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Summary

Epistatic variance can be an important source of variation for complex traits. However, detecting

epistatic effects is difficult primarily due to insufficient sample sizes and lack of robust statistical

methods. In this paper, we develop a Bayesian method to map multiple quantitative trait loci

(QTLs) with epistatic effects. The method can map QTLs in complicated mating designs derived

from the cross of two inbred lines. In addition to mapping QTLs for quantitative traits, the

proposed method can even map genes underlying binary traits such as disease susceptibility using

the threshold model. The parameters of interest are various QTL effects, including additive,

dominance and epistatic effects of QTLs, the locations of identified QTLs and even the number of

QTLs. When the number of QTLs is treated as an unknown parameter, the dimension of the

model becomes a variable. This requires the reversible jump Markov chain Monte Carlo

algorithm. The utility of the proposed method is demonstrated through analysis of simulation

data.

1. Introduction

Variation of a quantitative trait is determined by the

segregation of multiple quantitative trait loci (QTLs).

Classical quantitative genetics cannot separate the

effects of individual QTLs; instead, only the collective

or average effect of all QTLs is explored. Under some

special mating designs, e.g. North Carolina Design

III, epistatic variances can be estimated (Bulmer,

1980; Lynch & Walsh, 1998). However, a large

number of crosses that inherit different proportions of

the founder genetic material are required to estimate

individual components of epistatic variance, e.g.

additive-by-additive, additive-by-dominance, domi-

nance-by-dominance. Even if there are a sufficient

number of different crosses, some epistatic variance

components may be still inseparable. For example,

the additive-by-dominance variance for two loci is

actually composed of the additive-by-dominance

component (interaction between the additive effect of

the first locus and the dominance effect of the second

locus) and the dominance-by-additive component

* Corresponding author. Tel : ­1 (909) 787 5898. Fax: ­1 (909)
787 4437. e-mail : xu!genetics.ucr.edu

(interaction between the dominance effect of the first

locus and the additive effect of the second locus). With

the classical analysis, these two components are simply

lumped together and termed additive-by-dominance

variance. With the advent of modern molecular

technology, various components of epistatic genetic

variance can be separated and jointly estimated with

saturated molecular markers. An in-depth under-

standing of the interlocus interactions is important in

the genetic study of complex traits (e.g. Lark et al.,

1995; Yu et al., 1997). The ultimate goal of any QTLs

linkage study is not only to estimate the number,

locations and marginal effects of QTLs, but also to

explore the epistatic effects (e.g. Routman & Chev-

erud, 1997; Zeng et al., 2000).

A prerequisite for detecting epistasis is to sim-

ultaneously model all QTLs. Previous methods of

QTLs mapping, including the widely used interval

mapping (IM) and composite interval mapping (CIM),

were developed under single-QTL models (e.g. Lander

& Botstein, 1989; Zeng, 1994; Jansen & Stam, 1994).

The single-QTL models fit one QTL at a time, and

detect only marginal QTL effects. Statistical methods

for mapping multiple QTLs with epistasis were

previously developed on the basis of the fixed number
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of QTLs and multiple-dimensional search approaches

(e.g. Haley & Knott, 1992; Wang et al., 1999). These

methods have not been used in practice for cases

where the number of QTLs is unknown and for

genome-wide searches for QTLs due to high computa-

tional demand as the number of QTLs increases.

Recently, Carlborg et al. (2000) proposed a genetic

algorithm to reduce the computational demand for

simultaneous mapping of multiple interactive QTLs.

Jannink & Jansen (2001) described a statistical method

to map multiple QTLs with epistasis with one-

dimensional genome searches. Their method identifies

loci of high QTLs by genetic background interaction

and requires large populations derived from multiple

related inbred lines. Kao et al. (1999) and Zeng et al.

(2000) extended the idea of the CIM method and

developed a multiple interval mapping (MIM) ap-

proach to mapping multiple QTLs and estimating

epistasis in backcross designs. It has been shown that

epistasis mapping can improve the chance of QTL

recovery and the accuracy of parameter estimation.

However, all these methods provide only point

estimates for the number, locations and effects of

QTLs. The critical values for significance tests and

interval estimates of the parameters have to be

established using a repeated sampling technique, e.g.

a permutation test (Churchill & Doerge, 1994) or

bootstrapping analysis (Visscher et al., 1996).

Bayesian methods have been used to map multiple

QTLs (Satagopan et al., 1996; Uimari & Hoeschele,

1997; Satagopan & Yandell, 1998; Heath, 1997;

Stephens & Fisch, 1998; Sillanpa$ a$ & Arjas, 1998,

1999). QTLs linkage analysis is complicated con-

siderably by the fact that the number of QTLs and

thus the dimension of the parameter space are

essentially unknown. Green (1995) introduced a

reversible jump Markov chain Monte Carlo (MCMC)

algorithm to sample variables from a target dis-

tribution with an unfixed dimension. Bayesian meth-

ods, implemented via the reversible jump MCMC

algorithm, have been developed to map QTLs in

backcross, F2 and full-sib families for normally

distributed traits (Satagopan & Yandell, 1998; Steph-

ens & Fisch, 1998; Sillanpa$ a$ & Arjas, 1998, 1999) and

for complex binary traits based on a threshold model

(Yi & Xu, 2000a). For complicated pedigrees, the

reversible jump MCMC methods for mapping QTLs

are also available (Heath, 1997; Uimari & Hoeschele,

1997; Xu & Yi, 2000; Yi & Xu, 2001). Although

multiple QTLs at the whole genome level have been

taken into consideration in the above Bayesian

methods, epistatic effects have been absent.

Theoretically, it may be straightforward to include

epistatic effects in the analysis in a Bayesian frame-

work. However, one major difficulty in analysing

epistasis is the generation or deletion of many

parameters when implementing the reversible jump

step. In this paper, we propose a Bayesian method to

map multiple QTLs with pairwise locus epistasis for

normally distributed and binary traits. A simple and

efficient sampling algorithm is derived to implement

the reversible jump in the MCMC algorithm. The

method is developed for arbitrary mating designs

derived from two inbred lines. As in our previous

works (Yi & Xu, 2000a, b), complex binary traits are

modelled under the threshold model of quantitative

traits.

2. Genetic model

We consider any mapping population derived from

two inbred lines, P
"

and P
#
. The two inbred lines are

crossed to produce a hybrid generation, F1 ; sub-

sequent generations are obtained by selfing, sib-

mating or backcrossing to the parental or F1

generations. Let the two lines differ by l loci affecting

the trait under investigation. Denote the alleles carried

by P
"
and P

#
by B

q
and b

q
, respectively, at the qth QTL

(q¯1, 2, …, l ). For l putative QTLs, there are 3l

different possible QTL genotypes in the mapping

population.

