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Oscillation of differential equations with non-monotone
retarded arguments
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Abstract

Consider the first-order retarded differential equation

x′(t) + p(t)x(τ(t)) = 0, t > t0,

where p(t) > 0 and τ(t) is a function of positive real numbers such that τ(t) 6 t for t > t0, and
limt→∞ τ(t) = ∞. Under the assumption that the retarded argument is non-monotone, a new
oscillation criterion, involving lim inf, is established when the well-known oscillation condition

lim inf
t→∞

∫ t
τ(t)

p(s) ds >
1

e

is not satisfied. An example illustrating the result is also given.

1. Introduction

Consider the retarded differential equation

x′(t) + p(t)x (τ(t)) = 0, t > t0, (E)

where p(t) > 0 and τ(t) is a function of positive real numbers such that

τ(t) 6 t for t > t0 and lim
t→∞

τ(t) =∞. (1.1)

By a solution of (E) we mean a continuously differentiable function defined on [τ(T0),∞] for
some T0 > t0 and such that (E) is satisfied for t > T0. Such a solution is called oscillatory if
it has arbitrarily large zeros. Otherwise, it is called non-oscillatory.

The problem of establishing sufficient conditions for the oscillation of all solutions of equation
(E) has been the subject of many investigations. See, for example, [1–18] and the references
cited therein. The first systematic study for the oscillation of all solutions of equation (E) was
made by Myshkis. In 1950 [17], he proved that every solution oscillates if

lim sup
t→∞

[t− τ(t)] <∞ and lim inf
t→∞

[t− τ(t)] lim inf
t→∞

p(t) >
1

e
.

In 1972, Ladas et al. [15] proved that the same conclusion holds if, in addition, τ(t) is a
non-decreasing function and

lim sup
t→∞

∫ t
τ(t)

p(s) ds > 1. (1.2)

In 1982, Koplatadze and Canturija [13] established the following result.
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If τ(t) is a non-monotone or non-decreasing function, and

lim inf
t→∞

∫ t
τ(t)

p(s) ds >
1

e
, (1.3)

then all solutions of (E) oscillate, while if

lim sup
t→∞

∫ t
τ(t)

p(s) ds <
1

e
, (1.4)

then the equation (E) has a non-oscillatory solution.
It is important to consider non-monotone arguments when solving differential equations

rather than using a pure mathematics approach, which only approximates the natural
phenomena described by equations of type (E). This is because there are always natural
disturbances (for example, noise in communication systems) that affect all the parameters of
the equation and therefore the fair (from a mathematical point of view) monotone argument
almost always becomes non-monotone. In view of this, an interesting question that arises in
the case where the argument τ(t) is non-monotone and (1.3) is not satisfied, is whether we can
state an oscillation criterion involving lim inf.

In the present paper, we give a positive answer to the above question.

2. Main Results

In this section, we present a new sufficient condition for the oscillation of all solutions of (E),
under the assumption that the argument τ(t) is non-monotone and (1.3) is not satisfied. Set

h(t) := sup
s6t

τ(s), t > 0. (2.1)

Clearly, h(t) is non-decreasing, and τ(t) 6 h(t) for all t > 0.
In 2011, Braverman and Karpuz [3] established the following theorem.

Theorem 2.1. Assume that (1.1) holds, and

lim sup
t→∞

∫ t
h(t)

p(s) exp

{∫h(t)
τ(s)

p(ξ) dξ

}
ds > 1, (2.2)

where h(t) is defined by (2.1). Then all solutions of (E) oscillate.

Theorem 2.2. Assume that (1.1) holds, and

lim inf
t→∞

∫ t
h(t)

p(s) exp

{∫h(t)
τ(s)

p(ξ) dξ

}
ds >

1

e
, (2.3)

where h(t) is defined by (2.1). Then all solutions of (E) oscillate.

