy, appears in Equation (3).® See Rioul (2008)
and Lombardi, Holik, and Vanni (2016) for histories and discussions of these famous
results.

(009) = I 55) =~ (o) 0
H(p) == p(x) In(p(x)) @)
I(p, @) == D_p(x) In(q(x)) 3)

Applying Jaynes’ notion of maximum entropy to none, one or more observations
(x°) drawn from a discrete and bounded but unknown distribution (p) yields the sol-
ution proposed in Equation (4). A derivation of Equation (4) appears in Appendix
B. The first term I(u, p) is the cross-entropy between p and a uniform random dis-
tribution (u). The second term I(g|x°, p) is cross-entropy between p and the distribu-
tion that is observed, (g|x°). If n = 0 then the minimization in Equation (4) is a dual of
the maximum entropy solution u(all x) = 1/(max — min + 1)° If n=1 then q is a one-
hot vector where q(x°) = 1. For n =3, g could be the distribution observed for blind
triplicates. As n — oo then p tends to the distribution implied by a large sample and
the influence of the random distribution, u, tends to zero."” That minimization is the
dual of the maximum likelihood solution for a large sample. See Golan, Judge, and
Miller (1996, pp. 25, 41) and Shashua (2008, p. 3-3) regarding the duality of maxi-
mum likelihood and minimum entropy.

n . 1 . 1 o =
arg[p] = argmm|:<1+n> - I(u, p) + (1 _1+n> -1(qlx°, p) :| (4)

8The difference between cross-entropy and Kullback Leibler Divergence is addressed in Appendix B.

°If n=0 the minimization in Equation (4) solves to p = u.

9As 11— oo the minimization in Equation (4) solves to a PMF, where p &~ g|x°. For a categorical PMF
with a probability parameter for every category, that minimization solves to p = g|x°.
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Among many potential probability mass functions (PMFs) for p, a simple one is a
categorical distribution that is discrete, bounded (min, max), and has a probability for
every potential rating. That PMF has max - min + 1 =R unknown probabilities to
estimate. For just one observation x°, the maximum entropy solution to Equation
(4) for R=10 is p(x=x°)=0.55 and p(all x # x°) = 0.05. That spikey solution is not
very credible. It ignores the notion of central tendency. It ignores the evidence
cited in Section II that while most judges may not assign the exact same ratings to
replicates in a flight, the ratings they do assign tend to cluster around nearby scores,
categories, or ranks.

Central tendency and clustering are notions about frequency and distance.
Distance is easily expressed on a cardinal scale of scores, but the evidence cited in
Section II shows that score assignments may be influenced by ordinal considerations,
and many rating systems are ordered categories alone. The difficulty with mapping
ordinal categories to a cardinal scale is that, although categories may be adjacent,
there is no information about the widths of categories or the transitions between cat-
egories. And if scores are interpreted as expressions of economic utility, the econom-
ics literature summarized in Barnett (2003, p. 41) is rich in what he calls the modern
view that utility is ordinal, cannot be employed to calculate indifference points
between goods, and cannot be employed to compare one person to another. Marks
(2019) draws similar conclusions in his analysis of wine ratings as on hedonic scales.
While using ratings to make inferences about interpersonal utility and indifference
points may violate the logic of utility theory, statistical analysis of ordinal ratings
for other purposes is common. According to Chen and Wang (2014), ordinal data
are the most frequently encountered type of data in social science.' Chen and
Wang review methods of mapping categorical responses to numerical values, and
those methods include merely ranking the categories. In their texts concerning anal-
ysis of categorical data, Agresti (2007, pp. 43-44, 119, 195, 230, 299) and Lynch
(2007, p. 219) discuss methods of mapping that again include ranking, and they
also present PMFs with dispersion parameters to describe central tendency and clus-
tering in the distributions of categorical data.

Although the research cited previously explains several methods of mapping cat-
egorical data to numerical values and several PMFs, this article does not pursue find-
ing a “best” method of mapping and/or the best PMF. The best of those probably
depends on the form of the rating data and the intended analysis or hypothesis
test. Before moving forward to an example and a test, Equation (4) is not an assertion
that the distribution of a judge’s potential ratings on a wine is nearly random for
small sample sizes. It is an assertion that evident knowledge about that distribution,
for a small sample, can only support a distribution that is a little better than random.