We consider two types of traits : normally distri-

buted and dichotomously distributed traits. The latter

are also called binary traits. For a normally distributed

trait, the observed phenotypic value of individual j, y
j
,

can be described by the following linear model (e.g.

Bulmer, 1980) :

y
j
¯ b

!
­ 3

l

q="

(x
jq
®1)a

q
­ 3

l

q="

x
jq
(2®x

jq
)d

q

­ 3
l

q!q«

(x
jq
®1)(x

jq«®1)aa
qq«

­ 3
l

q!q«

(x
jq
®1)x

jq« (2®x
jq«)ad

qq«

­ 3
l

q!q«

x
jq
(2®x

jq
)(x

jq«®1)da
qq«

­ 3
l

q!q«

x
jq
(2®x

jq
)x

jq«(2®x
jq«)dd

qq«­e
j
,

j¯1, 2, …, n, (1)

where b
!
is the overall mean; l is the number of QTLs

on the genome; a
q

and d
q

are the additive and

dominance effects, respectively, at the qth QTL;

aa
qq«, ad

qq«, da
qq« and dd

qq« are the epistatic effects

between the qth and q«th QTL, called additive-by-

additive, additive-by-dominance, dominance-by-ad-

ditive and dominance-by-dominance effects, respect-

ively ; x
jq

denotes the number of B
q

alleles at the qth

QTL for individual j (x
jq

¯ 0, 1, or 2) ; e
j
is the residual

error assumed to be i.i.d. N (0, σ#
e
). The residual error
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includes the environmental error and higher-order

epistasis. Note that the model includes only the two-

locus interactions and the higher-order interactions

have been ignored.

Given the number of QTLs, model (1) contains 2l

possible additive and dominance effects, and 2l (l®1)

possible epistatic effects, with a total of 2l# QTL

effects. Hereafter, we use b
k
and w

jk
to denote the QTL

effects (additive, dominance and epistatic effects) and

their corresponding coefficients for k¯1, 2, …, 2l# ;

j¯1, 2, …, n. Therefore, model (1) can be rewritten

as

y
j
¯ 3

#l
#

k=!

w
jk

b
k
­e

j
¯wT

j
b­e

j
, j¯1, 2, …, n, (2)

where w
j
¯ (w

j!
, w

j"
, …, w

j(#l
#
)
)T ; b¯ (b

!
, b

"
, …, b

#l
#
)T ;

w
j!

¯1 for all j, corresponding to the coefficient of the

overall mean.

For complex binary traits, the observed phenotype

can be defined in a binary fashion, i.e. s
j
¯1 if

individual j is affected, and s
j
¯ 0 otherwise. Complex

binary traits are conventionally analysed using the

threshold model (Lynch & Walsh, 1998). The thres-

hold model assumes that an underlying normally

distributed variable (liability), denoted by y
j
, deter-

mines the binary observation. The link between y
j
and

s
j
is through a threshold t, i.e. s

j
¯1 if y

j
" t, and s

j

¯ 0 otherwise. The liability can be modelled by

equation (2). The threshold model is over-para-

meterized so that some constraints must be imposed.

The constraints are usually taken as t¯ 0 and σ#
e
¯1

(Albert & Chib, 1993).

3. Bayesian mapping

(i) Bayesian probability model

In Bayesian analysis we treat all quantities under

consideration as random variables, be they observed

data, unknown parameters or missing data. A full

probability model, i.e. a joint distribution for all

quantities, is set up to combine the sampling dis-

tribution of observed data and the prior distribution

for the unknowns.

InQTL mapping analysis, we observe the phenotype

y¯²y
i
´n
i="

for continuous traits or s¯²s
i
´n
i="

for

binary traits and the marker data M. For the threshold

model, the values of the underlying liability are not

observed, and thus treated as missing values. Our aim

here is to make joint inference about the number of

QTLs l, their locations λ¯²λ
q
´l
q="

and their effects,

including additive, dominance and epistatic effects b

¯ (b
"
, …, b

#l
#
)T. The position of the qth QTL, λ

q
, is

represented by the distance of the QTL from one end

of the chromosome. The locations of markers on

chromosomes are fixed a priori. For convenience of

description, the allelic inheritance patterns of marker

loci are assumed to be known, although they are

sampled for missing and partially informative mar-

kers.

The vector x
j
¯ (x

j"
, x

j#
, …, x

jl
) specifies the unor-

dered genotypes for l QTLs of individual j. Genotypes

of QTLs are not observed, and thus x
jq
’s are missing

data. For complicated mating designs, it is not

convenient to sample x
jq
’s directly. Instead, we use the

segregation indicators to derive x
jq
’s indirectly. Note

that x
jq
’s can be decomposed into two components,

i.e., x
jq

¯xp

jq
­xm

jq
. The components xp

jq
and xm

jq
denote

the number of B
q

alleles at the paternal gamete and

maternal gamete of the qth QTL in individual j

respectively (xp

jq
¯ 0 or 1, and xm

jq
¯ 0 or 1). The vector

(xp

j"
, xm

j"
, …, xp

jl
, xm

jl
) then represents the ordered geno-

type at the l QTLs for individual j. xp

jq
and xm

jq
can be

derived using a recursive approach as follows. Assume

that individuals are entered into the pedigree in a

chronological order so that the parents are evaluated

before their progeny. Define zp

jq
and zm

jq
as the paternal

and maternal segregation (meiosis) indicators, re-

spectively, for individual j at the qth QTL. These

indicator variables are defined as zp

jq
¯1 if the paternal

allele of individual j inherits the paternal allele of its

father and zp

jq
¯ 0 otherwise ; similarly, zm

jq
¯1 if the

maternal allele of individual j inherits the paternal

allele of its mother and zm

jq
¯ 0 otherwise. Let

individuals j
"

and j
#

be the father and mother of

individual j, respectively, then xp

jq
and xm

jq
can be

expressed as

xp

jq
¯ zp

jq
xp

j
"
q
­(1®zp

jq
)xm

j
"
q

and

xm

jq
¯ zm

jq
xp

j
#
q
­(1®zm

jq
)xm

j
#
q
,

respectively. Therefore, the coefficients in models (1)

and (2) are completely determined by the segregation

indicators.

