
Analysis of Mobile 3-D Radar
Error Registration when Radar Sways

with Platform
L. Chen1, G.H. Wang1, Y. He1 and I. Progri2

1 (Department of Electronic and Information Engineering, Naval Aeronautical
and Astronautical University, Yantai, Shandong, 264001, China)

2 (Giftet Inc., Worcester, MA 01604 USA)
(E-mail: chenlei_hjhy@yahoo.com)

For mobile radars installed on a gyro-stabilised platform (GSP) that can steadily follow
an East-North-Up (ENU) frame, attitude biases (ABs) of the platform and offset biases (OBs)
of the radar are linear dependent variables. Therefore ABs and OBs are unobservable in the
linearized registration equations; however, when combining them as new variables, the system
becomes observable, and this model has been called the unified registration model (URM).
Unlike GSP mobile radars, un-stabilised GSP (or UGSP) mobile radars are installed on the
platform directly and rotate with the platform simultaneously. For UGSP, it is testified
that both types of biases are independent and observable because the time-varying attitude
angles (AAs)1 of the platform are included in the registration equations, which destroy the
dependencies of both kinds of biases and lead us to propose a completely different linearized
registration model– the All Augmented Model (AAM). AAM employs all OBs and ABs in
the state vector and a Kalman filter (KF) to produce their estimates. Numerical simulation
results show that the estimated performance of AAM is close to the Cramér-Rao lower bound
(CRLB) and that the Root Mean Square Errors (RMSEs) of the rectified measurements by
using AAM are more than 500m smaller than by URM in all directions.
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1. INTRODUCTION. Multi-sensor data fusion has been widely used in
modern civilian and military areas because sensor networks can provide more
comprehensive information and more accurate state estimation of the target than a
single sensor, such as Command, Control, Communications, Computers, Intelligence,
Surveillance and Reconnaissance (C4ISR) and air-control systems (Progri, 2011;
2014). However, before the benefits of multi-sensor integration can be realized,

1 AAs here represent the very general meaning of attitude angles. If we describe an equation or something
about a derivation, we must state carefully whether we are using True Attitude Angles (TAAs).
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the sensor registration problem (or alignment) must be addressed because of the
existence of unavoidable systematic biases (SBs) which make the measurements
deviate from the true target coordinates (TTCs). In this situation, when different
sensors’ measurements are transformed to a common reference frame, the estimation
accuracy of the target location will be decreased, also, data disassociation and
redundant tracks will occur, which can seriously harm the fusion. To overcome
these adverse influences, several registration methods were developed (see Wang et al.
(2012) for a brief introduction to these methods).
In contrast to stationary radar, mobile radar measurements contain simultaneous

ABs of the platform including yaw, pitch and roll biases, which may occur due to
accumulated biases in the gyros in the Inertial Measurement Units (IMU) of the
Inertial Navigation System (INS) (Wang et al., 2012; Carlson and Bott, 1973; King,
1997). The most difficult thing for mobile radar registration is to estimate OBs and
ABs simultaneously since their coupling is inevitable. According to different
installation methods, mobile GSP or UGSP radar registration models should be
considered because of different types of radar measurements (Wang et al., 2012; Bhatti
and Ochieng, 2007). First, GSP radars are installed on a platform that can steadily
follow a local ENU frame (Progri, 2011; 2014) by using real-time attitude information
provided by the platform INS; i.e., the radar is insulated from the platform AAs. ABs
in this situation assume a set of Euler angles between radar sensitive and ENU axes.
Second, UGSP radar is: (1) installed directly on the platform with their sensitive axes
coincident with the platform frame and (2) change simultaneously when the platform
moves. Here, the true attitude angles (TAAs) of the platform are included in radar
measurements. When these measurements are converted to a common reference
frame, the real-time attitude angle information (containing ABs) provided by the INS
is needed to rectify radar raw measurements; therefore, the common attribute for both
kinds of mobile radar registration is to estimate OBs and ABs simultaneously.
For GSP mobile radar registration, previous works include: (1) Dela Cruz et al.

(1992) and Helmick and Rice (1993) proposed a two-stepped method which estimates
two types of biases separately by using KF twice, and this can only obtain relative bias
estimations. (2) Bar-Shalom (2001) introduced the observability analysis for the first
time. (3) Wang et al. (2012) combined all OBs and ABs as a state vector to establish a
registration model called AAM; however, AAM has poor estimation performance
especially for the attitude and elevation biases because it does not consider the
dependencies among biases. (4) We derived the equivalent radar measurement error
expressions caused by ABs and proved that azimuth and yaw biases are dependent,
and they should be united to form a new variable and then the system is observable
(Chen et al., 2012). We successively proposed an Optimized Bias Estimation Model
(OBEM) (Wang et al., 2012) and URM (Chen et al., 2013) because in both models,
the roll and pitch biases are omitted from the state vector; however, the estimation
results of radar OBs contain the influences of ABs; therefore, both kinds of biases are
unified to form new variables to make the new registration models observable. Since
the magnitudes of the unified variables are not constants and change with different
target coordinates2, the difference of OBEM and URM is that the latter divided the

2 “Target coordinates” here represents the very general meaning of target location. If we describe an
equation or a derivation, we must state very carefully whether it is True Target Coordinates (TTCs) that we
are referring to.
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unified variables into two classes: (1) the first class that does not vary when the target
moves represents the dependent component among different biases; and (2) the second
class that changes with different target coordinates represents the independent
component. For GSP mobile radars, since the GSP can track the ENU frame,
variations of the target coordinates are small between two successive observation
instances; the independent components are also small and are viewed as insignificant
noises by URM when establishing the state equation. However, OBEM omits these
insignificant variations. Since these variations are small, OBEM and URM have
approximate performances. (5) For UGSP mobile radars, Herman and Poore
(2006) and Kragel et al. (2007) analysed the dependencies between different biases
qualitatively by using Singular Value Decomposition (SVD), yielding similar possible
dependencies among different biases as those of Chen et al. (2012).
The main purpose of this work is to establish the basic registration model for UGSP

