
ON RESIDUE DIFFERENCE SETS 

EMMA LEHMER 

1. Introduction. In recent years the subject of difference sets has attracted 
a considerable amount of attention in connection with problems in finite geo­
metries [4]. Difference sets arising from higher power residues were first 
discussed by Chowla [1], who proved that biquadratic residues modulo p form 
a difference set if (p — l) /4 is an odd square. In this paper we shall prove a 
similar result for octic residues and develop some necessary conditions which 
will eliminate all odd power residue difference sets and many others. We also 
prove that a perfect residue difference set (that is, one in which every difference 
appears exactly once) contains all the powers of 2 modulo p. 

DEFINITION. An nth power residue difference set of multiplicity X with respect 
to a prime p is the set 

ri, r2, . . . , rk 

of nth power residues of a prime p = kn + 1, which is such that if we form all 
the k(k — 1) non-zero differences 

ra — rb (mod p) (a ^ b), 

we will obtain every positive integer < p — 1 exactly X times. Hence 

X = (k — l)/n and p — \n + n + 1. 

If X = 1, the set will be called a perfect residue difference set. In this case 
k = n + 1 and p = n2 + n + 1. 

In order to study these sets efficiently we will need to use some properties of 
the cyclotomic numbers (i,j) introduced by Gauss and developed by Dickson 
[2], together with an additional lemma about their parity, which is a generaliza­
tion of a lemma given by the author in an earlier paper [5]. 

2. Cyclotomic numbers. Let p = nk + 1 be a prime and let g be a primitive 
root of p. We shall say that a number N belongs to the residue class i with 
respect to g if N = gmn+i (mod p). The cyclotomic constant (i, j) denotes the 
number of members of the residue class i which are followed by a member of 
the residue class j , or in other words, the number of solutions of the congruence 

gx+t+lszf*' (modp), 

where i and j are < n — 1, while v and \x are < k — 1. 
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We shall borrow the following properties of cyclotomic numbers (all of which 
can be very readily derived) from Dickson [2, p. 394, (14), (15), (17)]: 

2.1 (ij) = (j, Ï), (n - i,j - i) = (ij), k even 

2.2 (ij) = (7 + Jw, / + \ri), (n - i , j - i) = (i, j ) , & odd 

2.3 £ ( M ) = * ~ */•• (•/ = 0, I , . . . , » - 1), 
=̂o 

where 
_ ) I if k is even and / = 0, or if k is odd and / = \n. 

\ 0 otherwise. 

LEMMA I. The cyclotomic numbers (0, j) are odd or even according as 2 belongs 
to the resMm class j or not. 

Proof. For every pair r, r + 1 such that r is a residue and hence belongs to 
residue class zero, while r + 1 belongs to the residue class j , there corresponds 
a pair ¥, f + 1, where rf = 1 (mod p), which is also such that f belongs to class 
zero while f + 1 = f (r + 1) belongs to class j . Therefore the contribution to 
the cyclotomic number (Q,/) is even unless r s= f. This implies that r is either 
1 or p — I. The case r = /? — 1 does not produce a solution since r + 1 = 0 is 
not admissible, while the case r = l , r + l = 2 gives an unpaired solution if 
and only if 2 belongs to class j . Hence the lemma. 

3. Connection between residue difference sets and cyclotomic constants. 

THEOREM 1. A necessary and sufficient condition that the class of nth power 
residues form a difference set is that the cyclotomic numbers 

(i, 0) - (k - l)/n (i = 0, 1, . . . , n - 1), 

where (k — \)/n = X is the multiplicity of the difference set. 

Proof, First suppose that the residues form a difference set of multiplicity X 
so that for every positive integer d there are X solutions of the congruence 
ra — rb £=• d (mod p). Multiplying this congruence by fb, we have 

dfb + 1 s= rafb (mod p). 

We note that the right-hand side belongs to the residue class zero, and that 
dfb belongs to the same class as d. Denoting this class by i we have (i, 0) = X. 
But since d was arbitrary this must hold for all i. 

Conversely, if all the (/', 0) are equal, then 

(*, o) = £ a, o)/«. 
But it fofl'ows readily from 2.3 with the help of either 2.1 or 2.2 that in all 
cases 
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£ (i,0) - * - 1, 

hence the common value of all the (/, 0) is in fact (k — i)/n. Moreover, the 
correspondence set up in the first part of the proof is obviously one to one, 
hence the residues form a difference set of multiplicity X = (k — l)/n if all the 
(i, 0) are equal. 