Hereafter, we use θ to denote all the unknown

parameters and missing data, i.e. θ¯ (l, λ, b, Z, σ#
e
),

where Z¯²zp

jq
, zm

jq
´n, l

j=", q="
and σ#

e
¯1 for binary traits.

Combining the sampling distribution for observed

data and the prior distribution for unobservable

variables, the joint distribution of all variables is

p (θ, y)¯ p (y r θ) [ p (θ) (3)

for normally distributed traits and

p (θ, y, s)¯ p (s r θ, y)p (y r θ) [ p (θ) (4)

for binary traits. Here we have suppressed the notation

for conditional on the observed marker data. Here-

after, we use the generic symbols p ([) and p ([ r [) to

represent the density and conditional density, re-

spectively, where the actual form of the distribution

depends not on p but on the argument.
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The likelihood function of the observed phenotype

in (3) or the conditional distribution of the liability in

(4), p (y r θ), can be factorized as follows:

p (y r θ)¯ 0
n

j="

p (y
j
r θ)

¯ 0
n

j="

(2πσ#
e
)−

n

# exp

1

2
3

4

®
(y

j
®wT

j
b)#

2σ#
e

5

6
7

8

. (5)

Note that the residual variance σ#
e

is set to one for

p (y r θ) in (4).

The likelihood of the observed binary data in (4) is

p (s r y, θ)¯ 0
n

i="

p (s
i
r y

i
)¯ 0

n

i="

²1(y
i
" 0)1(s

i
¯1)

­1(y
i
! 0)1(s

i
¯ 0)´, (6)

where 1(X `A) is the indicator function, taking a value

of one if X `A is true and zero otherwise.

(ii) Prior distributions

In Bayesian analysis, we need to specify the prior

density for the parameters and the distributions of the

missing values given the parameters. The prior

distributions for different types of unknowns are

usually assumed to be independent a priori. Therefore,

the joint prior distribution is

p (θ)¯ p (l ) [ p (λ r l ) [ p (b r l ) [ p (σ#
e
) [ p (Z r l, λ). (7)

The prior of the number of QTLs is chosen to be

Poisson with a predetermined Poisson mean µ, or

Uniform between 0 and a prespecified integer l
max

.

The mean µ or the maximum integer l
max

is chosen to

reflect the prior belief that there are a small number of

QTLs, which can be separated from the polygenic

background. The QTL positions have a joint prior of

p (λ)¯0l

q="
p (λ

q
), where each p (λ

q
) is Uniform across

the whole genome when no information regarding the

locations is available.

For purpose of conjugacy, the priors for the QTL

effects are assumed to be independently normal so

that bCN(b
!
, B

!
), where b

!
¯1η, B

!
¯ Iτ#, 1 is the

column vector of identity, I is an identity matrix, and

η and τ# are prior mean and variance, respectively, for

each element of vector b. For normally distributed

traits, the prior for σ#
e

is assumed to be a scaled

inverted chi-square distribution with known hyper-

parameter values of ν
!

and σ#

!
so that σ#

e
C Inv-

χ#(ν
!
, σ#

!
).

Since the inheritance state of a QTL depends only

on those of the two flanking loci (markers or QTLs),

the conditional distribution of QTL segregation

indicator matrix, p (Z r l, λ), can be factorized into

p (Z r l, λ)¯0l

q="
p (Z

q
rZL

q
, ZR

q
, λ

q
). Here Z

q
denotes

the segregation indicators for all individuals at the qth

QTL, i.e. Z
q
¯²zp

jq
, zm

jq
´n
j="

, and ZL

q
and ZR

q
the

segregation indicators for the left and right flanking

loci (markers or QTLs) of the qth QTL, respectively.

(iii) Re�ersible jump MCMC algorithm

In Bayesian analysis, inferences about the parameters

of interest are based on the joint posterior distribution

of all the unknowns. Since the joint posterior

distribution does not have a standard form, MCMC

samplers are used to generate samples from the joint

posterior distribution (Hastings, 1970; Geman &

Geman, 1984; Green, 1995). The MCMC algorithm

usually makes use of the full conditional distribution

of some unknowns given the current values of all

others, and thus is implemented in an alternating

conditional sampling fashion. When the fully con-

ditional distribution is the kernel of a standard density,

e.g. normal distribution, the Gibbs sampler is applied

to draw samples for that distribution (Geman &

Geman, 1984). Otherwise, sampling needs to be done

by using the Metropolis–Hastings algorithm (Hast-

ings, 1970), or its extension, reversible jump algorithm

(Green, 1995).

For continuous traits, the complete sampling

scheme consists of the following update steps :

(a) updating the overall mean and QTL effects b ;

(b) updating residual variance σ#
e
;

(c) updating QTL locations λ and segregation indica-

tors Z ;

(d) updating the number of QTLs l : adding a new

QTL to the model or removing an existing QTL

from the model.

For binary traits, we should add an update step to

sample the liability for all individuals, and cancel the

step for updating residual variance because the

residual variance is assumed to be unity in the

thresholdmodel. With the underlying liability replaced

by the realized sample, other unknowns in the

threshold model can be updated using the methods for

normally distributed traits.

One complete pass over these update steps defines a

cycle of iteration. Starting from an initial point, the

algorithm proceeds to update each of the groups of

the unknowns in turn until a certain criterion of

convergence is reached. Discarding samples of the

first few thousand cycles (burn-in period) and there-

after saving one realization in every hundred cycles,

we get a random sample from the joint posterior

distribution for post-Bayesian analysis.

Except for updating the number of QTLs, all other

updating steps are conventional because they do not

alter the dimension of the vector of all unknowns, and

thus can be implemented using Gibbs samplers or

traditional Metropolis–Hastings algorithms. With the
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conjugate prior, the full conditional posterior dis-

tribution for b
k

is normal, i.e.

b
k
r (y, θ

−bk

)C

N

E

F

η}τ#­3n

j="

w
jk
(y

j
®3#l

#

k«1k

w
jk«bk«)}σ#

e

1}τ#­3n

j="

w#
jk
}σ#

e

,

1

1}τ#­3n

j="

w#
jk
}σ#

e

G

H

, k¯ 0, 1,…, 2l #, (8)

where θ
−bk

represents all elements of θ except b
k
; η and

τ# are prior mean and variance for b
k
, respectively.