mobile radars and theoretically improve the understanding of mobile radar
registration technology. For UGSP mobile radar, since radars simultaneously rotate
with the platform, the target coordinates relative to radar measurement frame change
rapidly, which weakens the dependencies among OBs and ABs and make the system
observable, then both kinds of biases can be independently estimated and AAM may
perform well although it cannot be used for GSP mobile radars because of
dependencies and the un-observability of biases. On the contrary, URM may be
inapplicable because the independent components viewed as noises increase rapidly in
magnitude. In order to reconcile these results, AAM and URM are derived for UGSP
mobile radar registration respectively. A simulated track is used to analyse both
models, and the influences of the platform AAs on the observability of the system are
shown. Radar OBs include slant, the gain of slant, azimuth, and elevation biases;
radar measurements include the influences of the platform TAAs, TTCs, radar OBs
and random measurement noises. The navigation information provided by an INS
include the true yaw, pitch, roll angles of platform, and corresponding ABs. We
assume: (1) all systematic biases are constants; (2) both radars have accurate
geographical information of themselves; (3) radars are synchronized and have the
same sampling intervals.
This paper is organized as follows. In Section 2, a basic description for biased

mobile radar is given. The detailed derivation of AAM for UGSP mobile radar
registration is given in Section 3 and the observability analysis for AAM is given in
Section 4. In Section 5, the concise derivation of URM is given for comparison and
simulated track data is used to test the performance of AAM. Finally, Section 6
summarizes the results. In Appendices A and B, the detailed derivations of AAM and
URM applied to UGSP mobile radar registration are given, respectively.

2. PROBLEM DESCRIPTION. Consider an ith radar, where i={1, 2},
installed on an ith moving ship. The geographic coordinates of the ith ship are latitude
Lsi, longitude Rsi, and altitude Hsi, which are known in real time. Four reference
frames will be defined first for further discussions (Herman and Poore, 2006).

(1) The body frame or platform frame is defined as a Cartesian rectangular
coordinate system fixed relative to the ship. Its origin locates at the barycentre
of the ship, its body axes are typically oriented relative to the ship such as x, y,
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and z axis denotes starboard, ahead, and dry (and right, nose, and top for an
aircraft), respectively.

(2) The measurement frame or sensor frame, fixed relative to radar, with the
centre of the sensor antenna taken as its origin. For UGSP mobile radar, the
measurement frame is parallel to the body frame (see Figure 1(a)). Its y axis
denotes zero-degree azimuth, and clock-wise direction denotes the increment
of azimuth.

The subscript “p” (so-called “platform”) was used to identify body frame,
and “s” denotes sensor frame.

(3) ENU frame has the same origin with the body frame; its x, y, and z axis denotes
east, north, and up, respectively.

(4) Earth-centred Earth-fixed (ECEF) frame (Progri, 2011; 2014) has its origin
located at the centre of the earth (Wang et al., 2013): its x-axis passes through
the Greenwich meridian, its z-axis coincides with the Earth’s axis of rotation
and its y-axis lies in the equatorial plane to form a right-handed coordinate
system.

At each sampling instance, the rotation of the ship around its barycentre can pass
on to the sensor frame which includes yaw (or course), pitch, and roll angles. Both
frames have the same rotation angles because of the fixed joint between the sensor and
the ship. These angles are defined in local ENU frame (“local” denotes that the origins
of ENU and the body frames coincide) and denote the angles between the
corresponding axes of both frames.
As shown in Figure 1(b), the transformation from the body frame to ENU is

accomplished by first rotating about the y-axis of the platform frame by the roll angle
ψ, then rotating about the intermediate x-axis by the pitch angle η, and rotating about
the final z-axis by the yaw angle ϕ. The axes drawn in dashed lines in Figure 1(b)
are intermediate axes. Customarily, the positive directions of ϕ and ψ abide by the
left-hand rule about their corresponding rotation axes, and η abides by the right-hand
rule (Figure 1(a)).
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Figure 1. Illustration of UGSP mobile radar. (a) Illustration of body frame and sensor frame;
(b) Conversion from body frame to ENU frame.

454 L. CHEN AND OTHERS VOL. 67

https://doi.org/10.1017/S0373463313000799 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000799


Measurements are generated in the sensor frame which include the TTCs relative
to radar i such as true target range rit, azimuth θit, and elevation εit; OBs such as range
bias Δri, the gain of range kri , azimuth bias Δθi, and elevation bias Δεi; random
measurement errors such as range noise δri, azimuth noise δθi, and elevation noise
δsi, these noises are additive Gaussian white noises. Most importantly, the true
(not biased) AAs of the platform such as the true roll angle ψit, pitch ηit, and yaw ϕit
are included in the measurements, which are different from GSP mobile radar
measurements.
The navigation information generated by the INS of the ith ship for rectifying

radar raw measurements include the ship’s roll angles, ψi, pitch, ηi, and yaw, ϕi. Also,
additive ABs are included in each output such as roll bias Δψi, pitch bias Δηi, and yaw
bias Δϕi as shown in Figure 1(b). (Random noises of the INS are not considered for
brevity. Positive directions of ABs are defined the same as their corresponding AAs.)
The main objective for mobile radar registration is to simultaneously: (1) estimate

OBs and ABs using both radars’ raw measurements; (2) use these estimations to rectify
radar raw measurements. The registration model is discussed next in greater detail.

3. REGISTRATION MODEL. The main objective of the registration
algorithm is to establish the equivalent measurement equation in a common reference
frame: TTCs of the same target included in both radars’ raw measurements are equal
when they are converted to a common reference frame. Figure 2 illustrates the
following adopted steps. First, radar OBs and random measurement errors included
in the raw measurements are removed to obtain TTCs in the sensor frame. This
is followed by a translation from the sensor frame to the platform frame because
of the different locations of their origins. Then, the conversion to ENU frame is
accomplished according to the navigation information provided by the INS that
include ABs. Finally, the conversion from ENU to ECEF frame (Upadhyay et al.,
1999) is used to obtain TTCs in the common reference frame.

3.1. The Equivalent Measurement equation.
3.1.1. TTCs in the platform frame. Given the ith radar measurements [ri (k),

θi (k), εi (k)], OBs [Δri kri, Δθi, Δεi], and random measurement errors [δri, (k), δθi (k),
δεi (k)], we can obtain TTCs in the sensor frame as follows

Xi s(k) =
xi s(k)
yi s(k)
zi s(k)

2
4

3
5

=
ϒi(k)sϑi(k)cei(k)
ϒi(k)cϑi(k)cei(k)
ϒi(k)sei(k)

2
4

3
5 ϒi(k) = ri k( ) − Δri − kririt(k) − δri(k)

ϑi(k) = θi(k) − Δθi − δθi(k)
ei(k) = εi(k) − Δεi − δεi(k)
ca = cos(a), sa = sin(a)