THEOREM II. There exists no residue difference set for n odd; or for n even and 
k even. 

Proof. If n is odd, then k must be even, but for even k we have by 2.1 the 
equality (0, i) — (i, 0). Hence Theorem I states in this case that the cyclotomic 
constants (0, i) are all equal. But by Lemma I one of these quantities is odd while 
the others are even. Hence we have arrived at a contradiction and the theorem 
follows. 

THEOREM III. If n is even and k = (p — l)/n is odd, then a necessary and 
sufficient condition for the set of nth power residues modulo p to form a difference set 
is that 

(i, 0) = (k - \)/n (t = 0, 1, . . . , \n - 1). 

Proof,, It follows readily from 2.2 that 

(* + **,<>) = (*\o), 
hence the theorem follows from Theorem i. 

4. Multipliers. The notion of a multiplier was introduced by Hall [4] and is 
as follows: A number t is called a multiplier of a set ru r2, . . . , rk if the set 
tr\y trif . . . , trk is congruent to the set rx + s, r2 + s, . . . , rk + s m some order 
for some number s. The following theorem is true of multipliers of residue 
difference sets. 

THEOREM IV. The set of multipliers of a residue difference set is the set itself. 

Proof. That every element of the set is a multiplier is obvious because it 
leaves the set unaltered and 5 = 0. Suppose now that we have a multiplier / 
which is not in the residue set and let / belong to the residue class T ^ 0 . Then 
all the numbers tru tr2, . . . , trk will also belong to the residue class r. Hence in 
this case s i£ 0. Let 5 belong to the residue class a. The congruence ra + s = trb 

(mod p) implies, by multiplying by s, that ras + 1 s tsrb (mod p). But the num­
ber of solutions of the last congruence is (n — a, r — a) = kf but by 2.1 or 2.2 
this Implies (cr, r) = k. But by 2.3 

hence all (<r,j) = 0 for j ?± r. But, for a difference set (cr, 0) = {k — \)/n ^ 0. 
Hence we have arrived at a contradiction and the theorem follows. 
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5. Perfect residue difference sets. Hall [4] has proved that for X = 1 every 
divisor of n is a multiplier of any difference set modulo n2 + n + 1. He also 
proved that 2 and 3, as well as 18 other pairs of numbers, cannot both be 
multipliers. We now apply these results to residue difference sets. 

THEOREM V. A perfect residue difference set contains all the powers of 2 modulo p. 

Proof. Since, by Theorem II, n must be even, 2 divides n and hence is a 
multiplier of the difference set by Hall's theorem. But every multiplier is in the 
set by Theorem IV, hence 2 is an nth power residue and hence all powers of 2 
are nth. power residues and are in the set. 

COROLLARY. If the exponent of 2 (mod p) is exactly n + 1, then the set consists 
of powers of 2 exclusively. 

THEOREM VI. The only perfect residue difference sets with p < 2561600 are 
for n = 2, p = 7 and for n = 8, p = 73. 

Proof. Evans and Mann [3] have recently proved that there exists no perfect 
difference set for n < 1600, unless n is a prime or a power of a prime. In our 
case since n2 + n + 1 must be a prime p, n must be of the form 22v + l. The 
only such n < 1600 which lead to prime values of p are n = 2, 8, and 512. 
The first two lead to well-known sets of quadratic residues 1, 2, 4 (mod 7), and 
octic residues 1, 2, 4, 8, 16, 32, 37, 55, and 64 (mod 73), respectively. 

The remaining case of p = 262657, n = 512, satisfies, as far as the writer has 
been able to ascertain, all known necessary conditions for a difference set. 
It has no multipliers other than powers of 2 less than 783, and can be generated 
by 783", a = 0, 1, . . . , 512. An inspection of the set shows however, that 

3 = 783133 - 783513 = 783149 - 783483 (mod 262657) 

= 4 - 1 = 89788 - 89785. 

Hence this is not a perfect difference set after all. 

6. Special values of n. For n = 2, Theorem III gives no further restriction 
on p beyond A = (0, 0) = (p — 3)/4, which is satisfied. Hence there exists a 
difference set of quadratic residues for all p = 3 (mod 4). This is a well-known 
result. By Theorem II we need to consider only odd values of k. 