Proof. Assume, for the sake of contradiction, that there exists a non-oscillatory solution x(t)
of (E). Since −x(t) is also a solution of (E), we can confine our discussion only to the case
where the solution x(t) is eventually positive. Since τ(t) → ∞ as t → ∞, there is a positive
number t1 > t0, such that x(τ(t)) > 0 for all t > t1. Thus, from (E),

x′(t) = −p(t)x(τ(t)) 6 0 for all t > t1,
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which means that x(t) is an eventually non-increasing function of positive numbers. Using the
fact that x(t) is non-increasing and h(t) 6 t for t > 0, we have x(h(t)) > x(t) > 0 for all t > t1.

By (E)
x′(t)

x(t)
+ p(t)

x(τ(t))

x(t)
= 0 for all t > t1, (2.4)

or

ln
x(t)

x(h(t))
+

∫ t
h(t)

p(s)
x(τ(s))

x(s)
ds = 0 for all t > t1.

Using the Grönwall inequality,

ln
x(t)

x(h(t))
+

∫ t
h(t)

p(s)
x(h(t))

x(s)
exp

{∫h(t)
τ(s)

p(ξ) dξ

}
ds 6 0.

Since h(t) 6 s 6 t, clearly x(h(t))/x(s) > 1, and the last inequality becomes

ln
x(t)

x(h(t))
+

∫ t
h(t)

p(s) exp

{∫h(t)
τ(s)

p(ξ) dξ

}
ds 6 0. (2.5)

Also, from (2.3), it follows that there exists a constant c > 0 such that∫ t
h(t)

p(s) exp

{∫h(t)
τ(s)

p(ξ) dξ

}
ds > c >

1

e
, t > t2 > t1. (2.6)

Combining the inequalities (2.5) and (2.6), we obtain

ln
x(t)

x(h(t))
+ c 6 0, t > t2.

Thus, we have
ecx(t) 6 x(h(t)), t > t3,

or
(ec)x(t) 6 x(h(t)), t > t3.

Repeating the above procedure, it follows by induction that for any positive integer k,

(ec)kx(t) 6 x(h(t)),

or
x(h(t))

x(t)
> (ec)k for sufficiently large t, (2.7)

where ec > 1.
Since h(t) > τ(t), by (E),

x′(t) + p(t)x(h(t)) 6 0, t > t0. (2.8)

Integrating (2.8) from h(t) to t, and using the fact that the function x(t) is non-increasing and
the function h(t) is non-decreasing, we obtain

x(t)− x(h(t)) +

∫ t
h(t)

p(s)x(h(s)) ds 6 0,

or

x(t)− x(h(t)) + x(h(t))

∫ t
h(t)

p(s) ds 6 0.
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Thus

x(h(t))

(
1−

∫ t
h(t)

p(s) ds

)
> 0,

that is,

f(t) :=

∫ t
h(t)

p(s) ds 6 1. (2.9)

Now, we claim that

lim inf
t→∞

f(t) > 0. (2.10)

If not, then

lim inf
t→∞

f(t) = 0. (2.11)

Since f(t) is bounded, then there exists a sequence {tk} such that limk→∞ tk = ∞ and
limk→∞ f(tk) = 0.

Observe that

τ(s) < h(t) < s < t.

Then, we can write ∫ t
τ(s)

p(ξ) dξ =

∫s
τ(s)

p(ξ) dξ +

∫ t
s

p(ξ) dξ = I1 + I2.

By (2.9), it is obvious that I2 6 1 and lim inft→∞ I2 = 0.
But then, from the definition of h(t), it is known (see [16]) that

lim inf
t→∞

∫ t
h(t)

p(ξ) dξ = lim inf
t→∞

∫ t
τ(t)

p(ξ) dξ

and so

lim
k→∞

∫ tk
h(tk)

p(ξ) dξ = lim
k→∞

∫ tk
τ(tk)

p(ξ) dξ = 0.

Thus, we have lim inft→∞ I1 = 0. Consequently,

lim
k→∞

∫ tk
τ(sk)

p(ξ) dξ = 0

and, consequently,

lim
k→∞

∫h(tk)
τ(sk)

p(ξ) dξ = 0.