Given a scaled inverted chi-square prior distri-

bution, i.e. σ#
e
C Inv-χ# (ν

!
, σ#

!
), the full conditional

posterior distribution of σ#
e

for normally distributed

traits is

σ#
e
r (y, θ

−σ#
e

)C Inv-χ#

¬

E

F

ν
!
­n,

ν
!
σ#

!
­3n

j="

(y
j
®3#l

#

k=!

w
jk

b
k
)#

ν
!
­n

G

H

, (9)

where θ
−σ#

e

means all elements of θ exceptσ#
e
. Therefore,

the overall mean, the QTL effects and the residual

variance can be easily sampled.

Under the threshold model, the liability y
j
, con-

ditional on θ and s
j
, also has a simple form. The

random variables y
"
,…, y

n
are independent truncated

normal, i.e. y
j
r (θ, s

j
) is distributed N(wT

j
b, 1) truncated

at the left by 0 or at the right by 0, depending on

whether s
j
¯1 or s

j
¯ 0. The algorithm for simulating

a truncated normal variable described by Devroye

(1986) is used to sample the liability.

QTL locations λ and segregation indicators Z are

updated on a locus-by-locus basis. Since the dis-

tribution of Z
q
is highly dependent of the location λ

q
,

it is desirable to jointly update the location and the

segregation indicators for each QTL. However, the

joint posterior distribution for Z
q

and λ
q

has a

nonstandard form, i.e.

p (λ
q
, Z

q
r y, θ

−(λq,
Z
q)
)£ p (y r θ)p (λ

q
)p (Z

q
rZL

q
, ZR

q
, λ

q
),

where θ
−(λq,

Z
q)

means all elements of θ except λ
q

and

Z
q
. The Metropolis–Hastings algorithm is used to

draw samples from this distribution. The jump rule is

chosen as follows. First, a new location λ*

q
is sampled

from Uniform[λ
q
®d, λ

q
­d ], where d is a predeter-

mined tuning parameter. Then, new segregation

indicators for the jth individual, denoted by z
jq

¯
²zm

jq
, zp

jq
´, are generated from the conditional dis-

tributionp (z*

jq
r y

j
, θ

−(λq,
Z
q)
, λ*

q
, z*

"q
,…, z*

(j−")q
).This con-

ditional distribution is discrete and thus is easily

sampled (Yi & Xu, 2001). We denote the proposal

distributions for λ*

q
and Z*

q
by q (λ*

q
;λ

q
) and q (Z*

q
),

respectively, where q (λ*

q
;λ

q
) is a uniform density on

[λ
q
®d, λ

q
­d ] and q (Z*

q
)¯0n

j="
p (z*

jq
r y

j
, θ

−(λq,
Z
q)
,

λ*

q
, z*

"q
, …, z*

( j−")q
). The proposal λ*

q
and Z*

q
are then

accepted with probability min²1, r´, where

r¯
p (λ*

q
, Z*

q
r y, θ

−(λq,
Z
q)
)q (λ

q
;λ*

q
)q (Z

q
)

p (λ
q
, Z

q
r y, θ

−(λq,
Z
q)
)q (λ*

q
;λ

q
)q (Z*

q
)
. (10)

Updating the number of QTLs results in a change

in the dimension and thus needs a reversible jump

step. Instead of drawing a QTL number randomly, the

reversible jump step is facilitated by proposing to add

or drop a QTL in the model. In a given cycle with l

QTLs, there are two types of move: one increasing the

number of QTLs to l­1 and the other reducing it to

l®1. Let p
a

and p
d
¯1®p

a
be the probabilities of

choosing either type of move. These proposal proba-

bilities can be arbitrarily chosen as long as they satisfy

the conditions : p
a
¯ 0 if l¯ l

max
and p

d
¯ 0 if l¯ 0.

Here we choose p
a
¯ p

d
¯ 0±5 if 0! l! l

max
.

When addition of a new QTL is proposed, a new

location, new segregation indicators and new effects

will be generated for the proposed new QTL. The new

effects include the additive, dominance effects for the

new QTL, and all interactions (epistatic effects)

between the new QTL and all existing QTLs. Denote

the new location by λ*, the new segregation indicators

by Z*¯²zp

j(l+")
, zm

j(l+")
´n
j="

and the new effects by

b*¯ (a
l+"

, d
l+"

, aa
"(l+")

,…, aa
l(l+")

, ad
"(l+")

,…, ad
l(l+")

,

da
"(l+")

,…, da
l(l+")

, dd
"(l+")

,…, dd
l(l+")

)T. The efficiency

of the reversible jump step greatly depends on the

proposal distribution of the parameters. These para-

meters are generated as follows:

1. Sample the location λ* from a uniform dis-

tribution over the whole genome;

2. Sample the segregation indicator z*

j
¯

²zp

j(l+")
, zm

j(l+")
´ for individual j according to

p (z*

j
rλ*, zL

j
, zR

j
), j¯1,…, n,

where zL

j
and zR

j
are the segregation indicators for the

left and the right flanking loci of the new location λ*

(markers or QTLs), respectively. The proposal prob-

ability for Z* is

p (Z*)¯ 0
n

j="

p (z*

j
rλ*, zL

j
, zR

j
).

The corresponding values for the coefficients of the

effects b*, denoted as W*, are then calculated from the

sampled Z*.

3. Note that the full conditional distribution for the

new effects b* is multivariate normal b* r y, θ, W*C
N(b*, B*), where b*¯ (B*−"

!
­W*TW*)−"[B*−"

!
b*

!
­

W*T(y®WTb)] and B*¯ (B*−"

!
­W*TW*)−"σ#

e
with

b*

!
and B*

!
as the prior mean and prior variance for
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b*, respectively. The elements of vector b* are sequen-

tially sampled from the conditional distributions,

p (b*

"
r y, θ, W*), p (b*

#
r y, θ, W*, b*

"
),

…, p (b*

#+%l
r y, θ, W*, b*

"
,…, b*

"+%l
).

These conditional distributions are univariate

normal

b*

k
r y, θ, W*, b*

"
,…, b*

k−"
C

N

E

F

η}τ#­3n

j="

w*

jk
(y

j
®wT

j
b®3k−"

k«="

w*

jk«b*

k«)}σ#
e

1}τ#­3n

j="

w*#
jk

}σ#
e

,

1

1}τ#­3n

j="

w*#
jk

}σ#
e

G

H

,

k¯1,…, 2­4 l, (11)

where w*

jk
is the jkth element of the coefficient matrix

W*.