For n = 4, the cyclotomic constants were given by Gauss in terms of the 
quadratic partition p = x2 + 4y2, x = 1 (mod 4). 

16(0, 0) = p + 2x - 7, 16(1, 0) = p - 2x- 3. 

The condition (0, 0) = (1, 0) implies x = 1 or p = 1 + 4;y2. Hence k = (p — l ) /4 
= y2. Since k is odd, k must be an odd square, which is Chowla's theorem. 

For n — 6, the cyclotomic constants can be easily derived from Dickson's 
results in terms of the quadratic partition p = A2 + SB2, 4̂ = 1 (mod 3). 
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Case 1. 2 is a cubic residue. In this case the condition 

36(0, 0) = p - 11 - SA = Q(k - 1) 

leads to A = — ^, which is impossible, since A is an integer. 
Case 2. 2 is a cubic non-residue. In this case 

36(0, 0) = £ - 11 - 24 = 6(* - 1) 

leads to A = — 2, while 

36(1, 0) = p - 5 + 44 + 65, 36(2, 0) = £ - 5 - 2A - 65 

or 

36(1, 0) = p - 5 - 2A + 65, 36(2, 0) = /> - 5 + \A - 65 

(according as 2 belongs to class one or two), so that the condition (1, 0) = (2, 0) 
implies 2 5 = —A = 2 , or 5 = 1 and p — 7. This is a trivial case since the only 
sextic residue modulo 7 is r = 1, so that in this case X = 0. In other words, 
there exists no difference set of sextic residues. 

For n — 8, a little more work is required to derive the needed cyclotomic 
numbers from the groundwork laid by Dickson. These numbers are given in 
terms of the quadratic partitions. 

p = a2 + 2b2 = x2 + Ay2 = Sk + 1, a = x = 1 (mod 4) 

Case I. 2 is a quartic residue, then 

64(0, 0) = p - 15 - 2x, 64(2, 0 ) = £ - 2 x - 8 a - 7 

64(1, 0) = 64(3, 0) = p - 7 + 2x + 4a. 

The condition 

(0, 0) = (1, 0) = (2, 0) = (3, 0) = (p - 9)/64 

implies a = 1, x = — 3. Hence 

p = 1 + 2b2 = 9 + 4 / , or 62 - 2y2 = 4. 

Letting 6 = 2/, y = 4#, we have the condition 

t2 - Su2 = 1, 

where jfe= (£ - l ) /8 = t2 and X = (p - 9)/64 = w2. The first non-trivial 
solution of this Pell equation is / = 3, u = 1, giving p = 73. The even-ordered 
solutions of this Pell equation lead to values of p which are multiples of 3. The 
odd-ordered solutions give odd values of u and lead to values of p which satisfy 
the recurring series 

pm = 1154£m_i - pm-2 - 5760, £o = 73, pt = 73. 
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Xhîs gives 

p2 = 78409 = 89-881 

pz = 90478153 = 4993- 18121 

pA = 104411704393 = prime 

ph = 120491016385609 = 1721 • 70012211729. 

These factorizations were made on the SWAC. The prime pi is the modulus 
for a difference set with k = 1142432 elements of multiplicity X = 40391*. 

Case II. 2 is a quartic non-residue. In this case 

64(0, 0) = p - 15 - 10* - 8a, 64(2, 0) = p + Qx - 7 

and the condition (0, 0) = (2, 0) - (p - 9)/64 leads to x = - f, but this is 
impossible. We can therefore summarize our results on octic residues in the 
following theorem. 

THEOREM VII. The set of octic residues modulo p forms a difference set if and 
only if the number of terms k = (p — l ) /8 and the multiplicity X ~ (p — 9)/64 
are both odd squares. 

COROLLARY. AU octic residue difference set contains all powers of 2 modulo p. 

It is known that the condition for octic residuacity of 2 is that \y be odd1 

for p s 9 (mod 16). But in our case u = \y is odd. Hence 2, and therefore all 
its powers, are octic residues. 

Finally, we discuss briefly the impossibility of residue sets for n — 10, when 2 
is a quintic residue. The cyclotomic numbers for n — 10 are given in terms of 
the solutions of 

16/> = x" + 50# + 50?;2 + 125?i»2, xw = v* — 4MV ~ u . 