8>><
>>: (1)

radar raw
measurements

TTCs in
platform

frame

TTCs in
sensor
frame

compensate
origin

translation
r∆ kr θ∆ ε∆

rδ θδ εδ

compensate
φ η ψ
φ∆ η∆ ψ∆

TTCs in
ENU
frame

coordinates
conversion

TTCs in
ECEF
frame

Figure 2. Conversion of TTCs from radar raw measurements to ECEF frame for UGSP mobile
radar.
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where Xi_s(k) denotes TTCs in the sensor frame at time instant k. Since the true range
rit(k) is unknown, it can be approximated by the measurement ri (k).
Transition of TTCs from the sensor frame to the platform frame only contains

a translation, which can be expressed as

Xi p(k) = xi p(k), yi p(k), zi p(k)
� �T= Xi s(k) + ΔXi s2p ≈ Xi s(k) (2)

where the superscript “T” denotes vector or matrix transposition, Xi_p(k) depicts
TTCs in platform frame. ΔXi_ s2p represents the position vector of the sensor frame
origin ois in the platform frame, that is, the sensor installation position relative to the
barycentre of the ship. ΔXi_ s2p is a constant vector, it can be omitted in the paper for
brevity because it is very small in magnitude compared with the target position vectors
as shown in the right hand approximation of Equation (2).
Substituting Equation (1) into Equation (2), taking radar SBs and measure-

ment errors as variables, using first-order Taylor series expansion about zero
vectors (or Maclaurin Theorem expansion about the origin), Equation (2) can be
approximated as

Xi p(k) ≈ Xi(k) + Ai(k)βi(k) + Ci(k)wi(k) (3)
where

Xi (k) =

ri(k)sθi(k)cεi(k)|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
xi(k)

ri(k)cθi(k)cεi(k)|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
yi(k)

ri(k)sεi(k)|fflfflfflfflffl{zfflfflfflfflffl}
zi(k)

2
666666664

3
777777775
;Ai(k) = ∂Xi p(k)

∂βi(k)
���� βi(k) = 0

wi(k) = 0

;

Ci(k) =∂Xi p(k)
∂wi(k)

���� βi(k) = 0

wi(k) = 0

(3a)

βi(k) = Δri, kri,Δθi,Δεi[ ]T ; wi(k) = δri(k), δθi(k), δεi(k)[ ]T (3b)

3.1.2. Transition from platform frame to ENU frame. Transition from the
platform frame to ENU can be described by three sequential rotation transformations.
Each transformation can be described as one rotation matrix. According to the
polarity definition of the AAs and the transition order, the true rotation matrix at
observation time k can be written as true: (a) roll, Tψit

(k); (b) pitch, Tηit (k); and (c) yaw,
Tϕit (k), rotation matrices

Tψit
(k) =

cψ̃i(k) 0 −sψ̃i(k)
0 1 0

sψ̃i(k) 0 cψ̃i(k)

2
4

3
5; ψ̃i(k) = ψi(k) − Δψi (4)

Tηit (k) =
1 0 0
0 cη̃i(k) −sη̃i(k)
0 sη̃i(k) cη̃i(k)

2
4

3
5; η̃i(k) = ηi(k) − Δηi (5)
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Tϕit (k) =
cϕ̃i(k) sϕ̃i(k) 0
−sϕ̃i(k) cϕ̃i(k) 0

0 0 1

2
4

3
5; ϕ̃i(k) = ϕi(k) − Δϕi (6)

The above rotation matrices are orthogonal matrices which satisfy TT=T−1.
Then, TTCs in ENU frame can be written as

Xi ENU (k) = xi ENU (k), yi ENU (k), zi ENU (k)
� �T= Tϕit (k)Tηit (k)Tψit

(k)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Tit p2ENU (k)

Xi p(k) (7)

Using first-order Taylor series expansion about attitude angle measurements,
Tit_p2ENU(k) can be approximated as

Tit p2ENU (k) ≈ Tϕi (k)Tηi (k)Tψi
(k)|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Ti p2ENU (k)

I+ Δi(k)[ ] (8)

where:

Δi(k) =
0 Δ12 Δ13

−Δ12 0 Δ23

−Δ13 −Δ23 0

2
4

3
5 Δ12 = −sψi(k)Δηi − cηi(k)cψi(k)Δϕi

Δ13 = sηi(k)Δϕi + Δψi
Δ23 = cψi(k)Δηi − cηi(k)sψi(k)Δϕi

8<
: (8a)

Detailed analytical derivations for Equation (8) are provided in Appendix A.
Substituting Equation (8) into Equation (7), omitting higher order terms, yields the
conversion of TTCs in the ENU frame

Xi ENU (k) ≈ Ti p2ENU (k) · I+ Δi(k)[ ][Xi(k) + Ai(k)βi(k) + Ci(k)wi(k)] ≈
Xi(k) + Ai(k)βi(k) + Ci(k)wi(k) + Δi(k)Xi(k)
� ��

(9)

The last term of the right hand side of Equation (9) is

Δi(k)Xi(k) = Di(k)ai(k) (10)
where:

ai(k) = Δϕi,Δηi,Δψi

� �T (10a)

Di(k) =

d11(k)|fflffl{zfflffl}
−cψi (k)cηi (k)yi(k)+sηi (k)zi(k)

d12(k)|fflffl{zfflffl}
−sψi (k)yi(k)

d13(k)|fflffl{zfflffl}
zi(k)

d21 k( )|fflffl{zfflffl}
cηi (k)cψi (k)xi(k)−cηi (k)sψi (k)zi(k)

d22(k)|fflffl{zfflffl}
sψi (k)xi(k)+cψi (k)zi(k)

d23(k)|fflffl{zfflffl}
0

d31(k)|fflffl{zfflffl}
−sηi (k)xi(k)+cηi (k)sψi (k)yi(k)

d32(k)|fflffl{zfflffl}
−cψi (k)yi(k)

d33(k)|fflffl{zfflffl}
−xi(k)

2
66666664

3
77777775

(10b)

Substituting Equation (10) into Equation (9), we can obtain

Xi ENU (k) ≈ Ti p2ENU (k) Xi(k) + Ai(k)βi(k) + Ci(k)wi(k) +Di(k)ai(k)
� � (11)

3.1.3. Transition from ENU to ECEF frame. Assuming that the geographic
coordinates of the ith ship can be obtained from Global Positioning System (GPS) in
real-time (Progri, 2011; 2014), omitting constant position errors between the GPS
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antenna and the barycentre of the ship, the transition of TTCs from ENU to ECEF
frame can be written as (Zhou et al., 1999):

Xi ECEF (k) = Xis(k) + Ti(k) ·
Xi ENU (k) ≈

Ti p2ENU k( ) Xi(k) + Ai(k)βi(k)+
Ci(k)wi(k) +Di(k)ai(k)