V. An example

Suppose in this example that a judge assigns a rating of “Gold-" to a wine entered in a
competition with ten ordered categories of rating: No Award, Bronze-, Bronze, Bronze
+, Silver-, Silver, Silver+, Gold-, Gold, and Gold+. In that case, and mapping from

"'Chen and Wang (2014) give the examples of “strongly agree,” “agree,” “have no opinion,” “disagree,”
and “strongly disagree” as a common ordinal scale.
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Figure 1. Estimated probability distributions of one observed rating of “Gold-".

categories to ranks, x” = 8 € (1, 10). Suppose further that the latent distribution of that
rating can be described by a discrete and bounded Gaussian function of mean (¢) and
variance (¢%). With emphasis, the intent is to describe the distribution of potential ordi-
nal ratings assigned by one judge to one wine and there is no intent to make any infer-
ence about economic utility or to make a comparison with any other wine or judge.
Knowing only that x° = 8 € (1, 10) and using Equation (4), the maximum-entropy esti-
mate of the latent distribution of that rating observed appears as the dashed line in
Figure 1. The stair-step shape of the distribution reflects the discrete categories. Next,
the evidence cited in Section II shows that the standard deviation (SD) in ratings
assigned by trained and tested CSF wine judges to blind triplicates averages approxi-
mately 1.3 out of 10 ratings; o =1.3. Using that estimate of SD and Equation (4), the
maximum-entropy estimate of u yields the distribution that appears as the solid line
in Figure 1. MATLAB code for Figure 1 is available on request.

The results in Figure 1 are consistent with the maximum entropy findings for con-
tinuous and unbounded distributions summarized in Appendix A. With only one
observation, results tend toward a random distribution because that reflects knowing
the least information about the data. Although o=1.3 was set exogenously for the
solid line in Figure 1, it may be estimated using cross-section data from competition
results where panels of judges evaluate the same wines."” Like for choosing the “best”

?For example, consider modeling a judge as a signal processor. Using the Variance Sum Law,
0} = 0} + o7, where ;>0 is a parameter representing the skill of judge (j) in assessing wine (i).
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PMEF, this article does not propose a best method of using cross-section data in con-
junction with Equation (4) to estimate the parameters in a PMF. The best method is
likely to depend on the form of the data and the analysis intended.

VI. Application to Stellenbosch blind triplicates

The Journal of Wine Economics, during the five years 2017 through 2021, published
21 articles in which a wine rating was employed in a function as a right-hand-side
explanatory variable.'” Nowhere in those articles were ratings expressed as uncertain
or as a distribution. The substantial literature summarized earlier shows that ratings
are uncertain, and Equation (4) is intended as a tool to ease the recognition of that
uncertainty in future research. For any sample size, Equation (4) is a tool to estimate a
PMF for functions of ratings.

Chicchetti (2014) published the scores assigned to two flights of eight wines each
at a tasting in Stellenbosch, South Africa. Each flight was assessed by 15 judges, and
each flight contained a set of blind triplicates. In total, the data contain 2*15 = 30 sets
of three scores assigned to blind triplicates and 2*15*3 = 90 observations. Although it
probably understates true variance, assume here that the sample mean and the sample
variance of the triplicate results for each judge describe the “true” distribution of that
judge’s ratings on a triplicate wine. Using an observed rating as an explanatory var-
iable, as in the 21 articles noted in the footnote, is equivalent to using a one-hot vec-
tor as its probability distribution.'* And the solution to Equation (4) for that observed
rating also yields a probability distribution. An example using one of the Stellenbosch
triplicates appears in Figure 2. Stellenbosch judge #20 assigned scores of 70, 80, and
85 to a blind triplicate. Figure 2 shows the “true” distribution based on those three
scores. But suppose that wine did not appear in triplicate and only one of the scores
was observed, say 85. Figure 2 also shows the one-hot distribution as if only 85 had
been observed, and it shows the solution to Equation (4), again, as if only one score of
85 had been observed."> Which of the one-hot or cross-entropy distributions is the
least inaccurate estimate of the now latent “true” distribution?

The difference between the “true” distribution and the one-hot distribution is
error that can be quantified as cross-entropy. Likewise, the difference between the
cross-entropy Equation (4) distribution and the “true” distribution is error that can
again be quantified as cross-entropy. The cross-entropy errors for the example in
Figure 2 are 20.0 and 4.3, respectively. Although not close to a perfect fit to the

13Author name (JWE year, volume(number)): Gergaud, Ginsburgh, and Moreno-Ternero (2021, 16(3)),
Capehart (2021, 16(3)), Lesky, Czupryna, and Lakubczyk (2021, 16(2)), Moroz and Pecchioli (2021, 16(1)),
Bodington (2020, 15(4)), Keating (2020, 15(3)), McCannon (2020, 15(1)), Corsi and Ashenfelter (2019, 14
(3)), Capehart (2019, 14(3)), Fried and Tower (2019, 14(2)), Faye and Le Fur (2019, 14(2)), Wang and
Presern (2018, 13(4)), Bodington and Malfeito-Ferreira (2018, 13(4)), Capehart and Berg (2018, 13(1)),
Luxen (2018, 13(1)), Bitter (2017, 12(4)), Cyr, Kwong, and Sun (2017, 12(3)), Bodington (2017, 12(3)),
Bodington (2017, 12(2)), Cao and Stokes (2017, 12(2)), Ashton (2017, 12(1)). These publications are
not listed under the References unless they are otherwise employed in this article.