If 2 is a quintic residue, Dickson gives for k odd 

100(0,0) = p - 19 +St­

and the condition (0, 0) = (p — 11)/100 implies x = 1; but it has been proved 

by the author [5], that if 2 is a quintic residue, x must be even. Hence we have 

arrived at a contradiction and there is no difference set in this case. 
The cyclotomic numbers have not been worked out in sufficient detail to 

complete the case in which 2 is a quintic non-residue. The same holds true for 
larger values of n such as 12 and 16, although a certain amount of work has been 
done in these cases. 

'This can be made to follow readily from Lemma 1 and the expression for (0, 0) in the octic 
case. In fact for p= 9 (mod 16) and (0, 0) odd we have 64 (0, 0) = p - 15 - 2*== 64 
(mod 128). Hence x= Sv + 29 (mod 64), which implies y = 4 (mod 8). Similarly if 2 is an 
octic non-residue (0, 0) is even and y ^ 0 (mod 8). 
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7. Modified residue difference sets. Hall points out that Theorem II holds 
if zero is counted as a residue and that we can obtain further residue sets for 
quartic residues. We will show that this can also be done for octic residue sets, 
but that no other new cases arise. 

If zero is counted as a residue, then the multiplicity X is given by A = (k + \)/n 
and we have an analogue of Theorem III, namely 

THEOREM III ' . If n is even and k = (p — I)In is odd, then a necessary and 
sufficient condition for the set of nth power residues and zero to be a, difference set 
is that 

1 + (0, 0) = (i, 0) = (k + l)/n, i = 1,2,. . . , \n - 1. 

We now discuss the cases n — 4 and u — 8. For n = 4 the conditions of 
Theorem III ' give 

p + 2x + 9 = p-2x-3=p + 3. 

This impliesx = —3 so that p = 9 + iy2. Since k = (p — l)/4isodd, y = k —2 
must also be odd and we have an analogue of Chowla's theorem: 

The quartic residues and zero form a difference set modulo p if and only if 
k — 2 = (p — 9)/4 is an odd square. 

For n — 8, if 2 is a quartic residue, we have by Theorem III ' 

p + 49 - 2x - p - 2x - 8a - 7 - p + 7. 

This implies x = 21, a = — 7. Hence 

p = 49 + 2b2 = 441 + 4 / or b~ - 2y~ - 196. 

Letting, as before, b = 2/, y = 4//, we have 

/2 - Su2 - 49. 

As before, this leads to a sequence of p}$ which can be defined by the recurrence 

pm = 1154A,_1 - pm-2~ 282240, 

where po = 697, pi — 26041, and m can take on positive and negative values. 
The smallest prime value in this sequence is pi = 26041, and there are no 
other primes less than />_8 = 34352398777. The prime p = 26041 gives a differ­
ence set with k = 3255, X = 407. This set contains 3256 elements including 0 
and all 465 powers of 4 modulo 26041. It can be generated by powers of 7. 

If 2 is a quartic non-residue we have 

64(2,0) =p + 6x - 7 - p + 7, 

which is impossible. Hence we can state an analogue of Theorem VII, namely 

https://doi.org/10.4153/CJM-1953-047-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-047-3


432 EMMA LEHMER 

THEOREM VII'. The set of octic residues and zero forms a residue set modulo p 
if and only if k — 6 = (p — 9)/8 is an odd square, while X — 7 = (p — 441)/64 
is an even square. 

That (p — 441)/64 — u2 is even follows from the fact that this time the odd 
values of u gave multiples of three for p, and are therefore eliminated. Since 
X — 7 is even, X is again odd. Since u = \y is even, 2 is not an octic residue 
(see footnote 1). Hence we can state: 

COROLLARY. An octic residue difference set which includes zero contains all 
powers of 4 modulo p. 

It can be easily seen, as before, that the cases n — 2, 6, and 10 lead to contra­
dictions, so that we have been able to discover difference sets for only n — 4 and 
8. It would be of interest to find out if the next possible case is n = 12 orn = 16. 

In order to get a perfect residue difference set, when zero is counted as a 
residue, we must have 

p = n2 - n + 1 = (n - l ) 2 + (n - 1) + 1. 

For quartic residues n — 4, p = 13, the numbers 0, 1, 3, 9 form such a set, 
but there is none for octic residues since 72 + 7 + l = 57is not a prime. 
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