� �8<
: (12)

where Xi_ECEF (k) denotes TTCs in ECEF obtained from the measurements of the
ith radar. Xis denotes the ith radar ECEF coordinates converted from its geographic
coordinates. Ti is the rotation matrix. Xis(k) and Ti(k) are only correlated with the
geographic coordinates of the ith radar at time k, and,

Ti(k) =
−sRsi(k) −sLsi(k)cRsi(k) cLsi(k)cRsi(k)
cRsi(k) −sLsi(k)sRsi(k) cLsi(k)sRsi(k)
0 cLsi(k) sLsi(k)

2
4

3
5 (12a)

3.1.4. The equivalent measurement equation. For registration equations, the
selection of the state variables is critical. Usually all the biases are selected as state
variables, however for the GSP mobile radar, since ABs are dependent with radar
OBs, the dependent parts should be combined to form new state variables, or the
system is unobservable. URM (Chen et al., 2012) was proposed for just this reason.
For UGSP mobile radar, AAs of the platform are included in the registration
equations, which make the system observable (See Observability Analysis in Section
4). Thus, it is practical to select both OBs and ABs as variables and the algorithm
yields the absolute attitude bias estimations as well as absolute OB estimations. The
following is the establishment process of the equivalent measurement equation
for registration.
Since both radars have the same initial condition (or starting ECEF vector)

X1 ECEF (k) = X2 ECEF (k) (13)
Substituting Equation (12) into Equation (13), the equivalent measurement

equations can be written as

Xi ECEF ,i={1,2}(k) =
Xis(k) + Ti(k)Ti p2ENU (k) Xi(k) + Ai(k)βi(k) + Ci(k)wi(k) +Di(k)ai(k)

� ��
(14)

All OBs and ABs of both radars are selected in the state vector as (the order of the
variables can be changed)

β = Δr1, kr1,Δθ1,Δε1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
βT1 (k)

,Δr2, kr2,Δθ2,Δε2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
βT2 (k)

,Δϕ1,Δη1,Δψ1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
aT1 (k)

,Δϕ2,Δη2,Δψ2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
aT2 (k)

2
664

3
775
T

(15)

Since all OBs and ABs are selected as state variables, we call this model as AAM.
According to Equation (15), Equation (14) can be rewritten as:

Z(k) = H(k)β(k) + Γ(k)w(k) (16)
where:

Z(k) = X2s(k) − X1s(k) + T2(k)T2 p2ENU (k)X2(k) − T1(k)T1 p2ENU (k)X1(k) (16a)
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H(k) = T1(k)T1 p2ENU (k)A1(k),−T2(k)T2 p2ENU (k)A2(k),
�
T1(k)T1 p2ENU (k)D1(k),−T2(k)T2 p2ENU (k)D2(k)

� (16b)

Γ(k) = T1(k)T1 p2ENU (k)C1(k), −T2(k)T2 p2ENU (k)C2(k)
� � (16c)

w(k) = wT
1 (k), wT

2 (k)
� �T (16d)

3.2. The state equation. SBs are usually time-invariant or slowly varying
variables. They can be modelled as constants or constants plus small random
zero-mean Gaussian white noises or first-order Gauss-Markov process with a slow
time constant (Bar-Shalom, 2001). To reduce the estimate errors caused by the wrong
state equation model and omitting the small noises of biases for brevity (Chen et al.,
2013), we assume that all SBs are time-invariant variables and the state equations can
be written as:

β(k + 1) = β(k) (17)
KF can be used to estimate SBs via the dynamic Equations (16) and (17)
for registration.

4. OBSERVABILITY ANALYSIS. It is proposed that the system com-
posed of Equations (16) and (17) is observable when the AAs are time-varying. This
is proved as follows: According to Equations (16) and (17), the N-step random
observable matrix can be written as (Qin et al., 1998; Andrade-Cetto and Sanfeliu,
2004; Hermann and Krener, 1977; Lee et al., 2006; Tseng and Lee, 2007)

M(k, k −N + 1) =
Xk

i=k−N+1

I×m(i) × I =
Xk

i=k−N+1

m(i) (18)

m(i) = HT (i)Γ−T (i)R−1(i)Γ−1(i)H(i) (18a)
where:
m(i) is an n×n matrix (n is the dimension of β) and its rank is 3 because the rank

of H(i) is 3; E{w(k)wT(k)}=R(k), E{x} denotes the expectation of random variable x.
N is a positive integer which is unrelated to k. R(i) in Equation (18) is a constant
matrix because random noises have the same variances at different time. The system is
said to be observable when M is positive definite.
Comparing Di in Equation (10) and Ai in Equation (3), we know that in the

coefficient matrix H, the coefficient column vectors corresponding to OBs are not
proportional to those of ABs. Since AAs are time-varying, according to Equation (16),
H(i) and Γ (i) are different at each time. If

N 5 n/3[ ], (19)
where the symbol [x] denotes the nearest integer greater than or equal to x, then
the rank of

Pk
i=k−N+1 m(i) s equal to N, and M is positive definite, and the system

is observable.
However, for GSP mobile radar, the GSP can make the radar insulated from

the carrier’s AAs, the coefficient column vectors of ABs do not contain the AAs of the
carrier, then the column vectors corresponding to the azimuth bias and yaw bias

459ANALYSIS OF MOBILE 3-D RADAR ERROR REGISTRATIONNO. 3

https://doi.org/10.1017/S0373463313000799 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000799


are equal, and the proportion factors of the column vectors corresponding to pitch and
roll biases to those of azimuth and elevation biases change in small quantities and
can be viewed as constants. The same results are applied to the coefficient matrix,
Γ (i). In this situation,M is not definite, and the system is unobservable; hence, URM
was proposed which unites the azimuth bias and yaw bias as one variable and omits
roll and pitch biases to form the state vector. Though the roll and pitch biases do not
appear in the URM state vector, the estimations of azimuth and elevation biases
contain their influences.
The observability of Equation (16) and (17) can also be proven by the equivalent

radar measurement error expressions caused by the AAs.
According to Δi in Equation (8) and equivalent measurement error expressions

derived for the first kind of mobile radars (see Wang et al., 2012), the equivalent
measurement error expressions caused by ABs for the UGSP mobile radars can be
written as the equivalent: (1) range, Δrci (Δϕi, Δηi, Δψi), (2) azimuth, Δθci(Δϕi, Δηi, Δψi),
and (3) elevation, Δεci (Δϕi, Δηi, Δψi), error:

Δrci(Δϕi,Δηi,Δψi) = 0+ o(Δϕi,Δηi,Δψi) (20)

Δθci(Δϕi,Δηi,Δψi) = −ΔΦ+ yi szi sΔΨ− xi szi sΔΠ

x2i s + y2i s
+ o(Δϕi,Δηi,Δψi) (21)

Δεci(Δϕi,Δηi,Δψi) =
−xi sΔΨ− yi sΔΠffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2i s + y2i s

q + o(Δϕi,Δηi,Δψi) (22)

ΔΦ = −sψi
Δηi − cηi cψi

Δϕi (22a)
ΔΨ = −sηiΔϕi − Δψi (22b)

ΔΠ = −cψi
Δηi + cηi sψi

Δϕi (22c)
where the time stamp “k” is omitted for brevity. [xi_s, yi_s, zi_s]

T denotes TTCs
in sensor frame. Since it cannot be obtained in practice, it is usually approximated by
Xi in Equation (4).
Then the gross equivalent azimuth and elevation biases can be written respectively as

Δθi
′(k) = Δθi + Δθci(k) (23)

Δε′i(k) = Δεi + Δεci(k) (24)
Since AAs are time-varying, gross equivalent biases vary quickly and cannot

be used as constant variables. On the contrary, if AAs are zeros, which correspond to
GSP mobile radar, Equations (23) and (24) vary slowly and can be viewed as one
variable. This is the theoretical basis for URM.

5. ALGORITHM ANALYSIS AND SIMULATION RESULTS. To
assess (or compare and contrast) the performance of AAM used for UGSP mobile
radar registration, URM is derived in this situation (see Figure 3). Because the main
attribute of URM is that it only uses radar OBs as state variables, however, each OB
variable contains the influences of all ABs (Chen et al., 2013). Since the equivalent
radar measurement errors caused by ABs vary with different target locations that can
be seen in Equations (20)–(22), the variation parts are viewed as random noises.
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The concise descriptions of URM are as follows:
5.1. URM for UGSP Mobile Radar Registration. The state vector of URM can

be written as:

βURM (k) = Δr1, kr1,Δθ1′(k),Δε′1(k),Δr2, kr2,Δθ2′(k),Δε′2(k)
� �T (25)

According to Equation (25), omitting the time argument “k”, Equation (14) can be
revised to URM registration equation form as:

ZURM = T1T1 p2ENUA1,−T2T2 p2ENUA2
� �

βURM

+ T1T1 p2ENUC1,−T2T2 p2ENUC2
� �

w (26)
where

ZURM = X2s − X1s + T2T2 p2ENUX2 − T1T1 p2ENUX1 (26a)
According to Equations (20)–(22), the state equation can be written as:

βURM (k + 1) = βURM(k) + wβURM
(k + 1) (27)

where:

wβURM
(k) = 0, 0,wd(Δθ′1)(k),wd(Δε1′) k( )|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wβ1
′ (k)

, 0, 0,wd(Δθ′2) k( ),wd(Δε2′)(k)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
wβ2

′ (k)

2
664

3
775
T

(28)

k
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Figure 3. Diagram of URM for the UGSP mobile radar.

461ANALYSIS OF MOBILE 3-D RADAR ERROR REGISTRATIONNO. 3

https://doi.org/10.1017/S0373463313000799 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000799


wβURM
can be viewed as zero-mean Gaussian white noises with the covariance matrix

denoted as:

QβURM
(k) =

Qβ
′
1
(k) 0

0 Qβ
′
2
(k)

" #
=

02×2 02×2

02×2
a1 c1
c1 b1|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Q
β
′
1
(k)

02×2 02×2

02×2 02×2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
0

02×2 02×2

02×2 02×2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
0

02×2 02×2

02×2
a2 c2
c2 b2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Q
β
′
1
(k)

2
6666666666664

3
7777777777775

(29)

where:

Qβ
′
i
(k) = E wβ

′
i
(k) · wH

β
′
i
(k)

h i
=

02×2 02×2

02×2
ai ci
ci bi

" #
; i = 1, 2{ } (30)

ai = σ2
d(Δθ′i )

; bi = σ2d(Δεi′); ci = σ2
d(Δεi′)d(Δθ′i )

; i = 1, 2{ } (31)

Derivations of Equations (27)–(31) are given in Appendix B.
It should be noted that since the effects of the TAAs and ABs of the platform are

only to make the measurements rotate, but the range between radar and the target will
not be affected, the range and gain of the range biases remain constants, so zero entries
appear in Equation (28).
The dynamic equations for URM are Equations (26) and (27); hence, KF can be

used to estimate the gross equivalent biases to rectify raw radar measurements
employing the diagram of URM shown in Figure 3.

5.2. Simulation Results. The proposed AAM and URM algorithms are
compared by generating a common track for two radars installed directly on different
ships. We assume that Ship 1 and Ship 2 are moving with a constant velocity model,
and the initial geographical coordinates are [40°, 116°, 10 m], [40·75°, 115·34°,10 m],
respectively. The initial states of both ships in their native ENU frame are [0 m, 10 m/s,
0 m, 10m/s, 0 m,0 m/s]. In the state vector, the variables denote x-coordinate (east),
x-velocity, y-coordinate (north), y-velocity, z-coordinate (up), and z-velocity, respectively.
The standard deviations of both ships’ process noise are equal which are given in

x, y, and z coordinates by [0·1, 0·1, 0] m/s2, respectively. All the TAAs of both ships
make simple harmonic motions with 9 s motion periods.
To compare the influences of the AAs on the bias estimations, two scenarios

are simulated. (1) The true amplitudes of yaw, pitch, and roll of both ships are set
to 20°; (2) Changing the amplitudes to 5°. The initial phases of the AAs are random
values.
The fusion centre locates at the initial position of Ship 1. A constant velocity

model is also used for the target. The initial state of the target in the fusion centre is
[60 km, 170 m/s, 30 km, 30 m/s, 5 km, 1 m/s].
The standard deviations of the process noise in x, y, and z coordinates are set to

