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Operator Estimates for Fredholm Modules
F. A. Sukochev

Abstract. We study estimates of the type

‖φ(D)− φ(D0)‖E(M,τ ) ≤ C · ‖D− D0‖
α, α =

1

2
, 1

where φ(t) = t(1 + t2)−1/2, D0 = D∗0 is an unbounded linear operator affiliated with a semifinite von
Neumann algebraM, D−D0 is a bounded self-adjoint linear operator fromM and (1 + D2

0)−1/2 ∈ E(M, τ ),
where E(M, τ ) is a symmetric operator space associated withM. In particular, we prove that φ(D) − φ(D0)
belongs to the non-commutative Lp-space for some p ∈ (1,∞), provided (1 + D2

0)−1/2 belongs to the non-
commutative weak Lr-space for some r ∈ [1, p). In the caseM = B(H) and 1 ≤ p ≤ 2, we show that this
result continues to hold under the weaker assumption (1 + D2

0)−1/2 ∈ Cp . This may be regarded as an odd
counterpart of A. Connes’ result for the case of even Fredholm modules.

0 Introduction

In a very general form, one of the basic problems of perturbation theory may be formulated
as follows.

I. If F is a continuous function on (−∞,∞) under what conditions does the small-
ness of D− D0 imply that of F(D)− F(D0)?

This paper is intended to study this problem when the function F = φ and D0 (respectively,
D − D0) is some self-adjoint (respectively, bounded self-adjoint) operator on the infinite-
dimensional Hilbert space H affiliated with M (respectively, from M). We shall measure
“smallness” of D−D0 (respectively, F(D)− F(D0)) in the uniform operator norm (respec-
tively, in the norm of some symmetric operator space associated with M). The difference
between norms on the right and left hand sides makes virtually impossible the application
of well-known double operator integral techniques from [BSo1–3] and therefore new tech-
nique is required even in the simplest situation when M coincides with the algebra B(H)
of all bounded linear operators on H. However, not only this makes the problem of inter-
est. Our choice of F is stipulated by the recent development of the theory of unbounded
Fredholm modules [Co1], [Co2] and that of spectral flow [P1], [P2], [CP].

Let (M, τ ) be a semifinite von Neumann algebra on the Hilbert space H with a fixed
faithful and normal semifinite trace, let E(M, τ ) be a rearrangement-invariant Banach
space associated with (M, τ ) and the Banach function space E (for the definitions see next
section) and let A be a unital Banach ∗-subalgebra of M.
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Definition 0.1 ([Co1], [Co2], [CP]) An odd unbounded (respectively, bounded) Breuer-
Fredholm module associated with E(M, τ ) and A, is a pair (M,D0) (respectively, (M, F0))
where D0 (respectively, F0) is an unbounded (respectively, bounded) self-adjoint operator
affiliated with M (respectively, from M) satisfying:

(1) (1 + D2
0)−1/2 (respectively, (1− F2

0)1/2) belongs to E(M, τ ); and
(2) A := {a ∈ A | [D0, a] ∈ M} (respectively, A := {a ∈ A | [F0, a] ∈ E(M, τ )}) is a

dense ∗-subalgebra of A.

In the special case when M = B(H) and τ is the standard trace Tr we shall omit the word
“Breuer” from the definition and speak about unbounded (respectively, bounded) Fredholm
modules (H,D0) (respectively, (H, F0)). In this case and when E = Lp (i.e., when the non-
commutative symmetric space E(M, τ ) coincides with the Schatten-von Neumann ideal Cp

of compact operators T such that Tr(|T|p) < ∞) the “bounded” part of Definition 0.1 is
a slight extension of Definition 3 from [Co2, p. 290] (where A = A and F2

0 = 1, see also
[Co1, Appendix 2]). In the special case when M is a semifinite factor and E = Lp, the
“unbounded” part of Definition 0.1 coincides with [CP, Definition 2.1]; and, in the case
M = B(H), it may be considered as an odd counterpart of the notion of an unbounded
even p-summable Fredholm module from [Co1, Section 6, Corollary 3 and the remarks
thereafter]. Further, if again (M, τ ) =

(
B(H),Tr

)
and if E is Marcinkiewicz function space

with the fundamental function ψ(t) = log1/2(e2 + t) (see [KPS] and Section 5 below), then
the “bounded” part of Definition 0.1 yields the definition of the θ-summable Fredholm
module [Co2, Definition 4, p. 291].

Following the line of Connes’ results for the even case (see [Co1, I.6]), the importance
of the mapping (H,D0) −→

(
H, sgn(D0)

)
was recognised and outlined in [CP] for the

odd case. The smooth approximation of sgn(D0) is the map

φ : D −→ D(1 + D2)−1/2

and the latter fact explains our interest in the differenceφ(D)−φ(D0). The results presented
in this article contribute also to the study of the mapping (M,D0) −→

(
M, sgn(D0)

)
which

was initiated in [CP] for the odd p-summable Breuer-Fredholm modules. At this mo-
ment it is far from being clear whether for an arbitrary odd unbounded Breuer-Fredholm
module (M,D0) associated with E(M, τ ), we may deduce that its bounded counterpart(
M, sgn(D0)

)
is associated with E(M, τ ) as well. Though the even p-summable case was

settled in [Co1], the odd case may require introducing weak Lp-spaces (see [Co2, Sec-
tion IV.2] and [CP, Section 2.A]). In other words, question I (with F = φ) is prompted by
and closely connected to the following problem.

II. Given the symmetric operator space E(M, τ ), find a symmetric space F(M, τ )
such that

(
M, sgn(D0)

)
is an odd bounded Breuer-Fredholm module associated with

E(M, τ ), provided (M,D0) is an odd unbounded Breuer-Fredholm module associ-
ated with F(M, τ ).

To answer Question I, we consider (see Sections 2–5) Lipschitz estimates of the type

‖φ(D)− φ(D0)‖E(M,τ ) ≤ C · ‖D− D0‖(0.1)
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where C > 0 depends on D0. In Section 6, we consider Hölder estimates of the type

‖φ(D)− φ(D0)‖E(M,τ ) ≤ C · ‖D− D0‖
1/2.(0.2)

Our general approach to the estimates (0.1) is based on a systematic use of generalized
s-numbers of measurable operators [FK] and symmetric operator space theory. After gath-
ering in Section 1 below some basic facts concerning symmetric spaces of measurable op-
erators, in Section 2 we reduce the problem of calculation of the norm φ(D)−φ(D0) in the
norm of symmetric operator space E(M, τ ) to the calculation of some integral whose inte-
grand depends only on the behaviour of generalised s-numbers of the operator (1+D2

0)−1/2

in an appropriate symmetric function space E (see Propositions 2.4, 2.6). This approach
leads to the selection of a rearrangement-invariant ideal J(E) ⊆ E consisting of all func-
tions from E for which the integral converges. The study of J(E), in the special cases of
Lp-spaces, Lorentz and Marcinkiewicz spaces, is presented in Sections 3, 4 and 5 respec-
tively. These sections contain an account of joint results of the author with A. Sedaev and
E. Semenov (announced in [SSS]), and the author wishes to thank them for their kind
permission to publish these results in this paper. We place earlier estimates of [CP] for Lp-
spaces in the setting of non-commutative Orlicz and Lorentz spaces. This viewpoint allows
improvement of several results given in [CP].

In Section 6 we present some results which indicate the intrinsic connection between our
theme and the study of Hölder and Lipschitz continuity of the absolute value in the setting
of operator spaces. Combined with the Birman-Koplienko-Solomyak inequality [BKS] this
approach allows to obtain estimates of type (0.2).

All the results presented in this article may be easily reformulated to also contribute
to the resolution of Question II. For example, Corollary 6.8 asserts, that for any odd un-
bounded p-summable Fredholm module (H,D0), 1 ≤ p ≤ 2, we have that

(
H, sgn(D0)

)
is a p-summable odd bounded Fredholm module. This complements results of A. Connes
for the even case [Co1, Section 6]. Using the same method, it may be easily verified that the
space F(M, τ ) arising in Question II may be taken to be J(E)(M, τ ).

Work on this paper was initiated during a visit to the University of Haifa and the Weiz-
mann Institute of Science (Rehovot). The author wishes to thank his hosts J. Arazy and
M. Solomyak for their insights, assistance and encouragement. Special thanks are due to
A. Carey and J. Phillips for bringing this circle of ideas to the author’s attention, and for
their comments on earlier drafts of this paper. The author also wishes to acknowledge
fruitful conversations with P. Dodds and with Yu. Farforovskaya who strongly influenced
the development of Section 6.

1 Preliminaries

We denote by M a semifinite von Neumann algebra on the Hilbert space H, with a fixed
faithful and normal semifinite trace τ . The identity in M is denoted by 1. A linear operator
x : dom(x) → H, with domain dom(x) ⊆ H, is called affiliated with M if ux = xu for all
unitary u in the commutant M ′ of M. The closed and densely defined operator x, affiliated
with M, is called τ -measurable if for every ε > 0 there exists an orthogonal projection
p ∈ M such the p(H) ⊆ dom(x) and τ (1 − p) < ε. The collection of all τ -measurable
operators is denoted by M̃. With the sum and product defined as the respective closures of
the algebraic sum and product, M̃ is a ∗-algebra.
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Given a self-adjoint operator x in H we denote by ex(·) the spectral measure of x. Now
assume that x ∈ M̃. Then e|x|(B) ∈M for all Borel sets B ⊆ R, and there exists s > 0 such
that τ

(
e|x|(s,∞)

)
<∞. For x ∈ M̃ and t ≥ 0 we define

λs(x) := τ
(
e|x|(s,∞)

)
and

µt (x) := inf{s ≥ 0 : τ
(
e|x|(s,∞)

)
≤ t} = inf{s ≥ 0 : λs(x) ≤ t}.

The function λs(x) : [0,∞) → [0,∞] is called the distribution function of x and the func-
tion µ(x) : [0,∞) → [0,∞] is called the generalized singular value function (or decreasing
rearrangement) of x; note that µt (x) <∞ for all t > 0. We note that a sequence {xn} ⊆ M̃

converges to 0 for the measure topology (see [FK]) if and only if µt (xn) → 0 for all t > 0.
Equipped with this measure topology, M̃ is a complete topological ∗-algebra.

If we consider M = L∞(R+,m), where m denotes Lebesgue measure on R+, as an
abelian von Neumann algebra acting via multiplication on the Hilbert space H =
L2(R+,m), with the trace given by integration with respect to m, it is easy to see that M̃

consists of all measurable functions on R+ which are bounded except on a set of finite
measure, and that for x ∈ M̃, the generalized singular value function µ(x) (respectively,
the distribution function λ(x)) is precisely the decreasing rearrangement of the function
|x| (respectively, the distribution function of |x|) and in this setting, µ(x) is frequently de-
noted by x∗ (respectively, n|x|). As usual, for x ∈ M̃, we define

x∗∗(t) :=
1

t

∫ t

0
x∗(s) ds, for all t > 0.

It is easy to see that 0 ≤ x∗(t) ≤ x∗∗(t), t ∈ (0,∞). We recall also that the dilation operator
σs, s > 0 on M̃ is defined by

σsx(t) = x(s−1t), x ∈ M̃.

If M = L(H) and τ is the standard trace, then M̃ = M and the measure topology
coincides with the operator norm topology. If x ∈ M, then x is compact if and only if
limt→∞ µt (x) = 0; in this case,

µn(x) = µt (x), t ∈ [n, n + 1), n = 0, 1, 2, . . . ,

and the sequence {µn(x)}∞n=0 is just the sequence of eigenvalues of |x| in non-increasing
order and counted according to multiplicity.

Using the generalized singular value function, it is possible to construct certain Banach
spaces of measurable operators. In particular, the non-commutative Lp-spaces (1 ≤ p ≤
∞) associated with (M, τ ) can be defined by

Lp(M, τ ) = {x ∈ M̃ : µ(x) ∈ Lp(R+,m)},

equipped with the norm ‖x‖p := ‖µ(x)‖p , x ∈ Lp(M, τ ). It is not difficult to see that this
definition coincides with the definition of non-commutative Lp-spaces as in [Ne], [Te]. If
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M = B(H) with standard trace, then these non-commutative Lp-spaces are precisely the
Schatten classes Cp, 1 ≤ p <∞.

We will consider non-commutative spaces of more general form and now briefly de-
scribe their construction.