The change in the number of QTL from l to l­1,

together with the proposed location, the segregation

indicators and the effects, is accepted with probability

min(1, r ), where the acceptance ratio is

r¯
p (y r θ*)

p (y r θ)
[
p ( l­1) [ p (b*)

p (l )
[

p
d

l­1

p
a
[ p (b* r y, θ, W*)

,(12)

where θ*¯ (θ, λ*, b*, Z*) with l in θ replaced by

(l­1).

Deleting a QTL is simply the reverse process. A

QTL is randomly chosen among the existing QTLs.

The chosen QTL, together with all corresponding

parameters, is then proposed to be deleted from the

model with probability min(1, r ), where

r¯
p (y r θ*)

p (y r θ)
[

p (l )

p (l®1) [ p (b*)
[

p
a
[ p (b* r y, θ*, W*)

p
d

l

,

(13)

where θ* is θ with the items corresponding to the

deleted QTL removed, and b* and W* are the effects

and the coefficients of the deleted QTL.

4. Simulation studies

(i) Designs of the simulation experiments

Two inbred lines were crossed to produce the hybrid

generation F1. A total of 250 F2 individuals were

obtained by selfing F1. These F2 individuals were

crossed back to the F1 to produce 250 individuals.

The mapping population consists of 503 individuals,

including two inbred parents and one F1 hybrid. One

chromosome of length 100 cM was simulated. Eleven

co-dominant markers were evenly placed on the

chromosome with marker intervals of 10 cM each. A

quantitative trait y was modelled as being controlled

by two or three QTLs residing on the simulated

chromosome and a random environmental deviate

distributed as N (0, σ#
e
) where σ#

e
¯1.0 was assumed.

We designed three simulation experiments. The true

locations, additive and dominance effects of the

simulated QTLs, and the epistatic effects between the

simulated QTLs are given in Table 1. In design I, the

first QTL has additive and dominance effects that

account for 12±3% and 8±4% of the phenotypic

variation of the trait, respectively, whereas the second

QTL exhibits no marginal effect. However, the two

loci exhibit an additive-by-additive epistasis that

accounts for an additional 12±76% of the phenotypic

variance. Design II is a classical complementary

model of digenic epistasis, where the two simulated

QTLs exhibit not only marginal effects but also all

epistatic effects. In design III, the first and the second

QTLs show additive, dominance, additive-by-additive

and additive-by-dominance effects, whereas the third

QTL has no marginal effect but exhibits additive-by-

additive and additive-by-dominance interactions with

the first and second QTLs. It is noted that there are a

total of eight non-existing effects in design III (one

additive, one dominance and six epistatic effects).

In addition to the normal trait, we also generated a

binary phenotype for each individual using the

normally distributed phenotypic value as the under-

lying liability. The binary phenotype took a value of

1 if the liability y& 0, and a value of 0 otherwise. The

overall means were set at ®0±5 for design I, ®0±7 for

design II and ®0±9 for design III. The binary trait

incidences were 52%, 49% and 51% for the three

designs, respectively. We analysed both the normally

distributed trait and the binary trait using the proposed

method.

Two different models were used to analyse the

simulated data. The non-epistatic model included

only the additive and dominance effects, ignoring all

epistasis. The second model (the epistatic model)

includes all two-locus epistatic effects. In all analyses,

the same starting values and prior distributions were

used. The MCMC algorithm started with no QTL.

The starting values for the overall mean and the

residual variance were 0±0 and 1±0, respectively. The

truncated Poisson prior was used for the number of

QTL, with a mean of µ¯ 2 and a maximum number

of l
max

¯ 6. The prior for the overall mean was

distributed as N(0, 2). For the normal data, a flat but

bound prior was chosen for the residual variance. The

priors for all QTL effects were chosen to be N(0, 1) for

most analyses. The prior variance was slightly smaller

than the simulated phenotypic variance. To check the

influence of the prior variances of the QTL effects on
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Table 1. The true locations, additi�e and dominance effects of the simulated QTLs, and the epistatic effects

between the simulated QTLs. The heritability of each type of effect is defined as the proportion of the

phenotypic �ariance explained by that effect (in parentheses)

Design: I II III

Location: 25 55 25 55 25 55 85

a 0±6000 0±0000 0±4000 0±4000 0±3000 0±3000 0±0000
(0±1227) (0±0000) (0±0569) (0±0587) (0±0259) (0±0258) (0±0000)

d 0±7000 0±0000 0±4000 0±4000 0±4000 0±4000 0±0000
(0±0838) (0±0000) (0±0305) (0±0306) (0±0222) (0±0222) (0±0000)

aa 0±8500 0±4000 0±6000a 0±7000b 0±7000c

(0±1276) (0±0284) (0±0543) (0±0740) (0±0694)
ad 0±0000 0±4000 0±7000 0±7000 0±7000

(0±0000) (0±0217) (0±0356) (0±0643) (0±0544)
da 0±0000 0±4000 0±0000 0±0000 0±0000

(0±0000) (0±0235) (0±0000) (0±0000) (0±0000)
dd 0±0000 0±4000 0±0000 0±0000 0±0000

(0±0000) (0±0276) (0±0000) (0±0000) (0±0000)
b
!

®0±5000 ®0±7000 ®0±9000
σ#

e
1±0000 1±0000 1±0000

a Epistatic effect between the first QTL and the second QTL.
b Epistatic effect between the first QTL and the third QTL.
c Epistatic effect between the second QTL and the third QTL.

Table 2. Estimate of the posterior distribution of the QTL number and its expectation

Design Model Data type

Estimated distribution for l¯
Estimated
expectation0 1 2 3 4 5 6

I Non- Normal 0±0000 0±8628 0±1309 0±0061 0±0002 0±0000 0±0000 1±1437
epistasis Binary 0±0000 0±9269 0±0709 0±0021 0±0001 0±0000 0±0000 1±0754
Epistasis Normal 0±0000 0±0132 0±9821 0±0046 0±0001 0±0000 0±0000 1±9916

Binary 0±0000 0±0204 0±9789 0±0007 0±0000 0±0000 0±0000 1±9803
II Non- Normal 0±0000 0±0002 0±9021 0±0943 0±0034 0±0000 0±0000 2±1009

epistasis Binary 0±0000 0±0372 0±8709 0±0883 0±0036 0±0000 0±0000 2±0583
Epistasis Normal 0±0000 0±0001 0±9996 0±0003 0±0000 0±0000 0±0000 2±0002

Binary 0±0000 0±0812 0±9166 0±0021 0±0001 0±0000 0±0000 1±9211

Normala 0±0000 0±0001 0±9900 0±0081 0±0011 0±0007 0±0000 2±0123
Normalb 0±0000 0±0001 0±9998 0±0001 0±0000 0±0000 0±0000 2±0000

III Non- Normal 0±0000 0±0004 0±1797 0±5234 0±2594 0±0351 0±0020 3±1551

epistasis Binary 0±0000 0±0411 0±4788 0±3863 0±0862 0±0075 0±0001 2±5405
Epistasis Normal 0±0000 0±0000 0±0001 0±9961 0±0038 0±0000 0±0000 3±0039

Binary 0±0000 0±0000 0±0161 0±9823 0±0016 0±0000 0±0000 2±9855

a The prior variances for all QTL effects are 0±5.
b The prior variances for all QTL effects are 2±0.

the performance of MCMC, we also analysed the

normal data with two different prior variances (0±5
and 2±0) for design II in the epistatic model. Finally,

the tuning parameters of proposal distributions in the

Metropolis–Hastings sampling were chosen to be

2±0 cM for QTL locations.