Therefore, we obtain

lim
k→∞

∫ tk
h(tk)

p(s) exp

{∫h(tk)
τ(sk)

p(ξ) dξ

}
ds = lim

k→∞

∫ tk
h(tk)

p(s) ds = 0,

which contradicts (2.3).
So, since (2.10) is satisfied, it follows that there exists a constant d > 0 such that

0 < d 6
∫ t
h(t)

p(s) ds 6 1. (2.12)
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Thus, there exists a real number t∗ ∈ (h(t), t), for all t > t1 such that

0 <
d

2
6

∫ t∗
h(t)

p(s) ds 6 1 (2.13)

and

0 <
d

2
6

∫ t
t∗
p(s) ds 6 1. (2.14)

Integrating (2.8) from h(t) to t∗, and using the fact that the function x(t) is non-increasing
and the function h(t) is non-decreasing, gives

x(t∗)− x(h(t)) +

∫ t∗
h(t)

p(s)x(h(s)) ds 6 0,

or

x(t∗)− x(h(t)) + x(h(t∗))

∫ t∗
h(t)

p(s) ds 6 0.

Thus, by (2.13),

−x(h(t)) + x(h(t∗))
d

2
6 0. (2.15)

Integrating (2.8) from t∗ to t, and using the same arguments gives

x(t)− x(t∗) +

∫ t
t∗
p(s)x(h(s)) ds 6 0,

or

x(t)− x(t∗) + x(h(t))

∫ t
t∗
p(s) ds 6 0.

Thus, by (2.14),

−x(t∗) + x(h(t))
d

2
6 0. (2.16)

Combining the inequalities (2.15) and (2.16), we obtain

x(t∗) > x(h(t))
d

2
> x(h(t∗))

(
d

2

)2

,

or
x(h(t∗))

x(t∗)
6

(
2

d

)2

< +∞,

that is, lim inft→∞ x(h(t))/x(t) exists. This contradicts (2.7).
The proof of the theorem is complete.

Example 2.1. Consider the retarded differential equation

x′(t) +
10

11e
x(τ(t)) = 0, t > 0, (2.17)

where

τ(t) =


t− 1 if t ∈ [3k, 3k + 1],

−3t+ 12k + 3 if t ∈ [3k + 1, 3k + 2],

5t− 12k − 13 if t ∈ [3k + 2, 3k + 3],

k ∈ N0.
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By (2.1), we see that

h(t) := sup
s6t

τ(s) =


t− 1 if t ∈ [3k, 3k + 1],

3k if t ∈ [3k + 1, 3k + 2.6],

5t− 12k − 13 if t ∈ [3k + 2.6, 3k + 3],

k ∈ N0.

Observe that the function f : R0 → R+ defined as

f(t) =

∫ t
h(t)

p(s) exp

{∫h(t)
τ(s)

p(ξ) dξ

}
ds

attains its minimum at t = 3k, k ∈ N0, which is equal to

fmin =

∫3k
h(3k)

p(s) exp

{∫h(3k)
τ(s)

p(ξ) dξ

}
ds

=
10

11e

∫3k
3k−1

exp

{
10

11e

∫3k−1
s−1

dξ

}
ds =

10

11e

∫3k
3k−1

exp

(
10

11e
(3k − s)

)
ds

= exp

(
10

11e

)
− 1 ' 0.397151967

and therefore

lim inf
t→∞

∫ t
h(t)

p(s) exp

{∫h(t)
τ(s)

p(ξ) dξ

}
ds ' 0.397151967 >

1

e
,

that is, condition (2.3) of Theorem 2.2 is satisfied and thus all solutions of (2.17) oscillate.
Observe, however, that

lim inf
t→∞

∫ t
τ(t)

p(s) ds = lim inf
t→∞

∫ t
t−1

10

11e
ds =

10

11e
<

1

e
,

that is, condition (1.3) is not satisfied.
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