1 m/s2,1 m/s2, and 0·1 m/s2, respectively. The geometry of radars and target is shown in
Figure 4. The true systematic OBs of both radars are assumed to be constant and equal
as Δri=300m, kri=0·01, Δθi=2°, and Δεi=2° respectively.
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The standard deviations of random measurement noises for both radars are
σri=50m, σθi=0·5°, and σεi=0·5° respectively, and ABs of both platforms are also
assumed to be constant and equal as Δϕi=1°, Δηi=1°, and ψi=1° respectively. It is
assumed that both radars are synchronized with the same sampling intervals T=5 s.
200 scans of the target are simulated and the number of Monte Carlo runs is set to
100. Figures 5 and 6 contain all RMSEs of the bias estimations and the rectified target
coordinates estimations.
Figure 5 depicts RMSEs of AAM for OBs and ABs of both radars. In Figure 5(a),

the gross range bias denotes the gross range bias containing the sum of range bias
and the range errors caused by the gain of the range bias. (a)–(c) are the RMSEs of OBs
and (d)–(f) are the RMSEs of ABs. The red lines denote the amplitudes of AAs of 20°;
and the blue lines of 5°, the thin and thick lines represent the results of Radar 1 and
Radar 2 respectively. The dotted lines represent the corresponding CRLBs (Detailed
derivations of CRLB can be obtained in Chen et al., 2013; Kay, 1993; Progri, 2011).
ABs can be well estimated for UGSP mobile radar, which demonstrates further

that the observability is the main reason for the attitude bias estimation performances
because the swaying of the radar antenna is equivalent to the scatter of the target
coordinates, which can reduce the dependencies among OBs and ABs in the
registration equations. The periodicity of the attitude bias CRLBs (Chen et al.,
2013) come from the periodicity of the AAs in Δi, see Equations (9) and (16).
Figure 6 depicts RMSEs of the rectified raw measurements in each axis of ENU

frame, where the raw measurements are rectified by the estimated biases. (a)–(c)
represent the case when the attitude amplitudes are 20°, and (d)–(f) are 5°. The red
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Figure 4. The geometry of target and radar.
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lines in Figure 6 denote the rectified measurements by using AAM estimations,
and the blue lines denote the rectified measurements by using URM estimations.
The asterisks represent RMSEs of the raw measurements rectified by the raw output
of the INS. RMSEs of the rectified measurements by using AAM are more than 500 m
smaller than by URM in all directions, which proves that AAM is better than URM
for the mobile UGSP radars.
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Figure 5. RMSEs of bias estimations using the proposed algorithm (AAM). (a) gross range bias;
(b) azimuth bias; (c) elevation bias; (d) yaw bias; (e) pitch bias; (f) roll bias.
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The CRLB of the equivalent bias estimation results obtained from URM are
not given in the work for brevity. However, the performance of URM can be seen in
Figure 6 which manifests that URM is inferior to AAM especially when the platform
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Figure 6. RMSEs of TTCs in xyz-coordinates after rectifying radar 1 measurements by using
bias estimations. (a), (b), (c) denote x-, y-, and z-coordinates, respectively where the attitude
amplitudes equal to 20°; (d), (e), (f ) denote x-, y-, and z-coordinates, respectively where the attitude
amplitudes equal to 5°.
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has bigger swaying amplitudes. Comparing the estimation results when the attitude
amplitudes are 20° with those at 5°, we infer that the larger the amplitudes the better
the estimation results because the larger amplitudes are equivalent to more scattering
of the target coordinates in space, which can improve the observability of the system
and the estimation accuracies. It should be noted that radar-scanning period and
fluctuating periods of the ships’ AAs should be not exactly integral multiples to ensure
the ship’s AAs are different at different observation instances.

6. SUMMARY AND CONCLUSIONS. Since the dependencies between
ABs and OBs are related to the spatial distribution of targets, the more scattered the
targets are, the weaker the dependencies become; hence, the better the observability of
the system is. For mobile UGSP radar which is installed directly on and sways with the
platform, the time-varying AAs of the platform are included in radar measurements,
which makes the distribution of the same target in the radar measurement frame more
scattered than for mobile GSP radars; i.e., for mobile UGSP radar, the observability
of both kinds of biases is better than for GSP ones; hence, AAM is proposed which
selects all ABs and OBs as the state vector to establish the registration Equations (16)
and (17). As for URM, only OBs remain in the state vector; however, their estimation
results include the effects of ABs. URM is preferable for mobile GSP radars because
the dependencies between both kinds of biases are strong in this situation. By
comparing AAM with URM for UGSP mobile radars, simulation results show that
RMSEs of the rectified raw measurements by using AAM bias estimation results are
more than 500 m smaller than by URM in all directions. In addition, AAM can obtain
the absolute OBs and ABs estimations. So, AAM performs better for mobile UGSP
radar registration than URM.
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APPENDIX A. DERIVATION OF EQUATION (8)

Using first-order Taylor series expansion about attitude angle measurements,
Equations (4)–(6) can be approximated as:

Ta′ (k) ≈ Ta(k) + T′
a(k)(−Δa); a = ψi, ηi, ϕi

	 

; a′ = ψit, ηit, ϕit

	 
 (A1)

where:

Ta(k) =
ca 0 −sa
0 1 0
sa 0 ca

2
4

3
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2
4

3
5

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Ra

−
0 0 0
0 1 0
0 0 0

2
4

3
5

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
R′

a

(A1b)
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Substituting Equation (A1)–(A1b) into Equation (7), we obtain

Tit p2ENU (k) =

Tϕit (k)Tηit (k)Tψit
(k)

Tϕi (k)Tηi (k)Tψi
(k) + Tϕi (k)T′

ηi (k)Tψi
(k)(−Δηi)

+T′
ϕi (k)Tηi (k)Tψi

(k)(−Δϕi) + Tϕi (k)Tηi (k)T′
ψi
(k)(−Δψi)

����

=

Tϕi (k)Tηi (k)Tψi
(k)+

Tϕi (k) Tηi (k)
1 0 0

0 0 −1

0 1 0

2
64

3
75−

1 0 0

0 0 0

0 0 0

2
64

3
75

0
B@

1
CATψi

(k)(−Δηi)

���������
+ Tϕi (k) −

0 0 0

0 0 0

0 0 1

2
64

3
75

0
B@

1
CATηi (k)Tψi

(k)(−Δϕi)

+Tϕi (k)Tηi (k) Tψi
(k)

0 0 −1

0 1 0

1 0 0

2
64

3
75−

0 0 0

0 1 0

0 0 0

2
64

3
75

0
B@

1
CA(−Δψi)

������������������������

��������������������������������
(A2)

Equation (A2) can be further written as

Tit p2ENU = TϕiTηiTψi
(I+ Δi) = Ti p2ENU (I+ Δi) (A3)

where the time argument “k” is omitted for simplicity, and

Δi =

0 ΔΦ −ΔΨ
−ΔΦ|ffl{zffl}

sψiΔηi+cηi cψiΔϕi

0 −ΔΠ

ΔΨ|{z}
−sηiΔϕi−Δψi

ΔΠ|{z}
−cψiΔηi+cηi sψiΔϕi

0

2
66664

3
77775 (A4)

Equation (A3) manifests that the influences of ABs on radar measurements are
correlated with TAAs of the platform. These correlations are insulated in mobile GSP
radar.