By L0(R+,m), we denote the space of all C-valued Lebesgue measurable functions on R+

(with identification m-a.e.). A vector subspace E ⊆ L0(R+,m) is said to be a rearrangement-
invariant ideal if it follows from x ∈ E, y ∈ L0(R+,m) and y∗ ≤ x∗ that y ∈ E. A
Banach space (E, ‖ · ‖E), where E ⊆ L0(R+,m) is a rearrangement-invariant ideal and
y∗ ≤ x∗, x ∈ E imply ‖y‖E ≤ ‖x‖E is called a rearrangement-invariant Banach function
space. Furthermore, (E, ‖ · ‖E) is called a symmetric Banach function space (respectively,
fully symmetric Banach function space) if it has the additional property, that x, y ∈ E and
y∗∗ ≤ x∗∗ (respectively, x ∈ E, y ∈ L0(R+,m) and y∗∗ ≤ x∗∗) imply that ‖y‖E ≤
‖x‖E (respectively, y ∈ E and ‖y‖E ≤ ‖x‖E). Any exact interpolation space for the pair(
L1(R+,m), L∞(R+,m)

)
is fully symmetric (see [BS], [KPS]). Dilation operator σs, s > 0

acts boundedly in any rearrangement-invariant Banach function space (E, ‖ · ‖E) [KPS,
Theorem II.4.4).

Recall (see [KPS]) that for an arbitrary rearrangement-invariant function space E =
E(0,∞) the fundamental function of E, φE(·), is given by

φE(t) = ‖χ[0,t)‖E, t > 0.

Given a semifinite von Neumann algebra (M, τ ) and a symmetric Banach function space
(E, ‖ · ‖E) on (R+,m) we define the corresponding non-commutative space E(M, τ ) by
setting

E(M, τ ) = {x ∈ M̃ : µ(x) ∈ E}.

Equipped with the norm ‖x‖E(M,τ ) := ‖µ(x)‖E, the space
(
E(M, τ ), ‖ · ‖E(M,τ )

)
is a Ba-

nach space and is called the (non-commutative) symmetric operator space associated with
(M, τ ) corresponding to (E, ‖ · ‖E). If E is one of the familiar Lorentz (respectively,
Marcinkiewicz) function spaces (see [KPS], [BS]), then the spaces E(M, τ ) given by the pre-
ceding construction coincide with Lorentz (respectively, Marcinkiewicz) operator spaces
introduced in [O1], [O2].

The previous definition is still valid for rearrangement-invariant function spaces E pro-
vided that E is a subspace of an exact interpolation space for the pair

(
L1(R+,m),

L∞(R+,m)
)

(see [CS], [DDP1], [DDP2], [SC]). Any rearrangement-invariant space(
E(M, τ ), ‖ · ‖E(M,τ )

)
is continuously embedded into M̃.

In the present article, we shall work mainly with the Banach space

E(M, τ ) :=M ∩
(
E(M, τ ), ‖ · ‖E(M,τ )

)
equipped with the norm

‖ · ‖E(M,τ ) := max{‖ · ‖, ‖ · ‖E(M,τ )}.

It is easy to see that
(
E(M, τ ), ‖ · ‖E(M,τ )

)
is symmetric operator space corresponding to

symmetric function space E := L∞(0,∞) ∩ E.
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2 Lipschitz Estimates: Symmetric Operator Spaces

In what follows, we shall let d0 ∈ L∞(R+,m) be given by

d0(t) := µt (1 + D2
0)−

1
2 , t > 0.

If d0 ∈ E then it is clear that (1 + D2
0)−1/2 ∈ E(M, τ ). Moreover, if M is non-atomic,

then it is easy to see that

(1 + D2
0)−1/2 ∈ E(M, τ )⇐⇒ d0 ∈ E.

We denote by M1 :=M⊗M2(C) the von Neumann algebra of all 2× 2 matrices

[xi j ] =

(
x11 x12

x21 x22

)
with xi j ∈ M, i, j = 1, 2, acting on the Hilbert space H ⊕H. If for 0 ≤ [xi j] ∈ M1, the
trace τ1 is defined by setting

τ1([xi j ]) = τ (x11) + τ (x22),

then (M1, τ1) is a semifinite von Neumann algebra. Now suppose that x ∈ M̃ and define

π(x) : dom
(
π(x)

)
→ H ⊕H

by

π(x) =

(
x 0
0 0

)
,

where dom
(
π(x)

)
= dom(x) ⊕ H. It is easy to see that π(x) is affiliated with M1 and

further π(x) ∈ M̃1.
We note that it follows immediately from [DDPS1, Lemma 2.1] that µt (x) = µt

(
π(x)

)
for any t > 0 and any x ∈ M̃, where µt

(
π(x)

)
is the generalised t-th singular number of

the operator π(x) ∈ M̃1. If E is a symmetric Banach function space on R+, it follows that
the operator π(x) belongs to E(M1, τ1) if and only if x ∈ E(M, τ ) and in this case

‖π(x)‖E(M1,τ1) = ‖x‖E(M,τ ).

Let PD0 , PD ∈ B(H⊕H) be orthogonal projections on the graphs of D0 and D respectively.
For brevity we set

h(t) := 1 +
1

2
t2 +

1

2
t(t2 + 4)

1
2 , t > 0.

Our first result shows that distance between projections PD0 and PD calculated in the
metric of the space E(M1, τ1) is Lipschitz continuous with respect to small perturbations
D− D0.

Theorem 2.1 Let E be a rearrangement-invariant Banach function space on R+, let
(1 + D2

0)−
1
2 ∈ E(M, τ ) and let (D − D0) = (D − D0)∗ ∈ M. Then PD − PD0 ∈ E(M1, τ1)

and moreover

‖PD − PD0‖E(M1,τ1) ≤ 2‖D− D0‖ · (h
1
2 + h)(‖D− D0‖) · ‖(1 + D2

0)−
1
2 ‖E(M,τ ).
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Since h(1) < 3 the preceding estimate implies immediately that

‖PD − PD0‖E(M1,τ1) ≤ 10‖d0‖E · ‖D− D0‖(2.1)

whenever ‖D− D0‖ ≤ 1.

Proof It follows from the equality

PD − PD0 = PD(1− PD0 )− (1− PD)PD0

that to prove the assertion of the theorem it suffices to show that

‖PD(1− PD0 )‖E(M1,τ1) ≤ ‖D− D0‖ · (h
1
2 + h)(‖D− D0‖) · ‖(1 + D2

0)−
1
2 ‖E(M,τ )(2.2)

and

‖(1− PD)PD0‖E(M1,τ1) ≤ ‖D− D0‖ · (h
1
2 + h)(‖D− D0‖) · ‖(1 + D2

0)−
1
2 ‖E(M,τ ).(2.3)

We shall check (2.3) first. Given ω ∈ H ⊕H there exists ξ ∈ dom(D0) such that

PD0ω =

(
ξ

D0ξ

)
.

Taking into account that the matrix of projection PD is given by (see [CP, Appendix A])

PD =

(
(1 + D2)−1 D(1 + D2)−1

D(1 + D2)−1 D2(1 + D2)−1

)
and applying the spectral theorem we get

(1− PD)PD0ω =

(
D2(1 + D2)−1 −D(1 + D2)−1

−D(1 + D2)−1 (1 + D2)−1

)(
ξ

D0ξ

)
=

(
D2(1 + D2)−1ξ − D(1 + D2)−1D0ξ

−D(1 + D2)−1ξ − (1 + D2)−1D0ξ

)
=

(
D(1 + D2)−1Dξ − D(1 + D2)−1D0ξ

−(1 + D2)−1Dξ − (1 + D2)−1D0ξ

)
=

(
D(1 + D2)−1(D− D0)ξ

−(1 + D2)−1(D− D0)ξ

)
.

(2.4)

Let

Q :=

(
1 0
0 0

)
and U :=

(
0 1
1 0

)
be an orthogonal projection and a unitary operator from B(H ⊕ H) respectively. Since
Q(ω1 ⊕ ω2) = ω1 ⊕ 0, U (ω1 ⊕ ω2) = (ω2 ⊕ ω1) for any ω1, ω2 ∈ H, it follows from (2.4)
that

Q(1− PD)PD0ω = π
(
D(1 + D2)−1(D− D0)

)
QPD0ω(2.5)
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and

(1− Q)(1− PD)PD0ω = Uπ
(
−(1 + D2)−1(D− D0)

)
QPD0ω.(2.6)

Using the fact that the uniform operator norms of the operators Q, U , PD0 are all one and
using the simplest properties of generalised singular numbers we get from (2.5) and (2.6)

µt

(
Q(1− PD)PD0

)
≤ µt

(
π
(
D(1 + D2)−1(D− D0)

))
= µt

(
D(1 + D2)−1(D− D0)

)(2.7)

and

µt

(
(1− Q)(1− PD)PD0

)
≤ µt

(
π
(
(1 + D2)−1(D− D0)

))
= µt

(
(1 + D2)−1(D− D0)

)(2.8)

respectively. Since for any a ∈M and x ∈ E(M, τ ) we have

‖ax‖E(M,τ ) ≤ ‖a‖ · ‖x‖E(M,τ )

we infer that (2.7) and (2.8) imply in turn

‖Q(1− PD)PD0‖E(M1,τ1) ≤ ‖D− D0‖ · ‖D(1 + D2)−1‖E(M,τ )(2.9)

and

‖(1− Q)(1− PD)PD0‖E(M1,τ1) ≤ ‖D− D0‖ · ‖(1 + D2)−1‖E(M,τ ).(2.10)

Via [CP, Appendix B, Lemma 6] and since (1 + D2
0)−1 ≤ (1 + D2

0)−
1
2 , we have

‖(1 + D2)−1‖E(M,τ ) ≤ h(‖D− D0‖) · ‖(1 + D2
0)−1‖E(M,τ )

≤ h(‖D− D0‖) · ‖(1 + D2
0)−

1
2 ‖E(M,τ ).

(2.11)

Since D(1 + D2)−1 ≤ (1 + D2)−
1
2 and again via [CP, Appendix B, Lemma 6] (combined

with the fact that 0 ≤ x ≤ y implies 0 ≤ x
1
2 ≤ y

1
2 ) we have also

‖D(1 + D2)−1‖E(M,τ ) ≤ ‖(1 + D2)−
1
2 ‖E(M,τ )

≤ h
1
2 (‖D− D0‖) · ‖(1 + D2

0)−
1
2 ‖E(M,τ ).

(2.12)

(2.3) follows now from (2.9), (2.10), (2.11) and (2.12).
The inequality (2.2) may be obtained via the same arguments (replacing D by D0 and

vice versa) used to establish (2.3) if it is noticed that

‖PD(1− PD0 )‖E(M1,τ1) = ‖(1− PD0 )PD‖E(M1,τ1).
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This completes the proof of Theorem 2.1.

We further let for brevity

H(t) := 2t · (h + h
1
2 )(t), t > 0.

Corollary 2.2 If (1 + D2
0)−

1
2 ∈ E(M, τ ), then∥∥∥∥ D

(1 + D2)
−

D0

(1 + D2
0)

∥∥∥∥
E(M,τ )

≤ H(‖D− D0‖) · ‖(1 + D2
0)−

1
2 ‖E(M,τ )

and therefore∥∥∥∥ D

(1 + D2)
−

D0

(1 + D2
0)

∥∥∥∥
E(M,τ )

≤ 10‖D− D0‖ · ‖(1 + D2
0)−

1
2 ‖E(M,τ )

whenever ‖D− D0‖ ≤ 1.

Proof The assertion of Corollary 2.2 follows from that of Theorem 2.1 combined with the
following two easily seen facts:

Q(PD − PD0 )(1− Q) =

(
0 D

1+D2 −
D0

1+D2
0

0 0

)

and

µt

((
0 D

1+D2 −
D0

1+D2
0

0 0

))
= µt

(
D

1 + D2
−

D0

1 + D2
0

)
, t > 0.

This suffices to complete the proof of Corollary 2.2.

Corollary 2.3 For any λ > 0 and any rearrangement-invariant operator space E(M, τ ) we
have

∥∥∥∥ D

1 + λ + D2
−

D0

1 + λ + D2
0

∥∥∥∥
E(M,τ )

≤
H(‖D− D0‖)

1 + λ
·

∥∥∥∥∥
(

1 +
D2

0

1 + λ

)−1/2
∥∥∥∥∥

E(M,τ )

.

(2.13)

Furthermore, if ‖D− D0‖ ≤ 1, then

∥∥∥∥ D

1 + λ + D2
−

D0

1 + λ + D2
0

∥∥∥∥
E(M,τ )

≤
10‖D− D0‖

1 + λ
·

∥∥∥∥∥
(

1 +
D2

0

1 + λ

)−1/2
∥∥∥∥∥

E(M,τ )

.
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Proof The assertion of Corollary 2.3 follows immediately from that of Corollary 2.2 and
the definition of the function H:∥∥∥∥ D

1 + λ + D2
−

D0

1 + λ + D2
0

∥∥∥∥
E(M,τ )

=

∥∥∥∥∥(1 + λ)−
1
2 ·

(
(1 + λ)−

1
2 D

1 +
(
(1 + λ)−

1
2 D
)2 −

(1 + λ)−
1
2 D0

1 +
(
(1 + λ)−

1
2 D0

)2

)∥∥∥∥∥
E(M,τ )

≤ (1 + λ)−
1
2 ·H

(∥∥∥∥ D− D0

(1 + λ)1/2

∥∥∥∥) ·
∥∥∥∥∥∥
(

1 +

(
D0

(1 + λ)1/2

)2
)−1/2

∥∥∥∥∥∥
E(M,τ )

≤ (1 + λ)−1H(‖D− D0‖) ·

∥∥∥∥∥
(

1 +
D2

0

1 + λ

)−1/2
∥∥∥∥∥

E(M,τ )

.