"“For example, for a rating of 3 within a score range of 1 to 5, the one-hot bounded and discrete prob-
ability distribution is (0,0,1,0,0).

>The range of probabilities in Figure 2 is truncated for display. For the one-hot distribution, the range
extends up to 1.0.
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Figure 2. Three distributions for Stellenbosch judge #20 on a blind triplicate.

true distribution, the solution to Equation (4) is more accurate than using only an
observed rating. The cross-entropy errors for all of the Stellenbosch triplicate obser-
vations appear in Figure 3. As a check, the sum of squared differences between the
same pairs of distributions is also shown in Figure 3.

The striking result in Figure 3 is that error in estimating the “true” distribution is
materially and consistently lower using the solution to Equation (4) than when using
only an observed rating. Results cluster below the 45-degree line in Figure 3, along
which errors for the two methods are equal. The average cross-entropy using
Equation (4) is 4.2, the average using a rating observed is 20.0, and 4.2 / 20.0 =
21%. Similar results are obtained when error is measured using sums of squared dif-
ferences and when using KL Divergence. The blindness to all uncertainty caused by
using only an observed rating yields larger errors than the broadness of a maximum
entropy solution. The Stellenbosch data and MATLAB code for Figures 2 and 3 are
available upon request.

VIl. Conclusion

Wine judges assess wines and assign ratings that are discrete and within bounded sets
of scores, ordered categories, or ranks. But much evidence shows that, although they
are not merely random, those assignments are both stochastic and heteroscedastic.
Those assignments may also be affected by anchoring, expectations, and serial
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Figure 3. Errors in estimates of the “True” distributions for Stellenbosch blind triplicates (30 judges, 90
observations).

position biases. The distribution of a rating observed is then wine- and judge-specific.
Estimating the distribution of a rating to support ratings-related research or to calcu-
late consensus among judges is thus acutely difficult because the sample size drawn
from a latent wine- and judge-specific distribution is usually one.

The parameters in a PMF expressing the latent distribution of a rating observed
can be estimated using the simple maximum entropy estimator in Equation (4).
That estimator incorporates the information from zero, one, a few blind replicates,
or many observations, and it relies on a minimum of additional assumptions. An
example yields results in Figure 1 that are consistent with the results of experiments
in which blind replicates are embedded within flights of wines that are evaluated by
trained and tested judges. An application to the published tasting data in Figures 2
and 3 shows that the maximum entropy estimator has, for the Stellenbosch triplicates,
less than 25% of the error found using observed ratings alone.

An essential aspect of the maximum entropy solution to Equation (4) is that the
solution is not an assertion that a judge’s ratings have a nearly random distribution.
But it is an assertion that evident knowledge about the distribution, based on a small
sample, may support a distribution that is only a little better than random. That
makes sense for an anonymous judge about whom nothing is known. If a researcher
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has information that a judge has perfect consistency, then the PMF for that judge is a
one-hot vector. If a researcher has information that Jancis Robinson, James Suckling,
or some other critic has very good consistency, then the PMF in Equation (4) for that
critic can have a small dispersion. Whatever the capability of a judge, Equation (4) is
both flexible and explicit.

Equation (4) is intended as a tool to support ratings-related research and assess-
ments of consensus among judges. Research may lead to improvements in or
application-specific variations of Equation (4). Adding terms to Equation (4) may
enable analysis of anchoring, expectation, and other biases. Further tests of the esti-
mator could include estimating parameters in PMFs from cross-section ratings data.
On that foundation, the assumption that ratings are deterministic or IID, which is
implicit in much current research and most calculations of multi-judge consensus,
could be relaxed. Aggregates that depend on sums and research that uses ratings in
transformations or regressions can be reframed using Equation (4), as maximum
likelihood functions that are explicit about the uncertainty surrounding a rating
observed.
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Appendix A: Literature review regarding what can be deduced about the shape
of a latent distribution from one observation

Rodriguez (1996) reports that, in 1964, Robert Machol derived a confidence interval (CI) for an estimate of
the mean of an unbounded distribution that is symmetric about zero. Rodriguez re-stated Machol’s result,
presented an unpublished non-parametric CI for i that he attributed to Herbert Robbins, and derived a CI
for the standard deviation (&) of an unbounded symmetric distribution.

