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TRACE FUNCTIONSIN THE RING
OF FRACTIONS OF POLY CY CLIC GROUP RINGS, 11

A.l.LICHTMAN

ABsTRACT.  We prove the existence of trace functions in the rings of fractions of
polycyclic-by-finite group rings or their homomorphic images. In particular a trace
function exists in the ring of fractions of KH, where H is a polycyclic-by-finite group
and charK > N, where N isa constant depending on H.

1. Introduction. LetK beafield of characteristic zero, H be a polycyclic-by-finite
group, Abeasemiprimeideal inthe group ring KH. Thesemiprimering K[H] = (KH) /A
isaGoldiering; let Rbeitsring of fractions. The existence of tracefunctionsin the matrix
rings over the ring of fractions of the group ring KH was established by the author in [6].
In this note we generalize this result by proving the following theorem.

THEOREM 1. Let K be afield of characteristic zero, A be a semiprimeideal in KH,
R be the Goldie ring of fractions of the ring K[H] = (KH)/A. Then

@D 1Z[RRI.

Therelation (1) meansthenitisimpossibleto find elementsx;,y; € R( = 1,2,...,K)
such that

k
2 1= 2[)(]’%’]-
]:

It iswell known (see [3]-{15]) that the relation (1) implies an existence of a nontrivial
trace function in Ry«n. Indeed it is easy to seethat if X = (x;;) isann x n matrix over R
and X € [Raxn, Rnxn] then (T xi) € [R, R]. If now RisaK-agebrawith atrace function
T:R — K then we can define T,(X) = Y T(x;) and if charK # 0 then (1) implies that
T(1nxn) # 0.

Now let charK = p > 0. By applying Theorem 3.12in[7] wewill obtain the follow-
ing theorem.

THEOREM 2. Let H bea polycyclic-by-finite group, R be thering of fractions of KH.
Then the relation (1) holdsin R provided that p > N, where N is a constant depending
on H.

Therestriction on the characteristic of K cannot be removed; in Section 8 we consider
the case when charK = p > 0, the group H is torsion free and is an extension of an
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abelian group by afinite p-group. It isknownthat in this case the group ring KH contains
no zero divisors and hasadivision ring of fractions D; the dimension of D over its center
isapower of p. We show that in this case the relation (1) is not true anymorei.e. the unit
element is a sum of commutatorsin D. We conjecture however that the following fact is
true.

Let charK = p > 0 and H be a polycyclic-by-finite group which contains no finite
normal p-subgroups, R be the ring of fractions of KH. Then

[RR] #R.

It is worth remarking that this holds in the case when R is the division ring of frac-
tions of a group ring of atorsion free abelian-by-finite group. This can be obtained as
acorollary of Lorenz's results [10]. | am grateful to the referee who brought this to my
attention.

We provein Section 7 the following theorem which isageneralization of M. Lorenz's
theoremin[9].

THEOREM 3. Let H be a finitely generated nilpotent group, A be a semiprime ideal
in KH, Rbethering of fractions of (KH)/A. Then therelation (1) holdsin R.

Lorenz obtained this result for the case when char K = 0.

2. Thefollowing fact iswell known and its proof is straightforward.

LEMmMA 1. Let Rbe an algebra over a field K, K; be a field extension of K. If the
relation (1) holdsin Rthenit holdsalsoin K; ® R.

LEMMA 2. Let K[G] be an algebra generated by a finite group G over a field K. If
char K does not divide the order (G : 1) then the relation (1) holdsin the ring K[G].

ProoF. Clearly, we can assumethat K is algebraically closed. We havein this case
k
©) K[G] ~ 21 Ky xm, »

wherem,|(G : 1) (o = 1, 2,...,k). The decomposition (3) now reduces the proof to the
case when K[G] ~ Knxm Where mis prime to char K. We observe now that the relation
(2) can not hold in Kn.m because the trace of the right side is zero whereas the trace of
the left sideis m # 0. This completes the proof.