We let

JD0,E :=

∫ ∞
0

λ−
1
2 · (1 + λ)−1 ·

∥∥∥∥∥
(

1 +
D2

0

1 + λ

)− 1
2

∥∥∥∥∥
E(M,τ )

dλ.(2.14)

It should be pointed out that for an arbitrary D0 the number JD0,M is finite and that
JD0,E < ∞ if and only if JD0,E < ∞. The next proposition gives the upper estimate for
‖φ(D) − φ(D0)‖E(M,τ ) provided JD0,E < ∞ and thus shows that the study of (2.14) is
crucial in our present approach.

Proposition 2.4 Suppose that (1 + D2
0)−

1
2 ∈ E(M, τ ) and JD0,E <∞. Then

D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

∈ E(M, τ ),

and ∥∥∥∥∥ D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

∥∥∥∥∥
E(M,τ )

≤
1

π
·H(‖D− D0‖) · JD0,E.(2.15)

In particular, ∥∥∥∥∥ D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

∥∥∥∥∥
E(M,τ )

≤
10

π
‖D− D0‖ · JD0,E

whenever ‖D− D0‖ ≤ 1.
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Proof For any λ > 0 we let

j(λ) := λ−
1
2 ·

(
D

1 + λ + D2
−

D0

1 + λ + D2
0

)
.

It is clear that j is simultaneously M-valued, E(M, τ )-valued and E(M, τ )-valued function.
In each case it may be checked directly (via the Spectral Theorem and simplest properties
of symmetric operator spaces) that j is a continuous function. We show first that the (Rie-
mann) integrals of the function j(·) over (0,∞) converge in all these three spaces.

By Corollary 2.3 applied to the symmetric operator space (M, ‖ · ‖) we have

‖ j(λ)‖ ≤
H(‖D− D0‖)

λ
1
2 (1 + λ)

·

∥∥∥∥∥
(

1 +
D2

0

1 + λ

)− 1
2

∥∥∥∥∥ ≤ H(‖D− D0‖)

λ
1
2 (1 + λ)

,

whence ∫ ∞
0
‖ j(λ)‖ dλ <∞.(2.16)

(2.16) means that the Riemann integral (M) −
∫∞

0 j(λ) dλ converges absolutely. Further,
by Corollary 2.3 and the assumption JD0,E <∞ we have∫ ∞

0
‖ j(λ)‖E(M,τ ) dλ ≤ H(‖D− D0‖) · JD0,E <∞.(2.17)

(2.17) means that the Riemann integral
(
E(M, τ )

)
−
∫∞

0 j(λ) dλ converges absolutely. Fi-
nally, it follows from (2.16) and (2.17) and remark before Corollary 2.4 that∫ ∞

0
‖ j(λ)‖E(M,τ ) ≤ H(‖D− D0‖) · JD0,E <∞(2.18)

and again, as before, (2.18) means that the Riemann integral
(
E(M, τ )

)
−
∫∞

0 j(λ) dλ
converges absolutely.

Since the spaces M, E(M, τ ) and E(M, τ ) are continuously embedded into M̃ we infer
that

(M)−

∫ ∞
0

j(λ) dλ =
(

E(M, τ )
)
−

∫ ∞
0

j(λ) dλ =
(
E(M, τ )

)
−

∫ ∞
0

j(λ) dλ.

Thus, there exists an operator T ∈ E(M, τ ) such that

T =

∫ ∞
0

λ−
1
2 ·

(
D

1 + λ + D2
−

D0

1 + λ + D2
0

)
dλ(2.19)

where the integrand from the right side converges in any of the norms ‖ · ‖, ‖ · ‖E(M,τ ) and
‖ · ‖E(M,τ ). From the convergence in the uniform operator norm ‖ · ‖ of the right hand side
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in (2.19) we see also that for every ξ ∈ H the Riemann integral (H)−
∫∞

0 λ−
1
2 · ( D

1+λ+D2 −
D0

1+λ+D2
0
)ξ dλ converges and furthermore

Tξ =

∫ ∞
0

λ−
1
2 ·

(
D

1 + λ + D2
−

D0

1 + λ + D2
0

)
ξ dλ.(2.20)

From (2.18) and the simplest properties of vector-valued Riemann integrals we see that

‖T‖E(M,τ ) ≤

∫ ∞
0
‖ j(λ)‖E(M,τ ) dλ ≤ H(‖D− D0‖) · JD0,E <∞.(2.21)

On the other hand from [CP, Appendix A, Lemma 4] we know that

(
D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

)
ξ =

1

π
·

∫ ∞
0

λ−
1
2 ·

(
D

1 + λ + D2
−

D0

1 + λ + D2
0

)
ξ dλ

(2.22)

where ξ ∈ dom(D) = dom(D0) and the integrand on the right converges in H. It follows
from (2.20) and (2.22) that(

D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

)
ξ = Tξ

for any ξ ∈ dom(D0), whence(
D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

)
ξ = Tξ(2.23)

for any ξ ∈ H. Thus we have just established the integral representation

D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

=
1

π
·
(
E(M, τ )

)
−

∫ ∞
0

λ−
1
2 ·

(
D

1 + λ + D2
−

D0

1 + λ + D2
0

)
dλ.

(2.24)

The assertion follows immediately from (2.21), (2.23) and (2.24).

We shall present in Proposition 2.6 below different formulae which are intended to sim-
plify the calculation of JD0,E. We need first the following well-known technical lemma.

Lemma 2.5 If 0 ≤ x ∈ M̃ then the equality

µt

(
ψ(x)

)
= ψ

(
µt (x)

)
holds for each t > 0 and any continuous increasing function ψ on [0,∞) with ψ(0) ≥ 0.

https://doi.org/10.4153/CJM-2000-037-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-037-8


Operator Estimates for Fredholm Modules 861

Proposition 2.6 The following formulae hold for an arbitrary symmetric space (E, ‖ · ‖E).

(i)

JD0,E =

∫ ∞
0

1

λ
1
2 · (1 + λ)

1
2

·

∥∥∥∥ 1(
1
d2

0
+ λ
) 1

2

∥∥∥∥
E

dλ.(2.25)

(ii)

1

4
JD0,E ≤

∫ ∞
0

du

u + 1

∥∥∥∥∥ 1
1
d0

+ u

∥∥∥∥∥
E

≤ JD0,E.(2.26)

(iii)

JD0,E <∞⇐⇒

∫ ∞
1

du

u

∥∥∥∥min

(
1

u
, d0

)∥∥∥∥
E

<∞.(2.27)

(iv)

JD0,E <∞⇐⇒
∞∑

n=1

1

n

∥∥∥∥min

(
1

n
, d0

)∥∥∥∥
E

<∞⇐⇒
∞∑

n=1

‖min(2−n, d0)‖E <∞.(2.28)

Proof (i) Given λ > 0 we let

ψλ(x) :=

(
1 + λ
1
x2 + λ

) 1
2

, x ∈ (0,∞) and ψλ(0) = 0.

It is easily seen that ψλ(·) satisfies the assumptions of Lemma 2.5 for any λ > 0. If x, y ∈
(0,∞) are such that x = (1 + y)−

1
2 then we have

(
1 +

y

1 + λ

)− 1
2
=

(
1 + λ + 1

x2 − 1

1 + λ

)− 1
2

=

(
1 + λ
1
x2 + λ

)− 1
2

= ψλ(x),

and it follows that (
1 +

D2
0

1 + λ

)− 1
2

= ψλ
(
(1 + D2

0)−
1
2
)
.

By Lemma 2.5 and the definition of ψλ we have

∥∥∥∥∥
(

1 +
D2

0

1 + λ

)− 1
2

∥∥∥∥∥
E(M,τ )

= ‖ψλ
(
µ(·)(1 + D2

0)−
1
2
)
‖E =

∥∥∥∥∥∥∥
(1 + λ)

1
2(

1

µ2
(·)(1+D2

0)−
1
2

+ λ
) 1

2

∥∥∥∥∥∥∥
E

.
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The equality (2.25) now follows from (2.14)

JD0,E =

∫ ∞
0

1

λ
1
2 · (1 + λ)

1
2

·

∥∥∥∥∥∥∥
1(

1

µ2
(·)(1+D2

0)−
1
2

+ λ
) 1

2

∥∥∥∥∥∥∥
E

dλ

=

∫ ∞
0

1

λ
1
2 · (1 + λ)

1
2

·

∥∥∥∥∥∥ 1

( 1
d2

0
+ λ)

1
2

∥∥∥∥∥∥
E

dλ.

(ii) Substituting in (2.25) λ = u2, dλ√
λ
= 2du and taking into account that a

1
2 + b

1
2 ≤

√
2(a + b)

1
2 ≤
√

2(a
1
2 + b

1
2 ), 0 < a, 0 < b we get (2.26) as follows

JD0,E =

∫ ∞
0

1

λ
1
2 · (1 + λ)

1
2

·

∥∥∥∥∥∥ 1(
1
d2

0
+ λ
) 1

2

∥∥∥∥∥∥
E

dλ

=

∫ ∞
0

2du

(u2 + 1)
1
2

·

∥∥∥∥∥∥ 1(
1
d2

0
+ u2

) 1
2

∥∥∥∥∥∥
E

≤ 4

∫ ∞
0

du

u + 1

∥∥∥∥∥ 1
1
d0

+ u

∥∥∥∥∥
E

≤ 4

∫ ∞
0

du

(u2 + 1)
1
2

·

∥∥∥∥∥∥ 1(
1
d2

0
+ u2

) 1
2

∥∥∥∥∥∥
E

= 4 JD0,E.

(iii) Since it is obvious that

∫ 1

0

du

u + 1

∥∥∥∥∥ 1
1
d0

+ u

∥∥∥∥∥
E

≤

∫ 1

0

du

u + 1
‖d0‖E = ln 2 · ‖d0‖E <∞

and that for u ≥ 1 ∥∥∥∥∥ 1
1
d0

+ u

∥∥∥∥∥
E

≈

∥∥∥∥∥ 1

max
(
u, 1

d0

)∥∥∥∥∥
E

=

∥∥∥∥min

(
1

u
, d0

)∥∥∥∥
E

(here and below≈ signifies two-sided estimate) we get (2.27)

JD0,E <∞⇐⇒

∫ ∞
1

du

u + 1

∥∥∥∥min

(
1

u
, d0

)∥∥∥∥
E

<∞⇐⇒

∫ ∞
1

du

u

∥∥∥∥min

(
1

u
, d0

)∥∥∥∥
E

<∞.
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(iv) Since the function 1
u‖min( 1

u , d0)‖E, u ∈ [1,∞) is decreasing we infer from (2.27)
that

JD0,E <∞⇐⇒

∫ ∞
1

du

u

∥∥∥∥min

(
1

u
, d0

)∥∥∥∥
E

<∞⇐⇒
∞∑

n=1

1

n

∥∥∥∥min

(
1

n
, d0

)∥∥∥∥
E

<∞.

Finally we note that since

2n ·
1

2n+1
·

∥∥∥∥min

(
1

2n+1
, d0

)∥∥∥∥
E

≤
2n+1−1∑

i=2n

1

i

∥∥∥∥min

(
1

i
, d0

)∥∥∥∥
E

≤ 2n ·
1

2n
·

∥∥∥∥min

(
1

2n
, d0

)∥∥∥∥
E

, n ≥ 1,

we have that

∞∑
n=1

1

n

∥∥∥∥min

(
1

n
, d0

)∥∥∥∥
E

<∞⇐⇒
∞∑

n=1

‖min(2−n, d0)‖E <∞.

Throughout the rest of the article we shall be concerned with the description of the sets

J(E) := {d0 ∈ E : JD0,E <∞}, J(E) := { f ∈ E : µ( f ) ∈ J(E)}

which are of interest in their own right. It turns out that J(E) is a rearrangement-invariant
ideal (see below Corollary 2.8). To see this we first present a slight generalization of [BM,
Proposition 1.4].

Let G ⊆ {x = x∗ : x ∈ L1(R+,m) + L∞(R+,m)} be such that x, y ∈ G imply that
x + y ∈ G.