Golan, Judge, and Miller (1996, pp. 115-123) examined least squares, maximum likelihood, Bayesian
and maximum entropy methods of estimating, for one observation, the mean of a bounded distribution
that is symmetric about zero. Based on what those authors describe as “standard sampling theory,” the
least squares and maximum likelihood methods yield & = x°. Their results using Bayes Rule cite and
match Casella and Strawderman (1981). Their maximum entropy estimate of f is a Lagrange function
of information entropy and an exogenous constraint on the difference between x° and the unobserved
4. Both the Bayesian and the maximum entropy solutions show that as the range of x increases, fi tends
away from x° toward the center of the range. Golan, Judge, and Miller compare the accuracy of the four
methods assuming several types of error distribution, and they conclude that the maximum entropy
method both relies on the least restrictive assumptions and is the most accurate.

Leaf, Hui, and Lui (2009) examined Bayesian estimates of distribution parameters using a single obser-
vation. The authors found that reasonable Bayesian results depend very much on starting with a reasonable
prior, and they recommend further development of axiomatic or so-called fiducial inference. Primavera
(2011) addressed estimating the mean of a bounded distribution from one observation using a sample
mean, maximum likelihood estimator, Bayesian inference, and game theory. The sample mean for one
observation implies merely &t = x°. A maximum likelihood estimate yields the same result but interposes
a distribution function, and Bayes’ Rule yields results, like those found by Leaf, Hui, and Lui, that depend
on the prior and the form of the distribution function.

Cook and Harslett (2015, pp. 11-22) used one observation and cross-entropy to estimate the intercept
and slope of a linear equation. Following Bayes, they assumed prior probability distributions for the two
parameters and then selected values for those parameters that minimized an exogenously-weighted cross-
entropy subject to the Lagrange constraints that the probabilities sum to unity and that the linear function
of the parameters yields x°.

Appendix B: Derivation of equation (4)

See definitions of algebra in Section IV and assume an arbitrary distribution (d).

Some authors equate cross-entropy and Kullback-Leibler Divergence. See, for example, Shore and
Johnson (1981, p. 472) and Golan, Judge, and Miller (1996, p. 29) compared to Shannon (1948, p. 14),
Rioul (2008, p. 61), and numerous machine learning references, including Mitchell (1997, p. 57). This arti-
cle employs the definitions in Equation (B1) that are consistent with Shannon, Rioul, and machine learning
references: Cross-Entropy = Entropy + KL Divergence.

_ Z p(x) In(d(x)) = — Z p(x) In(p(x)) + Z p(x) In (%) (B1)

Equation (B2) expresses that H(d) is less than the maximal H(u). Entropy and cross-entropy are non-
linear functions, and Equation (B3) expresses that cross-entropy is not a metric or symmetric unless p = d.

H(d) < H(u) (B2)

I(pd) #1d, p) | p#d (B3)
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The distributions u and g|x° are known and fixed. For a known and fixed d, solving for parameters in a
PMF p to obtain d implies minimizing the form I(d, p) in Equations (B4) and (B5). See Shore and
Johnson (1981, pp. 472-473) and Golan, Judge, and Miller (1996, p. 41) on minimizing cross-entropy.
As a check, examples in MATLAB code are available on request from the author.

max

1(d, p) =Y _ d(x) In(p(x)) (B4)

min

arg[ p = d) = argmin[I(d, )] (B5)

The two conditions in Equations (B6) and (B7) must hold. The symbol for approximately equal (~)
indicates that the solution will be a minimum difference, but due to the form of a PMF, it may not be a
precise equality (=).

pruln=0 (B6)

pomglx’|n— o (B7)

Find p at the minimum difference between u and g|x° in Equation (B8). A transformation function using
(1/(1 + n)) enforces the conditions in Equations (B6) and (B7). See an example of adding cross entropies in
a transformation function using weights w and (1 - w) at Golan, Judge, and Miller (1996, p. 111). Other
transformations that could be considered include multiplier, exponential, inverse variance, and
entropy-related functions.'® Again, examples in MATLAB code are available on request from the author.

N . 1 N 1 o
arg[p] = argmzn[(m> - I(u, p) + <1 — m) -I(qlx°, p) :| (B8)

'°Bodington (2021) employed only a multiplier of # on I(q|x°, p). Although the transformation function
in Equation (B8) yields similar results at zero and realistic sample sizes, it does have better asymptotic prop-
erties as n gets large. A thorough analysis of alternative functions is beyond the scope of this article.
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