APPENDIX B. DERIVATIONS OF STATE EQUATION OF URM

The difference operator at observation time k+1 can be defined as

dk+1(xk) = xk+1 − xk (B1)
According to the definition of Equation (B1), we have:

dk+1(xkyk) =
xk+1yk+1 − xkyk =

xk+1(yk+1 − yk) + xk+1yk − xkyk =
xk+1(yk+1 − yk) + yk(xk+1 − xk) =

xk+1dk+1(yk) + ykdk+1(xk)
������ (B2)

dk+1(xkyk) =
xk+1yk+1 − xkyk =

xk(yk+1 − yk) − xkyk+1 + xk+1yk+1 = xkdk+1(yk) + yk+1dk+1(xk)
xk(yk+1 − yk) + yk+1(xk+1 − xk) =

������
(B3)

468 L. CHEN AND OTHERS VOL. 67

https://doi.org/10.1017/S0373463313000799 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463313000799


Then, the difference of Equation (21) can be written as:

dk+1(Δθk′) = Δθ′k+1 − Δθk
′ = a1,kΔψk + a2,kΔηk + a3,kΔϕk (B4)

a1,k = ykzk
x2k + y2k|fflfflfflffl{zfflfflfflffl}

α1,k

= −dk+1(α1,k); r2k = x2k + y2k; α2k = xkzk
x2k + y2k

(B4a)

a2,k = cos ηk+1 cosψk+1 − cos ηk cosψk − (sin ηk+1 − sin ηk)α1,k+1 + α1,k sin ηk
−(cos ηk+1 sinψk+1 − cos ηk sinψk)α2,k+1 − dk+1(α2,k) cos ηk sinψk

����
(B4b)

a3,k = (sinψk+1 − sinψk) + (cosψk+1 − cosψk)α2,k+1 + dk+1(α2,k) cosψk (B4c)
where [ f (x)]k denotes x takes the value of time k. Assuming that the target is moving
with constant velocity model from observation time k to k+1, its velocities in x, y, and
z directions can be denoted as: vx, vy, vz, respectively, and vi,k+1 = ik+1−ik

T ; (i={x, y, z};
T denotes the sampling period); then according to Equation (B2), expanding all the
difference operators in Equation (B4), Equation (B4) can be rewritten further as:

dk+1(Δθk′) = b1,kΔψk + b2,kΔηk + b3,kΔϕk (B5)

b1,k = − vy,(k+1)zk+1 + yk+1vz,(k+1)
r2k+1

− 2xkyk+1zk+1vx,(k+1) + 2y2k+1zk+1vy,(k+1)
r4k+1

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

β1,k+1

T

(B5a)

β2k+1 =
vx,(k+1)zk+1 + xk+1vz,(k+1)

r2k+1

− 2x2k+1zk+1vx,(k+1) + 2xkyk+1zk+1vy,(k+1)
r4k+1

(B5b)

b2,k =
cos ηk+1 cosψk+1 − cos ηk cosψk − (sin ηk+1 − sin ηk)α1k+1

−(cos ηk+1 sinψk+1 − cos ηk sinψk)α2k+1
−β1,k+1T sin ηk − β2,k+1T cos ηk sinψk

������ (B5c)

b3,k = (sinψk+1 − sinψk) + (cosψk+1 − cosψk)α2k+1 + β2,k+1T cosψk (B5d)
According to Equation (B5), the expectation of dk+1(Δθ ′

c,k) is not zero. However, it
can be viewed as zero-mean Gaussian white noise when we cannot know it exactly,
because though the true magnitudes of ABs are not known, they are small. In this
situation, the covariances of the equivalent radar angle biases should be increased to
ensure the stability of KF. Assuming that the amplitudes of pitch and roll are ηmax and
ψmax, respectively, which can be known in reality, and the target velocities in x, y, and
z directions of both radars’ local ENU frame have zero-mean Gaussian distributions
with their standard derivations are σvx, σvy and σvz, respectively, and also assuming that
the target velocity vectors in different radar’s ENU frame are independent. Then,
Equation (B5) can be written further as

σ2dk+1(Δθ ′) =
D{dk+1(Δθk′)} =
E{[dk+1(Δθk′)]2}

�
4 (c1,k+1Δηk + c2,k+1Δϕk)2 + e1,k+1(Δψk)2

+e2,k+1(Δηk)2 + e3,k+1(Δϕk)2
�

(B6)

c1,k+1 = sinψk+1 − sinψk

�� ��+ cosψk+1 − cosψk

�� ��α2,k+1 (B6a)
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c2,k+1 = cos ηk+1 cosψk+1 − cos ηk cosψk

�� ��+ sin ηk+1 − sin ηk
�� ��α1,k+1

+ cos ηk+1 sinψk+1 − cos ηk sinψk

�� ��α2,k+1

���� (B6b)

e1,k+1 =
z2k+1σ

2
vy,k+1

+ y2k+1σ
2
vz,k+1

r2k+1

+
4x2k+1y

2
k+1z

2
k+1σ

2
vx,k+1

+ 4y4k+1z
2
k+1σ

2
vy,k+1

r4k+1

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

γ1,k+1

T2

(B6c)

γ2,k+1 =
z2k+1σ

2
vx,k+1

+ x2k+1σ
2
vz,k+1

r2k+1

+
4x4k+1z

2
k+1σ

2
vx,k+1

+ 4x2k+1y
2
k+1z

2
k+1σ

2
vy,k+1

r4k+1

(B6d)

e2,k+1 = γ1,k+1T
2 sin ηk
�� ��2+γ2,k+1T

2 cos ηk sinψk

�� ��2 (B6e)

e3,k+1 = γ2,k+1T
2 cosψk

�� ��2 (B6f)
where D{x} denotes the variance of x, and E{x} denotes the expectation of x.
Similarly, for elevation bias, according to Equation (22), we have

dk+1(Δε′k) = f1,k+1Δψk + f2,k+1Δηk + f3,k+1Δϕk (B7)

f1,k+1 = dk+1
xk
rk

� �
(B7a)

f2,k+1 = (cosψk+1 − cosψk)yk+1

rk+1
+ cosψkdk+1

yk
rk

� �
(B7b)

f3,k+1 =
(sin ηk+1 − sin ηk)xk+1

rk+1
+ sin ηkdk+1

xk
rk

� �
−(cos ηk+1 sinψk+1 − cos ηk sinψk)yk+1

rk+1
− cos ηk sinψkdk+1

yk
rk

� �
�������� (B7c)