Proposition 2.7 The smallest rearrangement-invariant ideal NG containing G coincides with
the set G given by

G := {x ∈ L1(R+,m) + L∞(R+,m) :

∃ q = q(x) > 0 such that x∗ ≤ qσq(g∗) for some g ∈ G}.

Proof By [BM, Proposition 1.4], for an arbitrary y ∈ L1(R+,m) + L∞(R+,m) we have
that the smallest rearrangement-invariant ideal Ny is given by the set {x ∈ L1(R+,m) +
L∞(R+,m) : ∃ q = q(x) > 0 such that x∗ ≤ qσq(y∗)}, and it follows immediately that

G ⊆ G ⊆ NG.

It is easy to see that y ∈ G, |z| ≤ |y| imply z ∈ G and therefore to complete the proof we
need only to show that G is a vector space. To this end, let y, z ∈ G. Then we have

y∗ ≤ qσq(v∗), z∗ ≤ sσs(w∗)
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for some v,w ∈ G and some positive q, s. Letting n := max{q, s} and u = v + w ∈ G we
see that

y∗ ≤ NσN(u∗), z∗ ≤ NσN(u∗)

whence, via [KPS, I.2.23],
(y + z)∗ ≤ 2Nσ2N(u∗).

Corollary 2.8 For an arbitrary rearrangement-invariant Banach function space E the set J(E)
is the smallest rearrangement-invariant ideal containing J(E).

Proof Since
min(a, b + c) ≤ min(a, b) + min(a, c)

for an arbitrary a, b, c ≥ 0 we immediately infer from (2.28) that f1, f2 ∈ J(E) imply
f1 + f2 ∈ J(E). Again by (2.28) we have g ∈ J(E), provided that 0 ≤ g ≤ f , f ∈ J(E).
Therefore, by Proposition 2.7, it suffices to show that σs( f ) ∈ J(E) for an arbitrary f ∈
J(E) and arbitrary s > 0. Since for any s ∈ (0, 1] and x∗ = x ∈ L1(R+,m) + L∞(R+,m) we
clearly have σsx ≤ x, it follows that σs sends J(E) into itself for any s ∈ (0, 1]. Further, for
s ∈ (1,∞) and α > 0, we have that

nσs( f )(α) = m
{

t :
∣∣∣ f ( t

s

)∣∣∣ > α
}

= m{st : | f (t)| > α}

= sn f (α),

(see also [KPS, p. 98]) and therefore

σs

(
min(α, f )(t)

)
= σs

(
αχ[0,n f (α))(t) + f (t)χ[n f (α),∞)(t)

)
= αχ[0,sn f (α))(t) + f (t/s)χ[sn f (α),∞)(t)

= αχ[0,nσs( f )(α))(t) + σs( f )(t)χ[nσs ( f )(α),∞)(t)

=
(

min
(
α, σs( f )

))
(t).

Using the fact that σs boundedly acts in E [KPS, Theorem II.4.4] we deduce from the latter
that ( ∞∑

n=1

‖min(2−n, f )‖E <∞
)
=⇒

( ∞∑
n=1

‖min
(
2−n, σs( f )

)
‖E <∞

)
.

The latter, again by (2.28), implies that σs

(
J(E)

)
⊆ J(E) for any s > 1 and this completes

the proof of Corollary 2.8.

Since J(E) is a rearrangement invariant ideal, it is natural to study it by means of the
theory of rearrangement invariant spaces. In the next section we shall study J(Lp) in terms
of the asymptotic of d0 (respectively, nd0 ) on infinity (respectively, in zero) and to this end
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we shall employ so called weak-Lp-spaces and a certain family of Orlicz spaces. In Section 4
a complete characterization of J(E) is given in the setting of Lorentz spaces. Results of the
fourth section will be subsequently used in Section 5 where the ideal J(E) is studied in the
setting of Marcinkiewicz spaces.

3 Lipschitz Estimates: Lp-Spaces

We begin with the simple and frequently encountered in the applications case when the
function d0 (equivalently, the operator (1 + D2

0)−
1
2 ) satisfies a “Lorentz space”-type condi-

tion of the form

d0(t) ≤ Ct−
1
r C, r > 0,(3.1)

for sufficiently large t ; or, equivalently,

nd0 (s) ≤ C ′s−r C ′, r > 0(3.2)

for sufficiently small s. It is convenient to employ the terminology and notation from the
interpolation theory.

Definition 3.1 [LT2] For 1 ≤ p ≤ ∞, 1 ≤ q < ∞, Lp,q(0,∞) is the space of all locally
integrable real valued functions g on (0,∞) for which

‖g‖p,q =

(
q/p

∫ ∞
0

(
t1/pg∗(t)

)q
dt/t

)1/q

<∞.

For 1 ≤ p ≤ ∞, Lp,∞(0,∞) is the space of all functions g as above so that

‖g‖p,∞ = sup
t>0

t1/pg∗(t) <∞.

Recall (see [LT2, pp. 142–143]) that Lp,∞ = Lp,∞(0,∞) is a linear space and though
‖ · ‖p,∞ does not satisfy the triangle inequality, nevertheless, the space Lp,∞ can be made
into a symmetric Banach space if p > 1 by introducing an actual norm ||| · |||p,∞ which
satisfies ‖g‖p,∞ ≤ |||g|||p,∞ ≤ C(p)‖g‖p,∞. In fact, the spaces Lp,1 and Lp,∞ are spe-
cial examples of Lorentz and Marcinkiewicz function spaces (see below, Sections 4 and 5
respectively).

The following inclusions are well-known (see [LT2, p. 143]) and may be verified directly
via Hölder inequality:

Lr,∞ = Lr,∞ ∩ L∞ ⊆ Lp, r < p,(3.3)

and

Lp ⊆ Lp,∞ ⊆ Ls,∞, p < s.(3.4)
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Theorem 3.2 For every p ∈ (1,∞) we have⋃
r<p

Lr,∞ ⊆ J(Lp).(3.5)

Proof Let f (t) = t−
1
r , t ≥ 1 and let f (t) ≡ 1, 0 ≤ t ≤ 1. Then, given n ∈ N, we have

2−n = f (2nr), whence

‖min(2−n, f )‖p
p = 2−np · 2nr +

∫ ∞
2nr

t−
p
r dt =

p

p − r
2n(r−p).(3.6)

It follows immediately from (3.6) that

∞∑
n=1

‖min(2−n, f )‖p <∞.(3.7)

By Proposition 2.6 we see from (3.7) that f ∈ J(Lp). The embedding (3.5) now follows
from Corollary 2.8.

The next Corollary in an implicit form is contained in [CP, Proposition 2.4].

Corollary 3.3 If (1 + D2
0)−

1
2 ∈ Lp(M, τ ) for some p ∈ (1,∞), then for given ε > 0 there

exists a constant C, depending on p, ε and D0 only, such that∥∥∥∥∥ D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

∥∥∥∥∥
Lp+ε

≤ C ·H(‖D− D0‖)

and further, if ‖D− D0‖ ≤ 1∥∥∥∥∥ D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

∥∥∥∥∥
Lp+ε

≤ 10C · ‖D− D0‖.

Proof By (3.4) the assumption (1 + D2
0)−

1
2 ∈ Lp(M, τ ) implies that (1 + D2

0)−
1
2 ∈

Ls,∞(M, τ ) for any p < s < p + ε, ε > 0. The assertion follows now from Theorem 3.2
and Propositions 2.6, 2.4.

We shall further strengthen the result of Theorem 3.2. In this section this aim will be
achieved via replacing of condition (3.1) (respectively, (3.2)) by

d0(t) ≤ Ct−
1
p · ln−α t C, p, α > 0,(3.8)

for sufficiently large t (respectively,

nd0 (s) ≤ C ′s−p · ln−α
(

1

s

)
C ′, p, α > 0(3.9)
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for sufficiently small s.) In the next section another strengthening of Theorem 3.2 is
achieved via the use of Lorentz spaces (see Corollary 4.5).

It should be pointed out that the conditions (3.8) and (3.9) are not equivalent to each
other and therefore will be treated separately. It turns out that the most convenient way
to consider a class of functions which satisfy (3.8) is to introduce a certain Orlicz space.
We shall recall below some notation and definitions concerning Orlicz spaces (for more
substantial information we refer to [KR], [LT2], [BS]).

LetΦ be an Orlicz function on [0,∞) (i.e.,Φ is a continuous convex increasing function
on [0,∞) satisfying Φ(0) = 0 and Φ(∞) =∞). The Orlicz space LΦ

(
[0,∞)

)
is the space

of all measurable functions f on [0,∞) so that∫ ∞
0
Φ

(
| f (t)|

ρ

)
dt <∞

for some ρ > 0. The (Orlicz) norm in LΦ
(

[0,∞)
)

is defined by

‖ f ‖Φ = inf

{
ρ > 0 :

∫ ∞
0
Φ

(
| f (t)|

ρ

)
dt ≤ 1

}
.

Definition 3.4 We let L(p, q), 1 ≤ p, q < ∞ be the Orlicz space LΦ(p,q) [0,∞) with Φ(p,q)

given by

Φ(p,q)(u) := up lnq

(
1

u
+ e

)
, u > 0, Φ(p,q)(0) := 0.

Clearly L(p, q) ⊆ Lp for any q ∈ [1,∞) and ‖g‖Lp ≤ ‖g‖Φ(p,q) , for any g ∈ L(p, q). The
next proposition shows that L(p, q) is bigger than

⋃
r<p Lr, provided p < q.

Proposition 3.5 For s ∈ [1,∞) and for q ∈ (p,∞) we have⋃
r<p

Lr ⊆ L(p, s) and L(p, q) �=
⋃
r<p

Lr.(3.10)

Proof To establish the first assertion from (3.10) its suffices to show (see Definition 3.1)
that the function ζ given by

ζ(t) :=

{
1, if 0 ≤ t < e;

t−
1
r , if t ≥ e

belongs to L(p, s) as soon as r < p. Indeed, since∫ ∞
e
Φ(p,q)

(
ζ(t)

)
dt =

∫ ∞
e

(
1

t
1
r

)p

· lnq(t
1
r + e) dt

≤
eq

r

∫ ∞
e

lnq(t)

t
p
r

dt

<∞
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we have, by Definition 3.4, that ζ ∈ L(p, s).
To prove the second assertion from (3.10) we let α be a fixed positive real number such

that α > 1+q
p and

ξ(t) :=

{
1, if 0 ≤ t < e;

t−
1
p · ln−α t, if t ≥ e.

It is obvious that for any C > 0 the inequality

ξ(t) ≤ C · t−
1
r , t > 0

does not hold (uniformly on t) if r < p. Therefore,

ξ /∈
⋃
r<p

Lr,∞.

On the other hand,∫ ∞
e
Φ(p,q)

(
ξ(t)
)

dt =

∫ ∞
e

(
1

t
1
p · lnα t

)p

· lnq(t
1
p · lnα t + e) dt

≤
e2q

p

∫ ∞
e

lnq(t) + α lnq(ln(t)
)

t · lnαp(t)
dt

≤
e2q

p
· (1 + α) ·

∫ ∞
e

1

t · lnαp−q(t)
dt

<∞,

and, again by the definition of L(p, q), we have ξ ∈ L(p, q).

In view of Proposition 3.5, the following result is a strengthening of Theorem 3.2.

Theorem 3.6 For any p ∈ [1,∞) and any q ∈ (p,∞) we have

L(p, q) ⊆ J(Lp).

Proof Let f = f ∗ ∈ L(p, q), ‖ f ‖Φ(p,q) = 1. Thanks to Proposition 2.6 we need only to
show that

∞∑
k=1

1

k

∥∥∥∥min

(
1

k
, f

)∥∥∥∥
Lp

<∞.

Let tk = inf{t : f (t) < 1
k}, k = 1, 2, . . . . Since

∥∥∥∥min

(
1

k
, f

)∥∥∥∥
Lp

≤

∥∥∥∥1

k
χ[0,tk)

∥∥∥∥
Lp

+

(∫ ∞
tk

f p(t) dt

) 1
p

, k = 1, 2, . . .
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it suffices to show that the following two series

∞∑
k=1

1

k

∥∥∥∥1

k
χ[0,tk)

∥∥∥∥
Lp

,

∞∑
k=1

1

k

(∫ ∞
tk

f p(t) dt

) 1
p

(3.11)

converge. To show that the first series from (3.11) converges we note that∥∥∥∥1

k
χ[0,tk)

∥∥∥∥
Φ(p,q)

≤ ‖ fχ[0,tk)‖Φ(p,q) ≤ 1

whence

tk ·

(
1

k

)p

· lnq(k + e) =

∫ tk

0

(
1

k

)p

· lnq(k + e) dt ≤ 1.