LEMMA 3. Let Rbearing. Assume that there exists a systemof subringsT; (i € I)
and homomorphisms6;: T, — R (i € I) such that for every given elements

4 nerR (=12...,k

a subring T; containing these elements can be found. If the relation (1) holds in every
ringRi (i € 1) thenit holdsalsoin R.

ProoF. Assumethat therelation (2) holdsfor someelementsx;,y; € R( = 1,2,...,
k). We find ahomomorphism 6;: R — R, suchthat itsdomain T; containsall the elements
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X, Y; = 1,2,...,k) and obtain the following relation for the elements x; = 6;(x;),
yi=06i(y;) ( =1,2,...,k) inthering R:

k
S%.%] =1
j=1
which contradicts the assumption of the assertion. This completes the proof.

3.

LEMMA 4. Let G be a soluble group which contains a finite subgroup U of order
n such that the quotient group G/ U is free abelian of finite rank k. Then G contains a
free abelian subgroup V of rank k and of finite index such that all the prime divisors of
(G: V) aredivisorsof n.

PrOOF.  Sincethe commutator subgroup G’ isfinitewe concludeeasily that for every
element g € G there exists anumber m(g) such that the power g™9 belongsto the center
of G and hence the center has a finite index. We obtain then that there exists a central
torsion free subgroup Z of finite index.

LetV D Z bethe subgroup of G whichistheinverseimage of the Hall n’-subgroup of
G/ Z (it isworth remarking that the group G/ Z is soluble); clearly, all the prime divisors
of (G : V) aredivisors of n.

Sincethe group V/Z isan n’-group we obtain from Schur’s theorem that V' is afinite
n’-group. But V/ C U and hence V' is an n-group. Thisimpliesthat V/ = 1,i.e. Vis
abelian. Since V is an extension of a torsion free group Z by an n’-group V/Z al the
elements of finite order in V must be n’-elements; once again, since (U : 1) = nwe
obtain that VMU = 1 and henceV isisomorphic to a subgroup (of finiteindex) of G/ U.
Thisimpliesthat V is free abelian of rank k and the proof is completed.

LEMMA 5. Let H be a polycyclic group, F be nilpotent normal subgroup of H. As-
sume that the order of the torsion subgroup of F is n and the quotient group H /F is free
abelian. Then H contains a poly-{infinite cyclic} subgroup H; of finite index such that
all the prime divisorsof (H : H;) aredivisorsof n.

PrROOF. Letchbethenilpotency classof F. Malcev'stheorem (see[2]) impliesthat the
group E”C , generated by the n°-powers of the elements of F, istorsion free. The quotient
groupH = H/F"™ isan extension of afinite nilpotent group F = F/F™ by afree abelian
group H/F ~ H/F. Hence by Lemma4 H contains a free abelian subgroup H; of finite
index (H : Hy) whose prime divisors divide the number n®. The inverseimage H; of H;
is a subgroup of H which is an extension of atorsion free nilpotent group F™ by afree
abeliangroup H1; henceHy is poly-{infinitecyclic} and satisfiesall the other conclusions
of the assertion.

LEMMA 6. Let K[H] bearing generated by a group H over a field K. Assume that
there exists a finite central subgroup C C H such that K[H] is isomorphic to a suitable
cross product K[H] ~ K[C] * (H/C) where the group H/C is torsion free. Let H; be
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a torsion free subgroup of finite index min H. Then the subalgebra K[C, H,] generated
by the subgroups C and H; is isomorphic to the group ring K[C]H1, the subgroup H, =
(C,H;) isisomorphicto the direct product C x H; and K[H] is a (left) free module over
K[C]H; of finite dimension my = ind(H : Hz) and my | m.