The proposed MCMC sampler was run for 10'

cycles in each of the MCMC analyses after discarding

the first 2000 cycles for the burn-in period. On a Sun

SPARC 5 workstation, each analysis took approxi-

mately 9 hours. The chains were thinned (by saving

one iteration in every 50 cycles) to reduce serial

correlation in the stored samples so that the total

number of observations kept in the post-Bayesian

sample was 20000 for each parameter. The stored

samples were used to infer the statistical properties of

the parameters of interest.

(ii) Results

The approximate posterior distributions for the

number of QTL are presented in Table 2. For design
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Fig. 1. Analysis of design I under the non-epistatic
model. Histograms of the posterior QTL intensity for (a)
normal data and (b) binary data. The true positions of
the two QTLs are indicated by the arrows on the
horizontal axes.

I under the non-epistatic model, the posterior modes

are 1 for both types of data, whereas the true number

of QTLs is 2. The QTL intensity profiles for design I

under the non-epistatic model are given in Fig. 1. The

major peaks of the profiles for both the normal and

the binary data occur at 23 cM. Although the first

QTLs were located reasonably for both types of data,

the second QTLs were not detected. The fact that the

second simulated QTL remains undetected from this

analysis is expected because this QTL influences the

trait only through interaction with the first QTL and

exhibits no marginal effect.

For design I under the epistatic model, the posterior

modes for the number of QTLs are 2 for both types of

data, which coincides with the true number of QTLs.

The posterior expectations are also close to the true

number of QTLs (Table 2). These analyses strongly

support a model with two QTLs in the chromosome

Fig. 2. Analysis of design I under the epistatic model.
Histograms of the posterior QTL intensity for (a) normal
data and (b) binary data. The true positions of the two
QTLs are indicated by the arrows on the horizontal axes.

for both types of data. The QTL intensity profiles for

these analyses are depicted in Fig. 2a for the normal

data and Fig. 2b for the binary data. The QTL

intensity profiles are concentrated around the true

locations of the simulated QTLs. The first peak of

QTL intensities occurs at 25 cM for normal data and

24 cM for binary data, while the second peak occurs

at 56 cM for normal data and 52 cM for binary data.

The estimates of QTL locations are close to the true

values. The results indicate that the epistatic effect

model allows the detection of QTLs with no marginal

but epistatic effects.

For design II, the two simulated QTLs were both

detected in all analyses. The posterior modes for the

posterior distributions of the QTL number overlaps

with the true number for the two types of data under

the non-epistatic and the epistatic models (Table 2).

These results are expected because both QTLs were
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Fig. 3. Analysis of design II under the non-epistatic
model. Histograms of the posterior QTL intensity for (a)
normal data and (b) binary data. The true positions of
the two QTLs are indicated by the arrows on the
horizontal axes.

simulated to have marginal effects in design II.

However, it has been observed from Table 2 that the

estimated posterior variance of the number of QTL

under the epistatic model is smaller than that under

the non-epistatic model. The QTL intensities are

shown in Fig. 3 and 4 for the non-epistatic and the

epistatic models, respectively. The fact that each

graph has two major peaks apparently supports two

QTLs residing at this chromosome. In addition, the

graphs are concentrated around the simulated loca-

tions, indicating that the locations of the two QTLs

are estimated reasonably. Comparing Fig. 3 and Fig.

4, however, it can be seen that the posterior variance

of the locations under the epistatic model is smaller

than that under the non-epistatic model. These results

indicate that allowing for epistasis when it is present

should improve statistical power to detect QTLs and

the precision of their localization.

In design III, three QTLs were simulated at 25 cM,

55 cM and 85 cM, respectively. The first and the

second QTLs, which both show marginal effects, were

detected in the non-epistatic model analysis for the

normal data and the binary data (Fig. 5). The third

QTL, which exerts no marginal effects, was estimated

very inaccurately for the normal data and remained

undetected in the binary data analysis. With the

inclusion of epistatic effects, however, all three

simulated QTLs were detected. In the epistatic model

analysis, the posterior modes for the number of QTLs

coincide with the true number of QTLs for both types

of data, and the posterior expectations are essentially

equal to the true number of QTLs (Table 2). It can be

seen, from Table 2, that the estimated posterior

variance of the number of QTLs under the epistatic

model is much smaller than that under the non-

epistatic model. The QTL intensity profiles for

epistatic model analyses are depicted in Fig. 6a for the

normal data and Fig. 6b for the binary data. The QTL

intensity profiles are concentrated around the true

locations of the three simulated QTLs.

The chromosome regions with sufficiently high

posterior QTL intensity are given in Table 3 for the

non-epistatic model and Table 4 for the epistatic

model. We used only the posterior samples, in which

QTL locations fall into these regions, to estimate the

QTL effects and the QTL locations. From Table 3, it

can be observed that the estimates of the dominance

effects are rather inaccurate, particularly in design III.

Under the epistatic model, however, the estimates of

the QTL effects are reliable in most cases. The

estimates of the QTL locations are close to the

simulated values for all cases. As expected, all

parameters of interest were estimated more accurately

in normal data analysis than in binary data analysis.

The estimates and standard errors for the overall

mean and the residual variance are also given in

Tables 3 and 4. From Table 3, we can see that the

residual variances were slightly overestimated in

designs I and II, and seriously overestimated in design

III, for the normal data when ignoring the epistatic

effects. This result is expected because the variation of

the epistasis is absorbed into the residual error when

ignoring the epistatic effects. It is also observed that

the overall means were overestimated in design I and

design III. Under the epistatic model, the estimates of

the residual variance and the overall mean are close to

the simulated values for all analyses (Table 4).