It follows immediately, that

‖χ[0,tk)‖Lp = t
1
p

k ≤ k · ln−
q
p (k + e).

Since, by the assumption, p < q it follows that

∞∑
k=1

1

k

∥∥∥∥1

k
χ[0,tk)

∥∥∥∥
Lp

≤
∞∑

k=1

1

k
ln−

q
p (k + e) <∞

and we are done with the first series.
To show that the second series from (3.11) converges we note that for t ≥ tk one has

f (t) < 1
k and it follows that

lnq(k + e)

∫ ∞
tk

f p(t) dt ≤

∫ ∞
tk

f p(t) · lnq

(
1

f (t)
+ e

)
dt

=

∫ ∞
0
Φ(p,q)

(
f (t)
)

dt

≤ 1.

It follows, that (∫ ∞
tk

f p(t) dt

) 1
p

≤ ln−
q
p (k + e)

whence, again by the assumption p < q,

∞∑
k=1

1

k

(∫ ∞
tk

f p(t) dt

) 1
p

≤
∞∑

k=1

1

k
ln−

q
p (k + e) <∞.

It completes the proof of Theorem 3.6.
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Remark 3.7 (i) It follows from the proof of Proposition 3.5 and Theorem 3.6 that the
function

ξ(t) :=

{
1, if 0 ≤ t < e;

t−
1
p · ln−α t, if t ≥ e

belongs to J(Lp) for any α > 1+p
p . It turns out that this estimate can not be improved in

the terms of (3.8). Indeed, for the function

η(t) :=

{
1, if 0 ≤ t < e;

t−
1
p · ln−

1+p
p t, if t ≥ e.

we have ∫ ∞
0

du

u + 1

∥∥∥∥∥ 1
1
η

+ u

∥∥∥∥∥
Lp

≥

∫ ∞
e

du

u + 1

(∫ ∞
e

dt

(t
1
p ln

1+p
p t + u)p

) 1
p

≥
1

2

∫ ∞
e

du

u + 1

(∫ ∞
e

dt

t ln1+p t + up

) 1
p

≥
1

2

∫ ∞
e

du

u + 1

(∫ ∞
up

dt

t ln1+p t + up

) 1
p

≥
1

4

∫ ∞
e

du

u + 1

(∫ ∞
up

dt

t ln1+p t

) 1
p

≥
1

8

∫ ∞
e

1

u + 1
·

1

ln up
du

=∞,

in other words (see (2.27)) η /∈ J(Lp).
(ii) It should be pointed out that the space L(1, 1) coincides with L∞ ∩ L log L :=

L log L where, the space L log L is the Zygmund space (see [BS, pp. 243, 266] and [BR]). It
follows from Theorem 4.3 and Corollary 4.4 below that J(L1) = L log L.

Corollary 3.8 If p ∈ [1,∞), q ∈ (p,∞) and (1 + D2
0)−

1
2 ∈ L(p, q)(M, τ ), then there exists

a constant C, depending on p, q and D0 only, such that∥∥∥∥∥ D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

∥∥∥∥∥
Lp(M,τ )

≤ C · ‖D− D0‖

whenever ‖D− D0‖ ≤ 1.

We shall now see what information concerning distribution function n f of element f ∈
J(Lp) may be obtained in terms of estimate (3.9). For brevity we let

B(p, q) = {x = x∗ ∈ Lp : nx(λ) ≤ Cλ−p ln−q(1/λ) for sufficiently small λ > 0}.
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Theorem 3.9 If q > p + 1, then

B(p, q) ⊆ J(Lp) ⊆ B(p, p).(3.12)

Proof For x ∈ B(p, q) we have

‖min(2−n, x)‖Lp ≤

(
p

∫ 2−n

0
Cλ−p ln−q(1/λ)λp−1 dλ

)1/p

=

(
C p

q− 1
(n ln 2)−q+1

)1/p

.

By assumption −q+1
p < −1 and we can infer now that

∑∞
n=1 ‖min(2−n, x)‖Lp < ∞,

whence, by (2.28), the first embedding in (3.12) is proven.
Conversely, given x ∈ J(Lp) we have (again via (2.28)) that

∑∞
n=1 ‖min(2−n, x)‖Lp <∞

and since the sequence {‖min(2−n, x)‖Lp}
∞
n=1 decreases there exists a constant C > 0 such

that ‖min(2−n, x)‖Lp ≤
C
n for all n = 1, 2, . . . . In other words we have(

C

n

)p

≥ p

∫ 2−n

0
sp−1nx(s) ds

≥ p

∫ 2−n

2−n−1

sp−1nx(s) ds

≥ nx(2−n−1)(2−np − 2−(n+1)p)

= nx(2−n−1)2−np(1− 2−p),

or
nx(2−k) ≤ C ′2kpk−p = (C ′ lnp 2)(2−k)−p ln−p(2k)

for all k = 1, 2, . . . and some C ′ > 0. It easily follows from that the latter inequality that
x ∈ B(p, p). This completes the proof of Theorem 3.9.

The following theorem shows that the description of nx, x ∈ J(Lp) given by Theorem 3.9
is exact in the terms of (3.9).

Theorem 3.10 If r > p, then

B(p, p + 1) � J(Lp) � B(p, r).

Proof Let y = y∗ ∈ L∞(0,∞) be such that

ny(λ) =

{
λ−p ln−p−1(1/λ), if 0 < λ ≤ 1/4;

0, if λ > 1/4.

Clearly, y ∈ B(p, p). On the other hand,

‖min(2−n, y)‖p
Lp
= p

∫ 2−n

0
sp−1ny(s) ds

≥ p

∫ 2−n

0

s−1 ds

lnp+1(s−1)

= C
1

lnp(n)
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for some C > 0 and any n = 2, 3, . . . . It follows immediately that
∑∞

n=1 ‖min(2−n, y)‖Lp

=∞ and applying (2.28) we see that y /∈ J(Lp).
To establish the second assertion of Theorem 3.10 we fix p < s < r and set

z(t) =
∞∑
j=0

2−2 j+1

χ(t j ,t j+1)(t),

where t0 = 0, t j = 2p2 j− js for j = 1, 2, . . . . Then nz(λ) = t j if 2−2 j+1
< λ < 2−2 j

, whence

lim
j→∞

(
sup

{
nz(λ)

λ−p(lnλ)−r
, 2−2 j+1

< λ < 2−2 j

})
= lim

j→∞

t j

(2−2 j )−p(ln 22 j )−r

= lim
j→∞

2p2 j− js

2p2 j− jr(ln 2)−r

= lim
j→∞

(ln 2)r2 j(r−s)

=∞,

i.e., z /∈ B(p, r). On the other hand for 2 j ≤ m < 2 j+1 we have,

‖min(2−m, z)‖p
Lp
= 2−mpt j +

∞∑
k= j

2−p2k+1

(tk+1 − tk)

≤
∞∑

k= j

2−p2k

tk =
∞∑

k= j

2−ks ≤ 2− js+1.

Hence,

∞∑
m=1

‖min(2−m, z)‖Lp ≤
∞∑
j=1

2(− js+1)/p2 j = 21/p
∞∑
j=1

2(1−s/p) j <∞,

i.e., z ∈ J(Lp). This completes the proof of Theorem 3.10.

4 Lipschitz Estimates: Lorentz Spaces

In this section we shall study another special case of symmetric operator spaces E(M, τ ),
namely Lorentz spaces. It is possible (see Theorem 4.3 below) to completely characterize the
ideal J(E) in this setting. It is interesting to note that this characterization may be applied
further to general symmetric spaces, in particular another strengthening of Theorem 3.2,
different in spirit from those given by Theorems 3.6, 3.9, 3.10, is presented in Corollary 4.6.

Definition 4.0 [KPS], [LT2] If ψ : [0,∞)→ [0,∞) is a positive concave continuous func-
tion on [0,∞) with ψ(0) = 0, then Lorentz space Λψ = Λψ[0,∞) is the space of all
measurable functions g on [0,∞) so that

‖g‖ψ =

∫ ∞
0

g∗(t) dψ(t) <∞.
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Definition 4.1 Given symmetric space E we set

E log E :=

{
x ∈ E : min(1, x∗) · ln

(
1

min(1, x∗)

)
∈ E

}
.

In the case E = Λψ we denote E log E as Λψ logΛψ .

Proposition 4.2 E log E is a rearrangement-invariant ideal in E.

Proof The inclusion x ∈ E log E implies immediately that λx ∈ E log E for any λ ∈ C. The
implication

(
y∗(t) ≤ x∗(t), t > 0 and x ∈ E log E

)
=⇒ y ∈ E log E(4.1)

is also easy, if to take into account that the function f (t) := t ln(t), t ∈ (0, 1) is decreasing.
Further, it follows from [KPS, Theorem II.4.4] that x ∈ E implies σsx ∈ E for any s > 0,
therefore, taking into account that

(
x · ln( 1

x )
)∗
= x∗ · ln( 1

x∗ ) (provided, |x| < 1
e ) and

that σs

(
x∗ · ln( 1

x∗ )
)
= σs(x∗) · ln( 1

σs(x∗) ) we immediately infer that x∗ ∈ E log E implies
σs(x∗) ∈ E log E. This fact and (4.1) combined with Proposition 2.7 give the assertion.

If E is a Lorentz space, then the space E log E is a special example of (so-called) Orlicz-
Lorentz spaces and it may be equipped with a norm to become a symmetric function space
(see e.g. [Ka]). In this setting the space E log E is a direct generalization of the Zygmund
space L log L (see Remark 3.7).

We will assume, that ψ(t) → ∞ as t → ∞ so that Λψ is separable, in particular, the
space L∞(0,∞)∩L1(0,∞) is dense inΛψ (see [KPS, Corollary II.5.3, p. 110]) and therefore
limt→∞ g∗(t) = 0 for any g ∈ Λψ .

Without loss of generality we may (and shall) assume in this section that

d0(t) ≤
1

e
, t > 0.

The following theorem is the main result of the present section.

Theorem 4.3 If E = Λψ , then

J(E) = E log E,

and therefore for any d0 ∈ E log E, there exists a constant C, depending on ψ and D0 only,
such that ∥∥∥∥∥ D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

∥∥∥∥∥
Λψ(M,τ )

≤ C · ‖D− D0‖

provided ‖D− D0‖ ≤ 1.
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Proof The second assertion follows immediately from the first assertion and Proposi-
tion 2.4. It follows from Proposition 2.6, Definition 4.2 and (2.26) that we need only to
check that for f = f ∗ ∈ E

∫ ∞
0

du

u + 1

∥∥∥∥∥ 1
1
f + u

∥∥∥∥∥
ψ

<∞⇐⇒ f ∈ E log E.

To this end, noting that (
1

u + 1
f

)∗
(t) =

1

u + 1
f (t)

and that (
f · ln

(
1

f

))∗
(t) = f (t) · ln

(
1

f (t)

)
we have∫ ∞

0

du

u + 1

∥∥∥∥∥ 1
1
f + u

∥∥∥∥∥
ψ

=

∫ ∞
0

du

u + 1

∫ ∞
0

1

u + 1
f (t)

dψ(t)

=

∫ ∞
0

ψ ′(t)

(∫ ∞
0

1

u + 1
·

1
1
f + u

du

)
dt

=

∫ ∞
0

ψ ′(t)

(∫ ∞
0

(
1

u + 1
−

1
1
f + u

)
du ·

1
1
f − 1

)
dt

=

∫ ∞
0

f (t)

1− f (t)
· ln

(
1

f (t)

)
ψ ′(t) dt

≤ 2

∥∥∥∥ f · ln

(
1

f

)∥∥∥∥
ψ

≤ 2

∫ ∞
0

f (t)

1− f (t)
· ln

(
1

f (t)

)
ψ ′(t) dt

= 2

∫ ∞
0

du

u + 1

∥∥∥∥∥ 1
1
f + u

∥∥∥∥∥
ψ

.

Corollary 4.4 J(L1) = L log L, and therefore for any d0 ∈ L log L, there exists a constant
C, depending on D0 only, such that∥∥∥∥∥ D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

∥∥∥∥∥
L1(M,τ )

≤ C · ‖D− D0‖

provided ‖D− D0‖ ≤ 1.
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Recall (see [KPS, p. 48]) that two positive functions φ and ψ on (0,∞) are said to be
equivalent if there exist positive constants C1 and C2 such that

C1ψ(t) ≤ φ(t) ≤ C2ψ(t), ∀t > 0.

We further note, that the fundamental function φE is quasiconcave [KPS, Theorem II.4.7]

and therefore equivalent to its smallest concave majorant φ̃E [KPS, Theorem II.1.1 and
Corollary]. It is also well-known that Λ

φ̃E
is the smallest among symmetric spaces with

the fundamental function equivalent to φE (see e.g. [KPS, Theorem II.5.5], [BS, Corol-
lary 2.5.14]).