PROCOF. Since H; N C = 1 the subgroup H; can be included into atransversal of C
in H; the properties of cross products now imply that K[C, H;] ~ K[C]H;; the relation
Hy ~ H; x Cisobvious. If hy = 1, hy,...,hy, isatransversal of H, in H then the
elementsh; (i = 1,2,...,m) form abasis of KH over KHp; clearly, my | m.

4, We need now a few concepts and results on polycyclic groups. If A is a non-
unit torsion free abelian normal subgroup of an arbitrary group H, then the conjugation
in H definesin A a structure of ZH-module. This subgroup A isaplinthin H if H and
all its subgroups of finite index act rationally irreducible on A. (See Roseblade [13] or
Passman [11], Chapter 12). Every infinite polycyclic-by-finite group H has a subgroup
of finiteindex which containsaplinth (see[13] or [11], 12.1.4). It isnot difficult to prove
the following fact (see[7], Section 3.1).

LEMMA 7. Let H beapolycyclic-by-finitegroup. Thenit containsa polyplinthic nor-
mal subgroup Ho of finite index, i.e. Hg istorsion free, and contains a series of nilpotent
normal subgroups

) HiDADAD---DA1DA =1,

where A /Ais1 is a plinth in Ho/Ax1, A C  C(Ai/A1), the quotient groups

Ho/C(Ai/Ai+1) and Ho/A: are free abelian and hence all the groups Ho/A
(i=1,2,...,9 aretorsionfree.

(Here C(Ai / Ai+1) isthe centralizer of the factor A /A1, i.e. C(Ai/Ais1) = {h € Ho |
[h,a] € Ay for all a € Aj}.) We would like to point out that this definition of the
polyplinthic group differs from the corresponding definition in the book of Shirvany and
Wehrfritz [14] (see[14], p. 142).

We will need the following fact whichis Theorem 3.12in[7].

PROPOSITION 1. Assume that H is a polyplinthic group with a Hirsch number h and
K is a finitely generated commutative field of characteristic zero or p > C(h), where
C(h) is a constant depending on h. Let D be the division ring of fractions of KH,

(6) X1, X2, 0oy Xg

be given non-zero elements of KH and t be a given natural number. Then there exists an
ideal C C KH suchthat K[A] = (KH)/C isisomorphic to a semiprime subalgebra of a
matrix algebra (K1)mxm, where

(7) m= Zﬁalaz...Q/(quqgh...qr/nf,
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the numbersq; areprimeand g >t, o | (g — 1), (i = 1,2,...,£), the group H isfinite
and ¢ does not exceed the number r, the length of the plinth series (5), 8 < r and

m<oeh (=12...,0

where ¢(h) is an integer valued function of the Hirsch number h; K; = K(e) is a cy-
clotomic extension of degree g0 - - - g, over K. Furthermore, the images % of the el-
ementsx (| = 1,2,...,s) areinvertible in the ring (KH) /C and the homomorphism
a: KH — K[H] is extended to a specialization : D — K[H], i.e. there exists a subring
D O T D KH and an epimorphismz: T — K[H] such that ker 7 isa quasiregular ideal
atT.

REMARK. We usein this paper the concept of “specialization” as defined in Pass-
man’s article [12].
It followsalsofrom Theorem| and Proposition (2.2) in [ 7] that for every given number
q=qin(7)
g—1

S =P P

wherep,, > qzlﬁ (x=1,2,...,9) aredistinct prime numbers.

PROPOSITION 2. Let H bea polyplinthic group with Hirsch number h, K be afield of
finite characteristicp > max(2, C(h)), D be the division ring of fractions of KH. Then
therelation (1) holdsin D.

ProoF. Clearly, we can assumethat K is finitely generated. Now assume that non-
zeroelementsr; € D (j = 1,2,...,Kk) begiven. Let

n=abt (=12...K.

Taket = p?" and apply Proposition 1 to the set of elements g, bj (j = 1,2,...,K). We
obtain a specialization §: D — K[H] C (K1)mxm Such that its domain T contain all the
elements a;, by and hence the elementsr; (j = 1,2,...,K), and p does not divide the
number m. The assertion now follows from Lemmas 2 and 3.