Plots of the changes in the number of QTLs against

the number of the iterations for all analyses were

drawn using the posterior sample of the QTL number

(not shown here). These plots showed that the MCMC

algorithm mixes well over the number of QTL,

changing frequently but being centralized around the

posterior mode of the QTL number. Under the non-

epistatic model, the observed acceptance proportions
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Fig. 4. Analysis of design II under the epistatic model. Histograms of the posterior QTL intensity for (a) normal data
for prior variance τ#¯1±0, (b) binary data for prior variance τ#¯1±0, (c) normal data for prior variance τ#¯ 0±5, and
(d ) normal data for prior variance τ#¯ 2±0. The true positions of the two QTLs are indicated by the arrows on the
horizontal axes.

for both adding and deleting QTLs were approxi-

mately 7% for both the normal and the binary data in

all designs. The acceptance rates for the analyses of

the epistatic model in design I and II were approxi-

mately 3%. This is expected because the epistatic

model has many more parameters than the non-

epistatic model. The acceptance rates for the analyses

of the epistatic model in design III were slightly lower.

In Bayesian analysis it is important to investigate

the influences of the choice of initial values and prior

distributions for the unknowns on the performance of

the MCMC algorithm. We found that our algorithm

is quite robust to the initial values of the number of

QTLs. For example, when we started with l
!
¯ 0, the

number of QTLs l increased to the simulated value

after several hundred iterations, and then changed

frequently around the true value, whereas when we

started with l
!
¯ 6, the number of QTLs quickly

decreased to 0 and then increased to the true value,

and subsequently stabilized around the true value. We

also tried different initial values for the overall mean,

the residual variance and other parameters and found

little influence on the MCMC performance.

We also investigated the sensitivity to the choice of

prior variances for QTL effects. For design II, the

posterior distributions of the QTL number and the

QTL intensities for three different prior variances are

given in Table 2 and Fig. 4, respectively, for the

epistatic model analysis of the normal data. The

posterior mode of the number of QTLs does not seem

to be affected by the choice of prior variance. The

posterior probabilities and the posterior mean were

slightly affected by the choice of prior variance (Table

2). In general, reducing the prior variance favours a

higher number of QTLs and a larger posterior mean.

The QTL intensity profiles are compared for three

different prior variances (Fig. 4). The prior variance

does not seem to affect the estimates of the locations
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Fig. 5. Analysis of design III under the non-epistatic
model. Histograms of the posterior QTL intensity for (a)
normal data and (b) binary data. The true positions of
the two QTL are indicated by the arrows on the
horizontal axes.

of QTLs. The estimates for the population mean, the

residual variance and the QTL effects are essentially

the same for the three choices of prior variance (Table

4).

5. Discussion

Epistasis, an important genetic component underlying

many complex traits, has not been extensively explored

in QTL analysis. In this study, we have developed a

Bayesian approach for mapping epistatic QTLs for

both normally distributed andbinary traits in arbitrary

mating designs derived from two inbred lines. In QTL

mapping studies, estimating the number of QTLs is of

major importance. To further understand the genetic

architecture of a complex trait, it is also important to

know which of all the possible main and interaction

effects are contributing to the genetic variance. Our

Bayesian method can make a joint statistical inference

Fig. 6. Analysis of design III under the epistatic model.
Histograms of the posterior QTL intensity for (a) normal
data and (b) binary data. The true positions of the two
QTLs are indicated by the arrows on the horizontal axes.

about the number, locations, marginal and epistatic

effects of QTL. In the proposed reversible jump

MCMC algorithm, the number of QTLs is updated

via two reversible jump steps : adding one QTL into

the model or removing one QTL from the model.

Such an algorithm is expected to be useful in situations

where there is at least a significant marginal effect of

one QTL. The proposed method has been successfully

applied to three simulated designs. However, the

algorithm may not be adequate in cases where none of

the QTL has marginal effects but they exhibit an

epistatic effect. In such situations, we need to add two

QTLs into the model simultaneously. Such an ad-

ditional reversible jump step can easily be incorporated

into our procedure.

In this study we included all possible QTL effects in

the model and applied the reversible jump only to the

number of QTLs. Our method shows that sampling of

new parameters under the epistatic model can be
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Table 3. Non-epistatic model: highest posterior QTL intensity inter�al, Bayesian mean estimates of QTL

locations and allelic and dominance effects. Posterior standard errors of the estimates are gi�en in parentheses

Design
Data
type Interval

Sum of
intensity

Mode of
location

Mean of
location a d b

!
σ#

e

I Normal 15–34 0±985 23 23±101 0±642 0±271 0±032 1±299
(1±150) (0±151) (0±148) (0±071) (0±174)

Binary 16–33 0±998 23 23±664 0±587 0±294 ®0±113
(1±168) (0±168) (0±184) (0±350)

II Normal 14–30 0±925 23 22±704 0±408 0±296
(1±149) (0±149) (0±147) ®0±486 1±224

52–65 0±966 56 56±161 0±569 0±549 (0±079) (0±067)
(2±596) (0±115) (0±138)

Binary 14–35 0±944 26 24±662 0±438 0±295
(1±197) (0±197) (0±207) ®0±529

52–65 0±979 58 57±378 0±619 0±611 (0±124)
(2±680) (0±165) (0±184)

III Normal 16–35 0±999 25 25±722 0±609 ®0±029 0±126 1±708
(1±286) (0±286) (0±383) (0±115) (0±104)

44–60 0±809 54 51±847 0±433 ®0±184
(4±119) (0±223) (0±257)

Binary 16–35 0±999 30 27±088 0±455 ®0±184 0±267
(1±233) (0±233) (0±360) (0±116)

44–66 0±941 57 55±499 0±348 ®0±347
(4±696) (0±174) (0±168)

performed using the reversible jump MCMC al-

gorithm. The model determination in terms of the

QTL effects was inferred by simply examining the

posterior estimates of the QTL effects. In all analyses

of three simulated designs, Bayesian credibility inter-

vals do not include 0 for all existing QTL marginal

effects and epistatic effects and include 0 for all non-

existing effects, which strongly supports the epistatic

models for the simulated data. However, we found

that the accurate estimation of epistatic effects depends

strongly on the size of mapping population. With

insufficient sample sizes, therefore, more formal

statistical tools, e.g. Bayes factor, may be required to

assess the model. Another possibility to determine the

model in terms of QTL effects is to include the number

of epistatic effects as a random variable. Although this

strategy will add another level of complexity to the

analysis, it deserves further study.