Taking into account that the norm E is majorised by the norm of Λ
φ̃E

[KPS, Theo-
rem II.5.5] we arrive at the following corollary.

Corollary 4.5 For an arbitrary symmetric function space E it follows from d0 · ln( 1
d0

) ∈ Λ
φ̃E

that d0 ∈ J(E) and therefore there exists a constant C, depending on φE and D0 only, such that∥∥∥∥∥ D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

∥∥∥∥∥
E(M,τ )

≤ C · ‖D− D0‖

provided ‖D− D0‖ ≤ 1.

In the special case E = Lp, 1 ≤ p < ∞ we have φLp (t) = φ̃Lp (t) = t
1
p , 0 < t < ∞ and

Λ
t

1
p
= Lp,1 (see Definition 3.1). The following result yields new information concerning

J(Lp) comparatively with Theorem 3.2.

Corollary 4.6 If d0 · ln( 1
d0

) ∈ Lp,1[0,∞), 1 < p <∞, then d0 ∈ J(Lp) and therefore there
exists a constant C, depending on p and D0 only, such that∥∥∥∥∥ D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

∥∥∥∥∥
Lp (M,τ )

≤ 10C · ‖D− D0‖

provided ‖D− D0‖ ≤ 1.

To see that Corollary 4.6 indeed yields a strengthening of Theorem 3.2 we need to estab-
lish the following two assertions⋃

r<p

Lr ⊆ Lp,1 log Lp,1, Lp,1 log Lp,1 �=
⋃
r<p

Lr.(4.2)

We shall essentially follow to the arguments and notation following Proposition 3.5. The
first assertion in (4.2) would follow from the embedding ζ ·ln( 1

ζ
) ∈ Lp,1 for any given r < p

(here we also used the fact that Lp,1 log Lp,1 is linear, rearrangement-invariant manifold).
The following simple calculation validates this fact∥∥∥∥ζ · ln(1

ζ

)∥∥∥∥
p,1

=

∫ 1

0
dt

1
p +

∫ ∞
1

t−
1
r ln(t−

1
r ) dt

1
p

= 1 +
1

r

∫ ∞
1

t−
1
r + 1

p−1 ln(t) dt

<∞.
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The second assertion will be proven if it is shown that ξ ∈ Lp,1 log Lp,1 for given α > 2. It
is confirmed by the following calculation∫ ∞

e

ln(t
1
p · lnα t)

t−
1
p · ln−α t

· t
1
p−1 dt =

1

p

∫ ∞
e

t−1 · ln−α t · ln t dt

+
1

α

∫ ∞
e

t−1 · ln−α t · ln(ln t) dt

≤ 2 max

{
1

p
,

1

α

}∫ ∞
e

dt

t · lnα−1 t

<∞.

The following proposition shows that in most cases J(E) is a proper subset of Λ
φ̃E

.
We let φE(∞) := limt→∞ φE(t) and note that if a natural embedding of E into its sec-

ond associate space (see [KPS, II.4.6]) is an isometry, then φE(∞) < ∞ if and only if
L∞(0,∞) ⊆ E.

Proposition 4.7

(i) J(E) ⊆ Λ
φ̃E

for an arbitrary symmetric space E.
(ii) If φE(∞) =∞, then J(E) �= Λ

φ̃E
.

Proof (i) If x = x∗ ∈ J(E), |x| ≤ 1
2 then, via (2.28), we have that

∫∞
1

du
u ‖min( 1

u , x)‖E <
∞ and since ∥∥∥∥min

(
1

u
, x

)∥∥∥∥
E

=

∥∥∥∥1

u
· χ[0,nx( 1

u )) + x · χ[nx( 1
u ),∞)

∥∥∥∥
E

≤
1

u
‖χ[0,nx( 1

u ))‖E + ‖x · χ[nx( 1
u ),∞)‖E

≤ 2

∥∥∥∥min

(
1

u
, x

)∥∥∥∥
E

we deduce that also
∫∞

1
du
u2 ‖χ[0,nx( 1

u ))‖E <∞, or, in other words,∫ ∞
1

du

u2
φE

(
nx

(
1

u

))
<∞.(4.3)

Substituting u = 1
t in (4.3) we arrive at∫ 1

0
φE

(
nx(t)

)
dt <∞.(4.4)

Taking into account that nx(t) = 0, t > 1
2 we have from (4.4), from the fact that φ̃E and φE

are equivalent and from [KPS, formula (II.5.4), p. 111] that

‖x‖
φ̃E
=

∫ ∞
0

φ̃E

(
nx(t)

)
dt <∞.
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(ii) We fix an arbitrary sequence of positive real numbers {ai}∞i=1 such that
∑∞

i=1 ai <
∞. Using the assumption φE(∞) = ∞ we may always select an increasing sequence of
positive reals {ti}∞i=1 such that

si := ln
(
φ̃E(ti)

)
− ln(ai), i = 1, 2, . . .

is an increasing sequence of positive integers such that

∞∑
i=1

(si+1 − si)ai+1 =∞.(4.5)

We further let

ci :=
ai

φ̃E(ti)
(= e−si ), xi := ciχ[0,ti ), i = 1, 2, . . . .

Clearly,

‖xi‖φ̃E
= ciφ̃E(ti) = ai, i = 1, 2, . . .

and since
∑∞

i=1 ‖xi‖φ̃E
=
∑∞

i=1 ai <∞ we may now set

x∗ = x :=
∞∑
i=1

xi ∈ Λφ̃E
.

Since the functions φ̃E and φE are equivalent we also have

‖xi‖E = ciφE(ti) ≥ Cai i = 1, 2, . . .

for some C > 0. It follows that for s ∈ (0, si) we have e−s > ci and

‖min(e−s, x)‖E ≥ ‖min(e−s, xi)‖E = ‖xi‖E ≥ Cai.(4.6)

It now follows from (4.5) and (4.6) that

∞∑
s=1

‖min(e−s, x)‖E =

∞∑
i=1

∑
si≤s<si+1

‖min(e−s, x)‖E ≥ C
∞∑
i=1

(si+1 − si)ai+1 =∞.

The proof is completed since
∑∞

s=1 ‖min(2−s, x)‖E ≥
∑∞

s=1 ‖min(e−s, x)‖E (see (2.28)).

Remark 4.8 Given symmetric space E with the fundamental function φE we always have

Λ
φ̃E
⊆ E ⊆ M t

φE (t)

(see [BS, pp. 71–73], [KPS, Theorems II.5.5–5.7]), where M t
φE (t)

is a Marcinkiewicz space

(see Section 5 below). If E = Lp[0,∞), 1 < p <∞, then φE(t) = t1/p and ΛφE = Lp,1 and
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M t
φE (t)
= Lp,∞ (see Definition 3.1 and [KPS, Theorem II.5.3]). Proposition 4.7 (ii) shows

that even in this situation the assumption d0 ∈ Lp,1 does not guarantee that d0 ∈ J(Lp,∞).

Remark 4.9 (i) Combining Proposition 3.5 with Corollary 4.6 we obtain the following
strengthening of Theorem 3.2

L(p, q) + Lp,1 log Lp,1 ⊆ J(Lp), ∀q ∈ (p,∞).

Generally speaking, the latter result is stronger than Corollary 4.6. Indeed, if 1+q
p < α ≤ 2,

then a direct verification shows that the function ξ from the proof of Proposition 3.5 does
not belong to Lp,1 log Lp,1 and therefore L(p, q) is not a proper subset of Lp,1 log Lp,1 for
q ∈ (p, 2p− 1), p > 1. However, exact relationship between the spaces L(p, q), p < q and
Lp,1 log Lp,1 for p �= 1, q �= 1 is still unclear.

(ii) An analogue of Corollary 4.4 for Lp-spaces is not valid for p > 2. In other words, if
p > 2 then L(p, 1) � J(Lp) and, moreover, L(p, q) � J(Lp), q ∈ [1, p − 1]. Indeed, let

ρ(t) :=

{
1, if 0 ≤ t < e;

1
t1/p ln(t) ln(ln(10+t))

, if t ≥ e.

It is not difficult to verify that

ρ ∈ L(p, q), 1 ≤ q ≤ p − 1 and, on the other hand, ρ /∈ Lp,1.

It now follows from Proposition 4.7 (i) that ρ /∈ J(Lp).

5 Lipschitz Estimates: Marcinkiewicz Spaces

We recall at first the definition and some simple properties of Marcinkiewicz spaces and
associated concave functions, for more substantial information we refer to [KPS], [BS].

Let

Ψ := {ψ : [0,∞)→ [0,∞) : ψ is concave and increasing with lim
t→∞

ψ(t) =∞}

and let

Ψ0 :=

{
ψ ∈ Ψ : lim inf

t→∞

ψ(2t)

ψ(t)
> 1

}
.

For example, given α ∈ (0, 1] we set

φα(t) := lnα(t + e2), t > 0 and ψα(t) :=
t

lnα(t + e2)
, t > 0.

As it is easily seen, we have φα ∈ Ψ (however, φα /∈ Ψ0) and ψα ∈ Ψ0 for all α ∈ (0, 1].
It follows from [KPS, Lemma II.1.4, p. 56] (see inequalities (II.1.30) and (II.1.23)) that

any functionψ ∈ Ψ0 is equivalent to the function
∫ t

0 ψ(τ )τ−1 dτ , i.e., there are two positive
constants C1, C2 such that

C1ψ(t) ≤

∫ t

0
ψ(τ )τ−1 dτ ≤ C2ψ(t), t > 0.
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For instance, it follows immediately, that given α ∈ (0, 1] the function ψα is equivalent to
the function Liα (also belonging toΨ0) given by

Liα(t) :=

∫ t

0

du

lnα(u + e2)
.

If α = 1 we shall omit index in the notation Liα and use just Li.

Definition 5.1 [KPS] For ψ ∈ Ψ the Marcinkiewicz space Mψ = Mψ[0,∞) consists of all
measurable functions x on [0,∞) for which

‖x‖Mψ
:= sup

t>0

1

ψ(t)

∫ t

0
x∗(s) ds <∞.

It should be noted, that

‖x‖Mψ
= sup

t>0
ψ∗(t)x∗∗(t)(5.1)

where ψ∗(t) := t
ψ(t) is the fundamental function of (Mψ, ‖ · ‖Mψ

) (see [KPS, Ch. II.6 and
p. 101]). Recall that for an arbitrary ψ ∈ Ψ the fundamental function ψ∗ is quasiconcave

[KPS, Theorem II.4.7] and therefore equivalent to its smallest concave majorant ψ̃∗ [KPS,
Theorem II.1.1 and Corollary].

For the sake of brevity in this section we shall employ the notation (Liα, ‖ · ‖Liα) rather
than (MLiα , ‖ · ‖MLiα

). It is clear, that since the functions ψα and Liα are equivalent, we have
Liα = Mψα and the norms ‖ · ‖Liα and ‖ · ‖Mψα

are equivalent for any α ∈ (0, 1].
In the case ψ ∈ Ψ0, a simpler formula to estimate norm ‖ · ‖Mψ

than (5.1) may be
employed. Namely, the functional F : Mψ → [0,∞) given by

F(x) := sup
0<t<∞

ψ∗(t)x∗(t),(5.2)

is equivalent to ‖x‖Mψ
(see [KPS, Theorem II.5.3]). Since the functions Liα(t) and ψα(t)

are equivalent for any α ∈ (0, 1], it follows immediately that t
Liα(t) is equivalent to t

ψα(t) .
Therefore, given α ∈ (0, 1], there exist positive constants C1, C2 such that

C1‖x‖Liα ≤ sup
0<t<∞

lnα(t + e2)x∗(t) ≤ C2‖x‖Liα , x ∈ Liα .(5.3)

It is worth to note that if (M, τ ) is B(H) equipped with the standard trace and α =
1 (respectively, α = 1/2), then Liα(M, τ ) coincides with the ideal Li(H) (respectively,
Li1/2(H)) considered in [Co2, p. 391].

Recall also that the space (Mψ, ‖ · ‖Mψ
) is a fully symmetric Banach function space, that

ψ ′ ∈ Mψ and that ψ ′ /∈ L1[0,∞), since ψ(∞) =∞. In other words, Mψ � L1[0,∞). If

lim
t→∞

t

ψ(t)
=∞,(5.4)
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then χ[0,∞) /∈ Mψ), in other words L∞[0,∞) � Mψ . If (5.4) holds, then the set of all
x ∈ Mψ for which

lim
h→0,∞

1

ψ(t)

∫ t

0
x∗(s) ds = 0

is denoted by M0
ψ. The latter space is a fully symmetric subspace of Mψ. An alternative

description of M0
ψ is given by

x ∈ M0
ψ ⇐⇒ lim

s→0

(
‖min(s, x)‖Mψ

+ ‖x∗χ[0,s)‖Mψ

)
= 0.