PROOF OF THEOREM 2. Lemma 7 implies that H contains a polyplinthic normal
subgroup of finiteindex m = (H : Hp); hence, Risisomorphically imbeddedinto amatrix
ring Dmxm, Where D isthe division ring of fractions of KHg (see[14]). Proposition 2 now
implies that the relation (1) holdsin Dy« if charK > N, where N = max(2, m, C(h)).
Henceit holdsin R.

5. Wewill need the following fact in the proof of Theorem 1.

LEMMA 8. Let K be a field of finite characteristic p, K[H] be a domain generated
by a polycyclic group H over K, R be the division ring of fractions of K[H]. Assume
that H contains a finite central subgroup C such that the quotient group H=H /Cis
poly-{infinite cyclic} and K[H] is isomorphic to a suitable cross product

K[H] ~ K[C] * (H/C).

https://doi.org/10.4153/CJM-1997-039-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-039-1

TRACE FUNCTIONS 793

Assume that there exists a nilpotent normal subgroup F O C such that the quotient
group H/F isfree abelian. Assumealso that the relation (1) holdsin the division ring of
fractions of KH. Thenit holdsalsoin R.

ProoF. Itiswell known that the group Ciscyclic: infact, it isafinite subgroup of a
field K[C]. Furthermore, the order of Cis primeto p. Now apply Lemma5 and obtain a
poly-{infinite cyclic} subgroup H; C H such that theindex m= (H : H;) isprimeto p.
Lemma6 now implies that theindex my of the subgroupH; = (C,H;) = Cx H isprime
to p and that K[H] hasafaithful representation of degree my over the group ring K[C]Hy,
hence R has afaithful representation of degree my over the ring of fractions Sof K[C]Hj.
Finally, H1 is a subgroup of H which does not intersect C; hence, it is isomorphic to a
subgroup of the quotient group H=H /C. Since the relation (1) holds in the division
ring of fractions of KH it must hold, via Lemma 1, in the ri ng of fractions of K[C]ﬁ
and hencein its subring S. Finally, since R is imbedded isomorphicaly in Sy xm, and
(p, M) = 1 weobtain that the relation (1) holdsin R.

6. Wewill provein this section Theorem 1. Clearly, we can assumethat the ideal A
in Theorem 1 is prime and faithful. We need first the following fact which is statement
ii) in Proposition 3in[8].

PrROPOSITION 3. Let Abea primeideal of KH, R be the Goldie ring of fractions of
thering K[H] = (KH)/A. Then R has a finite left dimension over a division subring D,
which is isomorphic to the ring of fractions of a domain K[H,], where H; is a torsion
free normal subgroup of finiteindexin H. Furthermore, K[H;] isisomorphicto a suitable
cross product

K[H1] =~ K[C] * (H1/C)

where C is a central subgroup of H; and the group Hy / C is poly-{infinite cyclic}.

PROOF OF THEOREM 1. Since Proposition 3 implies that R has a faithful matrix
representation over D we can assumein the proof of Theorem 1 thatinfact Hy = H, i.e.
K[H] isadomain,

(8) K[H] ~ K[C] % (H/C),

and Ciscentral in H. Furthermore, we can find anormal subgroup Hp © C of finiteindex
in H such that the group Ho / C is polyplinthic. The representation (8) implies that

9) K[H] ~ K[Ho] * (H/Ho)

where the group H /Hy isfinite. We conclude from (9) that D has afinite left dimension
over thedivision subring D, generated by K[Hp]. Once again, we seethat we can assume
that the group H/C in (8) is polyplinthic; this implies, in particular, that there exists a
nilpotent normal subgroup F O C such that H/F is free abelian.