Conditional on marker information, QTL seg-

regation indicators are highly dependent of the QTL

position. Therefore, the two groups of variables must

be updated jointly using the Metropolis–Hastings

algorithm. This joint updating strategy has been

adopted in our previous work (Yi & Xu, 2001).

However, we found in this study that extra steps to

redraw the QTL meiosis indicators could be omitted.

This omission does not affect the behaviour of the

MCMC algorithm, but does speeds it up. A similar

algorithm has also been used in the reversible jump

MCMC under the identity-by-descent-based variance

component model, in which the corresponding IBD

matrices are formed when the QTL position is updated

(Yi & Xu, 2000b). It has been shown, from our

extensive simulation studies, that the joint updating

scheme can greatly improve the mixing of the MCMC.

The mixing behaviour of the reversible jump

algorithm strongly depends on the method of gen-

erating new parameters when a new QTL is proposed.

Sampling new parameters in an arbitrary fashion and

making no reference to the current values of other

parameters may result in a rather low acceptance rate.

The problem can be quite serious when the number of

new parameters to be sampled is large, as seen in our

epistatic model. Previously, the proposed new QTL

effects have always been sampled from their prior

distributions (Stephens & Fisch, 1998; Sillanpa$ a$ &

Arjas, 1998, 1999; Yi & Xu 2000a, 2001). As such, the

mixing behaviour is highly sensitive to the prior

chosen. To facilitate a better fit to the data, the

current effects of old QTLs should be modified when

a new QTL is added to the model (Satagopan &

Yandell, 1998). However, this is computationally

infeasible in the epistatic model due to the need for

inverting a high-dimensional matrix. In this study, we

generated the new QTL effects from the conditional

posterior distribution p (b* r y, θ, W*) via a sequential

sampling scheme. This has eliminated the need for

inverting a large matrix. By combining the current

values of other parameters and the phenotypic values

in the proposal distribution, the newly generated

parameters fit the data better and thus reduce the

dependence on the choice of the prior variance of

QTL effects. Another advantage of the proposed

algorithm is that the Jacobian involved in the
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Table 4. Epistatic model: highest posterior QTL intensity inter�al, Bayesian mean estimates of QTL locations and allelic and dominance effects. Posterior

standard errors of the estimates are gi�en in parentheses

Design Data type Interval
Sum of
intensity

Mode of
location

Mean of
location a d aa ad da dd b

!
σ#

e

I Normal 18–32 0±961 25 24±502 0±727 0±438 0±759 0±132 ®0±182 0±164 ®0±366 1±002
(1±235) (0±235) (0±249) (0±223) (0±262) (0±265) (0±298) (0±221) (0±067)

48–63 0±984 56 55±605 ®0±038 ®0±076
(2±371) (0±243) (0±256)

Binary 18–32 0±985 24 24±091 0±529 0±561 1±036 0±114 0±128 0±204 ®0±723
(1±382) (0±382) (0±383) (0±370) (0±438) (0±439) (0±438) (0±371)

47–61 0±926 52 52±783 0±153 ®0±156
(2±574) (0±386) (0±394)

II Normal 18–32 0±988 25 24±814 0±304 0±298 0±325 0±568 0±530 0±484 ®0±564 0±934
(1±148) (0±148) (0±186) (0±147) (0±188) (0±196) (0±238) (0±145) (0±064)

50–61 0±986 55 55±053 0±404 0±357
(2±031) (0±146) (0±190)

Binary 18–35 0±863 26 26±428 0±313 0±363 0±435 0±503 0±538 0±291 ®0±730
(1±291) (0±291) (0±311) (0±287) (0±366) (0±358) (0±214) (0±289)

50–63 0±973 56 55±204 0±584 0±657
(2±401) (0±289) (0±351)

Normala 18–32 0±886 25 24±835 0±305 0±303 0±209 0±559 0±519 0±470 ®0±562 0±944
(1±144) (0±144) (0±181) (0±145) (0±187) (0±193) (0±228) (0±141) (0±064)

50–63 0±994 55 55±012 0±398 0±359
(2±096) (0±147) (0±183)

Normalb 18–32 0±987 25 24±871 0±283 0±294 0±234 0±585 0±556 0±492 ®0±561 0±952
(1±154) (0±154) (0±191) (0±151) (0±193) (0±201) (0±241) (0±150) (0±064)

50–63 0±990 55 55±014 0±391 0±346
(2±122) (0±153) (0±194)

III Normal 20–34 0±999 26 25±576 0±311 0±395 0±652c 0±337 0±118 ®0±082 ®0±810 1±081

(1±334) (0±133) (0±181) (0±144) (0±278) (0±277) (0±210) (0±159) (0±071)
46–61 0±990 53 52±481 0±303 0±296 0±727d 0±679 0±068 ®0±118

(2±451) (0±164) (0±212) (0±134) (0±164) (0±168) (0±201)
77–90 0±997 84 83±257 0±022 ®0±099 0±599e 0±432 0±276 0±213

(1±851) (0±130) (0±159) (0±149) (0±317) (0±323) (0±291)
Binary 20–34 0±964 26 25±451 0±405 0±295 0±661c 0±266 0±166 0±120 ®0±576

(1±206) (0±206) (0±253) (0±217) (0±208) (0±264) (0±288) (0±241)
46–61 0±961 52 52±516 0±413 0±294 0±678d 0±402 0±033 ®0±093

(2±719) (0±224) (0±274) (0±203) (0±281) (0±274) (0±264)
77–90 0±983 82 82±872 0±034 ®0±133 0±673e 0±303 ®0±061 0±165

(2±370) (0±198) (0±245) (0±205) (0±217) (0±286) (0±261)

a The prior variances for all QTL effects are 0±5.
b The prior variances for all QTL effects are 2±0.
c Epistatic effect between the first QTL and the second QTL.
d Epistatic effect between the first QTL and the third QTL.
e Epistatic effect between the second QTL and the third QTL.
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acceptance probability can be easily evaluated because

adding or deleting a QTL does not affect parameters

of other QTLs.

The reversible jump MCMC algorithm is computa-

tionally intensive. To obtain reliable results from the

MCMC output, we have to run a sufficiently long

chain to ensure convergence of MCMC, and choose a

subsample from this chain to reduce the serial

correlation. Recently, Brooks & Giudici (1998) pro-

posed some criteria to evaluate the convergence of the

chain. In real data analyses, these diagnostic tools

should be used to assess convergence of reversible

jump MCMC simulations.
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