Indeed, the implication =⇒ follows from the fact that (M0
ψ, ‖ · ‖Mψ

) is a separable sym-

metric space [KPS, Theorem II.5.4]. The implication ⇐= follows from the fact that M0
ψ

coincides with the closure of the set of all bounded functions of compact support in Mψ

[KPS, Lemma II.5.4]. It follows from the description just given and Proposition 2.6 that
J(Mψ) ⊆ M0

ψ .

More detailed information on the set J
(
Mψ[0,∞)

)
is contained in the following theo-

rem, which is the main result of this section .

Theorem 5.2

(i) For an arbitrary ψ ∈ Ψ we have

Λ
ψ̃∗

logΛ
ψ̃∗
⊆ J(Mψ) ⊆ Λ

ψ̃∗
⊆ M0

ψ.

(ii) For an arbitrary ψ ∈ Ψ0 we have

J(Mψ) ∩ Gψ∗ = Λψ̃∗ ∩ Gψ∗ , J(Mψ) ∩ Gψ∗ = Λψ̃∗ ∩ Gψ∗ ,

where

Gψ∗ := {x = x∗ ∈ L1(0,∞) + L∞(0,∞) : ∃ t0 such that x(t)ψ∗(t) is decreasing for t ≥ t0}

and Gψ∗ is the smallest rearrangement-invariant ideal containing Gψ∗ .
(iii) For an arbitrary ψ ∈ Ψ it follows from the embeddings

x ∈ Hψ∗ and x∗∗ ∈ Λ
ψ̃∗

where

Hψ∗ := {x = x∗ ∈ L1(0,∞) + L∞(0,∞) :

∃ t0 such that x∗∗(t)ψ∗(t) is decreasing for t ≥ t0},

that x ∈ J(Mψ).
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Proof (i) The second embedding follows immediately from Proposition 4.7 (i) and the
first follows from Theorem 4.3 since Λ

ψ̃∗
is continuously embedded into Mψ (see also re-

mark following Corollary 4.4 and Corollary 4.5). The third embedding follows immediately
from [KPS, Theorem II.5.5].

(ii) The embedding
J(Mψ) ∩ Gψ∗ ⊆ Λψ̃∗ ∩ Gψ∗

follows immediately from (i). We shall now show that x ∈ Λ
ψ̃∗
∩Gψ∗ implies x ∈ J(Mψ). To

ensure the latter embedding, it suffices to show that
∫∞

1
du
u ‖min( 1

u , x)‖Mψ
<∞ (see (2.26)

and (2.27)), or equivalently, that for some positive∆ we have
∫∞
∆

du
u ‖min( 1

u , x)‖Mψ
<∞.

By the assumption, there exists t0 such that

x(t1)ψ∗(t1) ≥ x(t2)ψ∗(t2), t0 ≤ t1 ≤ t2(5.5)

and without loss of generality we may take∆ so that 1
∆ < x(t0). It follows that nx( 1

u ) ≥ t0,
provided that u ≥ ∆. It should be noted that, since x ∈ Gψ∗ we have m

(
{t : x(t) = 1

u}
)
=

0, u ≥ ∆, therefore

min

(
1

u
, x

)
=

1

u
χ[0,nx( 1

u )) + x · χ[nx( 1
u ),∞).

Using (5.2) and (5.5) we now have∫ ∞
∆

du

u

∥∥∥∥min

(
1

u
, x

)∥∥∥∥
Mψ

≈

∫ ∞
∆

du

u
F

(
min

(1

u
, x
))

=

∫ ∞
∆

du

u
sup

0<t<∞

{(
1

u
· χ[0,nx( 1

u ))(t) + x · χ[nx( 1
u ),∞)(t)

)
ψ∗(t)

}

=

∫ ∞
∆

du

u
max

{
sup

0<t<nx( 1
u )

{
1

u
ψ∗(t)

}
, x

(
nx

(
1

u

))
ψ∗

(
nx

(
1

u

))}

=

∫ ∞
∆

du

u2
ψ∗

(
nx

(
1

u

))
.

Since x ∈ Λ
ψ̃∗

we may use the same arguments as in the proof of Proposition 4.7 (i) (see

(4.3) and (4.4)) to show that
∫∞
∆

du
u2 ψ∗

(
nx( 1

u )
)
<∞. It completes the proof of the equality

J(Mψ) ∩ Gψ∗ = Λψ̃∗ ∩ Gψ∗ .
Let A (respectively, B) be the smallest rearrangement-invariant ideal containing J(Mψ)∩

Gψ∗ (respectively, Λ
ψ̃∗
∩ Gψ∗). It follows from the first part of the proof that A = B.

Since J(Mψ)∩Gψ∗ (respectively, Λ
ψ̃∗
∩Gψ∗) is a rearrangement-invariant ideal containing

J(Mψ) ∩ Gψ∗ (respectively, Λ
ψ̃∗
∩ Gψ∗) we see that A ⊆ J(Mψ) ∩ Gψ∗ (respectively, B ⊆

Λ
ψ̃∗
∩ Gψ∗). However, using Proposition 2.7, it is easy to see that in fact A = J(Mψ) ∩ Gψ∗

and B = Λ
ψ̃∗
∩ Gψ∗ .
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(iii) Since

min

(
1

u
, x

)
≤ min

(
1

u
, x∗∗

)
=

1

u
χ[0,nx∗∗ ( 1

u )) + x · χ[nx∗∗ ( 1
u ),∞)

we, using the assumption x ∈ Hψ∗ and the same argument as in (ii), see that for sufficiently
large∆ ∫ ∞

∆

du

u

∥∥∥∥min

(
1

u
, x

)∥∥∥∥
Mψ

≤

∫ ∞
∆

du

u

∥∥∥∥min

(
1

u
, x∗∗

)∥∥∥∥
Mψ

=

∫ ∞
∆

du

u
sup

0<t<∞

{(
1

u
· χ[0,nx∗∗ ( 1

u ))(t) + x · χ[nx∗∗ ( 1
u ),∞)(t)

)
ψ∗(t)

}
=

∫ ∞
∆

du

u2
ψ∗

(
nx∗∗

(
1

u

))
.

Since x∗∗ ∈ Λ
ψ̃∗

we have
∫∞
∆

du
u2 ψ∗

(
nx∗∗( 1

u )
)
<∞ and this completes the proof.

Remark 5.3 (i) It should be pointed out that the rearrangement-invariant ideal Gψ∗ in-
troduced in Theorem 5.2 (ii) is a proper subset of Mψ . Indeed, if it were that Gψ∗ = Mψ

then, according to Theorem 5.2, we have J(Mψ) ∩ Λ
ψ̃∗
= Λ

ψ̃∗
and this is a contradiction

with Proposition 4.7 (ii).
(ii) Recall that symmetric space E has the Hardy-Littlewood property (notation: E ∈

(HLP)) if and only if
x ∈ E =⇒ x∗∗ ∈ E

for every x ∈ E (see, [KPS, II.6.7]). If Λ
ψ̃∗
∈ (HLP), then we may replace the assumption

x∗∗ ∈ Λ
ψ̃∗

by the assumption x ∈ Λ
ψ̃∗

. By [KPS, Theorem II.6.6 and (II.4.20)], we have

(
Λ
ψ̃∗
∈ (HLP)

)
⇐⇒

(
lim

t→∞

1

t
‖σt‖Λ

ψ̃∗
→Λ

ψ̃∗
= lim

t→∞

1

t
sup
s>0

ψ∗(st)

ψ∗(s)
= lim

t→∞
sup
s>0

ψ(s)

ψ(st)
= 0

)
.

We shall now specialize our considerations to the case, when ψ = ψα, α ∈ (0, 1] (i.e.,
when Mψ = Liα), and show in particular that

Liβ ⊆ J(Liα), 0 < α < β ≤ 1.(5.6)

It is of interest to point out a certain resemblance with the situation in the Lp-setting; we
refer here to the assertions of Theorem 3.2 and Corollary 4.6 (see also remarks given there-
after). For brevity we use below the notation Λlnα for the Lorentz space Λlnα(·+e2)[0,∞).

Proposition 5.4 For an arbitrary α ∈ (0, 1] we have⋃
β∈(α,1]

Liβ � Λlnα logΛlnα ⊆ J(Liα).
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Proof We shall show first that

Liβ ⊆ Λlnα logΛlnα , β ∈ (α, 1].(5.7)

It is clear from (5.3) that x ∈ Liβ if and only if x∗(t) ≤ C
lnβ (t+e2)

for some C > 0. Therefore,

to establish (5.7) we need only to show that

1

lnβ(t + 2)
∈ Λlnα logΛlnα

or, equivalently (see Definition 4.2), that

1

lnβ(t + e2)
· ln
(
ln(t + e2)

)
∈ Λlnα .(5.8)

We shall check (5.8) via direct computations. Let ε = β−α
2 > 0. Clearly, there exists such

t0 > 0 that
ln
(
ln(t + e2)

)
≤ lnε(t + e2), ∀t > t0.

By Definition 4.1 and [KPS, (II.5.2), p. 108] we have∥∥∥∥ 1

lnβ(t + e2)
· ln
(
ln(t + e2)

)∥∥∥∥
lnα

≤ 1 + α

∫ ∞
0

1

lnβ(t + e2)
· ln
(
ln(t + e2)

)
·

1

(t + e2) ln1−α(t + e2)
dt

= 1 + α

∫ ∞
0

ln
(
ln(t + e2)

)
(t + e2) ln1+β−α(t + e2)

dt

= 1 + α

(∫ t0

0

ln
(
ln(t + e2)

)
(t + e2) ln1+2ε(t + e2)

dt +

∫ ∞
t0

ln
(
ln(t + e2)

)
(t + e2) ln1+2ε(t + e2)

dt

)

≤ 1 + α

(∫ t0

0

ln
(
ln(t + e2)

)
(t + e2) ln1+2ε(t + 2)

dt +

∫ ∞
t0

1

(t + e2) ln1+ε(t + e2)
dt

)
<∞.

To complete the proof of Proposition 5.4 we need to show that⋃
β∈(α,1]

Liβ �= Λlnα logΛlnα .(5.9)

To prove (5.9), let us fix an arbitrary ε > 0 and set

x∗(t) = x(t) :=
1

lnα(t + e2)
·

1

ln2+ε(ln(t + e2)
) , t > 0.
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Given β > α we have

lim
t→∞

x∗(t) · lnβ(t + e2) =
lnβ−α(t + e2)

ln2+ε(ln(t + e2)
) =∞,

whence x /∈
⋃
β∈(α,1] Liβ . Thus, to establish (5.9) it suffices to show that∥∥∥∥x · ln

(
1

x

)∥∥∥∥
lnα
<∞.

We have

ln

(
1

x(t)

)
= α ln

(
ln(t + e2)

)
+ (2 + ε) ln

(
ln
(
ln(t + e2)

))
and taking into account that

ln
(
ln(t + e2)

)
> ln

(
ln
(
ln(t + e2)

))
for sufficiently large t > 0, we need to show only that

‖x(t) ln
(
ln(t + 2)

)
‖lnα <∞.

Again using [KPS, (II.5.2), p. 108] we have

‖x(t) ln
(
ln(t + e2)

)
‖lnα

≤ 1 + α

∫ ∞
0

ln
(
ln(t + e2)

)
lnα(t + e2)

·
1

ln2+ε(ln(t + e2)
) · 1

(t + e2) ln1−α(t + e2)
dt

= 1 + α

∫ ∞
0

1

(t + e2) ln(t + e2)
·

1

ln1+ε(ln(t + e2)
) dt

= 1 + α

∫ ∞
2

ds

s · ln1+ε s

<∞.