Now let K; be an arbitrary finitely generated subfield of K. Theideal Ay = AN KjH
is completely prime in KiH and the ring Ki[H] = (KiH) /A isasubring of K[H]; Ki[H]
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generate adivision subring D; C D. Since D isadirect limit of the division subrings D;
we reduced the proof to the case when the field K is finitely generated.

Let Ko be an arbitrary finitely generated subring of K such that K is the field of frac-
tions of Kg. Once again, theideal Ag = AN KgH is completely prime in KoH and D is
isomorphic to the division ring of fractions of the ring Ko[H] = (KoH)/Ao; itiseasy to
see also that

(10) Ko[H] =~ Ko[C] * (H/C) = SxH

where Sisafinitely generated central subring and H= H/Cispolyplinthic. Let hbethe
Hirsch number of H.

We pick now in San infinite system of maximal ideals A; (i € 1) suchthat N, A =0
and the quotient rings § = S/A; are finite fields of characteristics pi > max(2, C(h))
(i € 1), where C(h) is the same as in Proposition 2. Every ideal A; generatesin S
H a completely prime ideal (A)) = A x H. This idea is localizable by Roseblade’s
Theorem11.2.9in[11]. Let T, = (SxH)M; L whereM; = (SxH)\ (AixH). Then T, /J(T;)
isadivisionring Dj, whichisisomorphic to thering of fractions of (Ko[H])/(A)). Onthe
other hand we have for the ring Ko[H] / (Aj) a representation

(11) Ko[H]/(A) ~ Ki[Hi],
and
(12) Ki[Hi] ~ S *H

where K; is animage of thering Ko and H; isthe image of the group H. Since p; > C(h)
the representations (11) and (12) show that every division ring D; satisfiesthe conditions
of Lemma 8 and hence the relation (1) holdsin D;.

Now assume that elements (4) in D are given. Apply Proposition 1(i) from [8] and
obtain that there exists a cofinite subset I; C | such that for every i € |, the elements (4)
belong to the subring T; C D, where T; is the domain of the specialization 6;: D — D;.
Theorem 1 now follows from Lemma 3 and the proof is completed.

7. Wewill need in the proof of Theorem 3 the following fact which is proved in [5]
(see[5], Corollary 1.2 or Proposition 2.8).

LEMMA 9. Let H beafinitely generated torsion free nilpotent group, K be an arbi-
trary field, A be the division ring of fractions of KH and

(12) X (=212,...,n)

be given non-zero elements of A. Let q # char K be a given prime number. Then there
exists a specialization 7. A — K[G] such that its domain T contains the elements (12),
K[G] is a finite dimensional simple algebra generated by a finite g-group G = 7(G) and
ker 7 is the Jacobsonradical S(T) of T.

PrOOF OF THEOREM 3. Let H be afinitely generated nilpotent group, A be a prime
ideal of KH, R bethering of fractions of KH; we can assumethat the ideal A isfaithful.
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Theorem 1 makes possible to assume that char K = p > 0 and Lemma 1 reduces the
proof to the casewhen K = Z,. Let C = A(h) = {h € H | h hasafinite number of
conjugatesin H}. We obtain now from Zalesskii’s Theorem 11.4.5in [11] that (KH) /A
isisomorphic to a suitable cross product

(13) K[H] ~ K[C] * (H/C)

where the group H / C istorsion free nilpotent and the group C is abelian-by-finite. Since
K[H] isprimethering K[C] contains no nilpotent ideal s. But the group Cisfinitely gener-
ated abelian-by-finite; hence K[C] is aPl-ring and we obtained that K[C] is semisimple.