The further expansion of Equation (B7) can be written as:

dk+1(Δε′k) = g1,k+1Δψk + g2,k+1Δηk + g3,k+1Δϕk (B8)

g1,k+1 =
vx,k+1

rk+1
− x2k+1vx,k+1 + xk+1yk+1vy,k+1

r3k+1

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

δ1,k+1

T (B8a)

δ2,k+1 = vy,k+1

rk+1
− y2k+1vy,k+1 + xk+1yk+1vx,k+1

r3k+1

(B8b)

g2,k+1 =
(cosψk+1 − cosψk)yk+1

rk+1
+ δ2,k+1T cosψk (B8c)

g3,k+1 =
(sin ηk+1 − sin ηk)xk+1 − (cos ηk+1 sinψk+1 − cos ηk sinψk)yk+1

rk+1
+δ1,k+1T sin ηk − δ2,k+1T cos ηk sinψk

������ (B8d)
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Then, the variance can be written as:

σ2dk+1(Δε′) =
D{dk+1(Δε′k)} =
E{[dk+1(Δε′k)]2}

�
4 (h1,k+1Δηk + h2,k+1Δϕk)2 + i1,k+1(Δψk)2

+i2,k+1(Δηk)2 + i3,k+1(Δϕk)2
�

(B9)

h1,k+1 =
cosψk+1 − cosψk

�� ��yk+1

rk+1
(B9a)

h2,k+1 =
sin ηk+1 − sin ηk
�� ��xk+1

rk+1
+ cos ηk+1 sinψk+1 − cos ηk sinψk

�� ��yk+1

rk+1
(B9b)

i1,k+1 =
σ2vx,k+1

r2k+1

+
x4k+1σ

2
vx,k+1

+ x2k+1y
2
k+1σ

2
vy,k+1

r6k+1

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

μ1,k

T2 (B9c)

i2,k+1 =
σ2vy,k+1

r2k+1

+
x4k+1σ

2
vy,k+1

+ x2k+1y
2
k+1σ

2
vx,k+1

r6k+1

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

μ2,k

T2 cosψk

�� ��2 (B9d)

i3,k+1 = μ1,kT
2 sin ηk
�� ��2+μ2,kT

2 cos ηk sinψk

�� ��2 (B9e)
Next, the covariance of the azimuth and elevation biases can be computed as:

σ2dk+1(Δθ′k)dk+1(Δε′k) =
σ2Δθ ′Δε′ =

E{dk+1(Δθ′k)dk+1(Δε′k)}

���� 4
n1,k+1(Δψk)2 + n2,k+1(Δηk)2+
n3,k+1(Δϕk)2 + n4k+1ΔψkΔηk+n5,k+1ΔϕkΔψk + n6,k+1ΔϕΔη

������ (B10)

j1,k+1 = sinψk+1 − sinψk

�� ��+ cosψk+1 − cosψk

�� ��xk+1zk+1

r2k+1

(B10a)

j2,k+1 =
cos ηk+1 cosψk+1 − cos ηk cosψk

�� ��+ sin ηk+1 − sin ηk
�� ��yk+1zk+1

r2k+1

+ cos ηk+1 sinψk+1 − cos ηk sinψk

�� ��xk+1zk+1

r2k+1

���������
(B10b)

l1,k+1 =
cosψk+1 − cosψk

�� ��yk+1

rk+1
(B10c)

l2,k+1 =
sin ηk+1 − sin ηk
�� ��xk+1

rk+1
+ cos ηk+1 sinψk+1 − cos ηk sinψk

�� ��yk+1

rk+1
(B10d)

m1,k+1 =
zk+1(σ2vx,k+1

− σ2vy,k+1
)

r3k+1

+
3zk+1(y2k+1σ

2
vy,k+1

− x2k+1σ
2
vx,k+1

)
r5k+1

−
2zk+1 (x4k+1 − x2k+1y

2
k+1)σ2vx + (x2k+1y

2
k+1 − y4k+1)σ2vy

h i
r7k+1

2
6664

3
7775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ζ 1,k

T2 sin ηk
�� �� cosψk

�� �� (B10e)

m2,k+1 = ζ 1,kT
2 sin ηk
�� �� cos ηk sinψk

�� �� (B10f)
m3,k+1 = ζ 1,kT

2 cosψk

�� �� (B10g)
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m4,k+1 = ζ 1,kT
2 cos ηk sinψk

�� �� (B10h)

m5,k+1 =

−2xk+1yk+1zk+1σ2vy,k+1
− xk+1yk+1zk+1σ2vx,k+1

r5k+1

+
2x3k+1yk+1zk+1σ2vx,k+1

+ 2xk+1y3k+1zk+1σ2vy,k+1

r7k+1

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ζ 2,k

T2 cosψk

�� ��2 (B10i)

m6,k+1 = 2ζ 2,kT
2 cosψk

�� �� cos ηk sinψk

�� �� (B10j)
m7,k+1 = ζ 2,kT

2 cos ηk sinψk

�� ��2 (B10k)

m8,k+1 =

xk+1yk+1zk+1σ2vy,k+1
+ 2xk+1yk+1zk+1σ2vx,k+1

r5k+1

−
2x3k+1yk+1zk+1σ2vx,k+1

+ 2xk+1y3k+1zk+1σ2vy,k+1

r7k+1

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ζ 3,k

T2 sin ηk
�� ��2 (B10l)

m9,k+1 = 2ζ 3,kT
2 sin ηk
�� �� (B10m)

m10,k+1 = 2ζ 3,kT
2 (B10n)

n1,k+1 = m10,k+1 (B10o)
n2,k+1 = m5,k+1 + j1,k+1l1,k+1 (B10p)

n3,k+1 = m2,k+1 +m8,k+1 +m7,k+1 + j2,k+1l2,k+1 (B10q)
n4,k+1 = m9,k+1 +m4,k+1 (B10r)

n5,k+1 = m1,k+1 +m6,k+1 + j1,k+1l2,k+1 + j2,k+1l1,k+1 (B10s)
n6,k+1 = m3,k+1 (B10t)

The computation of the covariances in Equations (B6), (B9), and (B10) we need to
know the true magnitudes of ABs. However, if they cannot be known in advance, their
possible maximum values can be used to substitute for their true values.
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