Let Q be a primitive ideal of K[C]; since C is abelian-by-finite and we assumed that
K = Z, we obtain that K[C]/Q is afinite dimensional algebra over K generated by a
finite group C, the image of C; since the algebra K[C] is simple and C is nilpotent it
must be a p’-group. Since H acts as a finite group on C = A(H), we conclude that the
orbit h~1Qh(h € H) of Q must be finite because theimage of C in K[G] /Q isfinite. Let
Q1 =Q, Qy,...,0Q betheorbit of Q and

B= () Q.
a=1

Theideal B C K[C] is H-invariant and the quotient algebra K[C] /B is semisimple ar-
tinian and generated by a finite p’-group C, the image of C; the group C is a subdirect
product of the groups C,,, theimages of CinK[C]/Qq (o = 1,2,...,r).

We take now an arbitrary system of primitive ideals Q; C K[C] (i € I) with intersec-
tion zero. Let B; = Ny,eny h™2Qih. Then N, Bi = 0 and every ideal B; is H-invariant. We
consider now the system of ideals (B;) = B;(K[H]) C K[H] (i € ). Since H is nilpotent
every ideal (B;) (i € 1) is polycentral and it can be localized in K[H] by Roseblade’'s
Theorem 11.2.9in [11].

Pick now somei € | and consider thering K[Hi] = K[H] /(B;) anditsring of fractions
R.. We will prove that the relation (1) holdsin thering R.. Sincefor every i € | theided
(By) is localizable we see that there exists a specialization 6;: R — R, and once again as
in the proof of Theorem 1 Theorem 3 will follow from Lemma 3.

Thering K[H;] isisomorphic to a suitable cross product

K[Hi] ~ K[Ci] * (Hi/Ci),
where H; = Hi /Ci is afinitely generated torsion free nilpotent group and C; is afinite
p’-group, say of order m. Let ¢; be the nilpotency class of H;. Once again, as above, the
group U; = Him' is torsion free, it generates over K[C;i] a subring, isomorphic to the
group ring K[CiJU; and K[H;] isisomorphic to a suitable cross product
K[Hi] ~ (K[C]U;) * (Hi / V),

whereV; ~ C; x U;, theindex (H; : V;) isfinite and prime to p; hence, once again, the
proof is reduced to the case when R; is isomorphic to the ring of fractions of the group
ring K[Ci]U;. Sincethe field K is algebraically closed we have

(14) K[Ci] =~ Kn1><n1 + Kn2><n2 +.--t Kn,><nr
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wheren; | (G : 1) andhencep /(= 1,2,...,1).

The decomposition (14) implies that the group ring K[Ci]U; isisomorphic to adirect
sum of group rings over the matrix ringsKy «n (j = 1,2,...,r) and thering of fractions
of K[Ci]U; is a direct sum of the rings of fractions of the group rings (Kn xn)Ui (j =
1,2,...,r); but for every given | the ring of fractions of (Kyxn)Ui isisomorphic to the
matrix ring of degree n; over the ring of fractions of KU;. Since U; is a torsion free
nilpotent group the assertion now follows from Lemmas 3 and 9.

8. Let H be atorsion free group which is an extension of an abelian group U by a
cyclic group of order pX. It is known that under these conditions the group H must be
poly-{infinite cyclic} (see, for instance, [4]), the group ring KH is an Ore domain; let D
be the division ring of fractions of KH. Since the quotient group H /U is cyclic of order
p* we obtain easily that D is acyclic algebra of dimension p>* (n < k) over its center. It
follows now from Proposition 0.3 in [1] that 1 is a commutator in D, i.e. the condition
(1) does not hold in division rings of fractions of group rings of poly-{infinite cyclic}
groupswhen charK = p > 0.

An explicit example can be constructed in the following way. Let H be a semidirect
product of two infinite cyclic groups, i.e. H = (g,h | ghg™* = h™1). The group H is
an extension of the free abelian subgroup U = (g2, h) by a cyclic group of order 2. We
consider its group ring KH over an arbitrary field K of characteristic 2 and observe that

[9.hg™] =ghg™t —h=h"—h

isacentral element of KH. Now denotez = h~!—hand obtainthat in thering of fractions
D the unit element is a commutator

[gz71,hg™!] = 1.
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