Remark 5.5 (i) The proof of (5.9) from the preceding proposition shows that if there exist
t0, C0, ε > 0 such that

x(t) ≤ C0 ·
1

lnα(t + e2)
·

1

ln2+ε(ln(t + e2)
) , t > t0(5.10)

then x(t) ∈ J(Liα). The asymptotics (5.10) may be further improved via using Theorem 5.2
(ii). Indeed, given ε > 0, let

θ1(t) :=
1

lnα(t + e2)
·

1

ln1+ε(ln(t + e2)
) , t > 0.(5.11)
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Since
θ1(t) lnα(t + e2) ≥ θ1(s) lnα(s + e2), s ≥ t > 0

it follows that θ1 ∈ Glnα . Since θ1 = θ
∗
1 we have also

‖θ1‖lnα ≤ 1 + α

∫ ∞
0

1

lnα(t + e2)
·

1

ln1+ε(ln(t + e2)
) · 1

(t + e2) ln1−α(t + e2)
dt

= 1 + α

∫ ∞
0

1

ln(t + e2)
·

1

ln1+ε(ln(t + e2)
) d
(
ln(t + e2)

)
= 1 + α

∫ ∞
2

ds

s · ln1+ε s

<∞,

i.e., θ1 ∈ Λlnα . By Theorem 5.2 (ii), it follows that θ1 ∈ J(Liα).
(ii) It should be noted that (via similar calculation to that given in the end of the proof

of Proposition 5.4) θ1 /∈ Λlnα logΛlnα whenever ε ∈ (0, 1]. It is also worth to mention, that
similarly to Lp-setting (see Remark 3.7 (i), Theorem 3.9), we can not replace the power 1+ε
in (5.11) on 1. Indeed, the same calculations as in Remark 5.5 (i) show that the function

θ ′(t) :=
1

lnα(t + e2)
·

1

ln
(
ln(t + e2)

) , t > 0

does not belong toΛlnα , whence, by Proposition 4.7 (i), does not belong to J(Liα). However
the asymptotics given by (5.11) may be improved as follows. For sufficiently large t > 0
and 1 ≥ ε > 0 we let

θ2(t) :=
1

lnα(t + e2)
·

1

ln
(
ln(t + e2)

) · 1

ln1+ε
(

ln
(
ln(t + e2)

)) .
The same calculations as above show that θ2 ∈ J(Liα). By obvious analogy we may define
functions θk ∈ J(Liα) for any k = 3, 4, . . . .

Corollary 5.6 If there exist t0, C0, ε > 0 and k ∈ N such that

d0χ[t0,∞)(t) ≤ C0 ·
1

lnα(t + e2)
·

1

ln1+ε(ln(t + e2)
)χ[t0,∞)(t)

then there exists a constant C, depending on ε and D0 only, such that∥∥∥∥∥ D

(1 + D2)
1
2

−
D0

(1 + D2
0)

1
2

∥∥∥∥∥
Liα(M,τ )

≤ C · ‖D− D0‖

provided that ‖D− D0‖ ≤ 1.
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Proof It follows from Remark 5.5 (i) that that

1

lnα(· + e2)
·

1

ln1+ε(ln(· + e2)
)χ[t0,∞)(·) ∈ J(Liα).

By Corollary 2.8 we have f ∈ J(Liα). The assertion follows now from Proposition 2.4.

Theorem 5.2 (ii) (respectively, 5.2 (iii)) yields a criterion as to whether a given rearrange-
ment-invariant space E embeds into J(Mψ), provided ψ ∈ Ψ0 (respectively, ψ ∈ Ψ).
We shall now adjust the arguments from that theorem to the special case that E is a
Marcinkiewicz space. The next result is, in a certain sense, a generalization of the em-
bedding (5.6).

Theorem 5.7 If ψ, φ, t
ψ(t) ∈ Ψ and L(t) := ψ(t)

φ(t) is an increasing function such that

∞∑
k=1

1

L
(
Γ(ek)

) <∞,(5.12)

where Γ is the inverse function of t
φ(t) , then Mφ ⊆ J(Mψ).

Proof It suffices to show that for an arbitrary x = x∗ ∈ Mφ, ‖x‖Mφ
= 1 we have x ∈ J(Mψ).

We let for brevity tk := Γ(ek), i.e., ek = tk
φ(tk) . Obviously, we have

min

(
e−k,

φ(t)

t

)
= e−kχ[0,tk](t) +

φ(t)

t
χ[tk,∞)(t).(5.13)

By (5.1), without loss of generality, we may assume that supt>0 x∗∗(t) · t
φ(t) ≤ 1. Noting

that
min(e−k, x)∗∗ ≤ min(e−k, x∗∗), k = 1, 2, . . .

and using (5.1), (5.13) and (5.12) we have

∞∑
k=1

‖min(e−k, x)‖Mψ
≤
∞∑

k=1

(
sup
t>0

min(e−k, x)∗∗ ·
t

ψ(t)

)

≤
∞∑

k=1

(
sup
t>0

min(e−k, x∗∗) ·
t

ψ(t)

)

≤
∞∑

k=1

(
sup
t>0

min

(
e−k,

φ(t)

t

)
·

t

ψ(t)

)

≤
∞∑

k=1

(
sup
t>0

{(
e−kχ[0,tk] +

φ(t)

t
χ[tk,∞)

)
·

t

ψ(t)

})

=

∞∑
k=1

(
max

{
sup

0≤t≤tk

{
e−k ·

t

ψ(t)

}
, sup

tk≤t<∞

{
φ(t)

t
·

t

ψ(t)

}})
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=
∞∑

k=1

(
max

{
e−k ·

tk

ψ(tk)
,
φ(tk)

ψ(tk)

})

=
∞∑

k=1

(
max

{
φ(tk)

tk
·

tk

ψ(tk)
,
φ(tk)

ψ(tk)

})

=
∞∑

k=1

(
φ(tk)

ψ(tk)

)

=
∞∑

k=1

(
1

L(tk)

)

=

∞∑
k=1

(
1

L
(
Γ(ek)

))
<∞.

By Proposition 2.6 we have x ∈ J(Mψ).

Corollary 5.8 Given ε, α ∈ (0, 1], let

φ =
t + e2

lnα(t) · ln1+ε(ln(t + e2)
) , t > 0.

Then ⋃
α<β≤1

Liβ � Mφ ⊆ J(Liα).

Proof Without loss of generality we may (and shall) assume that for sufficiently large t we
have

L(t) =
ψα(t)

φ(t)
= ln1+ε(ln(t)

)
and Γ(t) = et1/α

.

Then
∞∑

k=1

1

L
(
Γ(ek)

) = ∞∑
k=1

1

L(eek/α)
=
∞∑

k=1

1

(k/α)1+ε
<∞.

The embedding Mφ ⊆ J(Liα) now follows immediately from Theorem 5.7. The embedding⋃
α<β≤1 Liβ ⊆ Mφ follows from (5.2) if to take into account that

φ∗(t) ≤ lnβ(t + e2), α < β ≤ 1

for sufficiently large t > 0. To see that
⋃
α<β≤1 Liβ �= Mφ, it suffices to notice that θ1 (see

Remark 5.5 (i)) belongs to Mφ and does not belong to Liβ , β ∈ (α, 1] (see the proof of
Proposition 5.5).

Remark 5.9 Letting
φk = (t + e2) · θk(t), t > 0, k ∈ N
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we see that essentially the same arguments as in Corollary 5.8 combined with the observa-
tion

θk /∈ Mφk−1 , k ∈ N

show that ⋃
α<β≤1

Liβ � Mφ1 � Mφ2 � · · · � Mφk · · · ⊆ J(Liα).

Remark 5.10 This section presents a general approach to the study of (Breuer)-Fredholm
modules motivated by special cases which appear in the existing literature. For the case
when M = L(H), τ is standard trace and ψ = ψ1/2 we note that the notion of an odd
Fredholm module associated with Mψ(M, τ ) (see Definition 0.1) coincides with the notion
of θ-summable Fredholm module (see e.g. [Co2, p. 391]). In the same setting, but with
ψ(t) = t1−1/p the former notion coincides with the notion of (p,∞)-summable Fredholm
module (see [Co2, pp. 308–312]). It is natural to ask for meaningful examples of the same
kind in the setting of general semifinite von Neumann algebra of type II. One such example
is considered in [CP, Example II]. The operator D0 constructed there is affiliated with II∞
factor (N, τ ) and d0(t) = (1 + t2)−1/2, t > 0. Clearly, it is possible to treat (N,D0) as
an example of unbounded p-summable Breuer-Fredholm module for every p ∈ (1,∞)
as it is done in [CP]. However, it is equally possible to consider (N,D0) as an example of
Breuer-Fredholm module associated with the Marcinkiewicz space MLog(t+2)(N, τ ). The
latter space was introduced in [DDPS2] as a (type II) analogue of the dual to Macaev ideal.

6 Hölder Estimates

We present some results which indicate the intrinsic connection between our theme and
study of the Hölder and Lipschitz continuity of the absolute value in the setting of operator
spaces. Among most recent publications concerning this setting we mention [Da], [Ko],
[DD], [DDPS1], [DDPS2].

Definition 6.0 If x, y ∈ M̃, then we say that x is submajorized by y and write x ≺≺ y if
and only if ∫ t

0
µs(x) ds ≤

∫ t

0
µs(y) ds, t ≥ 0,

in other words, if and only if when
(
µ(x)

)∗∗
≤
(
µ(y)

)∗∗
.

Recall that for an arbitrary fully symmetric operator space E(M, τ ) we have(
x ∈ M̃, y ∈ E(M, τ ), x ≺≺ y

)
=⇒

(
x ∈ E(M, τ ), ‖x‖E(M,τ ) ≤ ‖y‖E(M,τ )

)
.

We shall start from the auxiliary result which complements both [CS, Proposition 1.2] and
[CP, Appendix B, Lemma 5].

Lemma 6.1 Let x = x∗ ∈ M̃ and 0 ≤ y ∈ M̃ and let−y ≤ x ≤ y. Then |x|1/2 ≺≺ 2y1/2.
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Proof Via the same arguments as in [CS] it suffices to consider the case when M is non-
atomic and further that it suffices to establish that

τ (p|x|1/2) ≤ 2

∫ τ (p)

0
µt (y1/2) dt

for an arbitrary projection p ∈ M commuting with x. Given such a projection p there
are two projections p1, p2 ∈ M commuting with x such that p = p1 + p2 and p|x|1/2 =
(p1x)1/2 + (−p2x)1/2. Since p1xp1 ≤ p1 y p1 and since the square root is an operator mono-
tone function, we have p1|x|1/2 = (p1xp1)1/2 ≤ (p1 y p1)1/2 and analogously p2|x|1/2 =
(−p2xp2)1/2 ≤ (p2 y p2)1/2. It follows

τ (p|x|1/2) = τ (p1x1/2) + τ (p2x1/2)

= τ
(
(p1xp1)1/2

)
+ τ
(
(−p2xp2)1/2

)
≤ τ

(
(p1 y p1)1/2

)
+ τ
(
(p2 y p2)1/2

)
= ‖(p1 y p1)1/2‖1 + ‖(p2 y p2)1/2‖1

≤ ‖µ1/2(y)χ[0,τ (p1))‖1 + ‖µ1/2(y)χ[0,τ (p2))‖1

≤ 2

∫ τ (p)

0
µt (y1/2) dt

where in the penultimate step we used the inequality

µ
(
(qyq)1/2

)
= µ1/2(qyq) ≤ µ1/2(y)χ[0,τ (q)) = µ(y1/2)χ[0,τ (q))

which holds for an arbitrary projection q ∈M.

Theorem 6.2 Let E(0,∞) be a fully symmetric function space, let (M, τ ) be an arbitrary
semifinite von Neumann algebra, let D0 = D∗0 be affiliated with M such that d0 ∈ E(0,∞).
Then there exists a constant C > 0 (depending on E and D0) such that for all self-adjoint
D− D0 ∈M we have∥∥∥∥ |D|

(1 + D2)1/2
−

|D0|

(1 + D2
0)1/2

∥∥∥∥
E(M,τ )

≤ C max{‖D− D0‖
1/2, ‖D− D0‖}.(6.1)

Proof It follows from the proof [CP, Appendix B, Proposition 10 (see also Lemma 6)] that

−2 max{‖D− D0‖
2, ‖D− D0‖} ·

1

(1 + D2
0)
≤

1

(1 + D2)
−

1

(1 + D2
0)

≤ 2 max{‖D− D0‖
2, ‖D− D0‖} ·

1

(1 + D2
0)

and, by Lemma 6.1, it follows that∣∣∣∣ 1

(1 + D2)
−

1

(1 + D2
0)

∣∣∣∣1/2

≺≺ 2(2 max{‖D− D0‖
2, ‖D− D0‖})

1/2

(
1

(1 + D2
0)1/2

)
.
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The latter inequality implies immediately that∥∥∥∥∥
∣∣∣∣ 1

(1 + D2)
−

1

(1 + D2
0)

∣∣∣∣1/2
∥∥∥∥∥

E(M,τ )

≤ 23/2 max{‖D− D0‖
1/2, ‖D− D0‖}

∥∥∥∥ 1

(1 + D2
0)1/2

∥∥∥∥
E(M,τ )

or, equivalently,∥∥∥∥∥
∣∣∣∣ D2

(1 + D2)
−

D2
0

(1 + D2
0)

∣∣∣∣1/2
∥∥∥∥∥

E(M,τ )

≤ C max{‖D− D0‖
1/2, ‖D− D0‖}(6.2)

where C := 23/2‖ 1
(1+D2

0)1/2 ‖E(M,τ ).

We shall now apply the submajorization inequality due to M. S. Birman, L. S. Koplienko
and M. Z. Solomyak presented in [BKS] for the case of symmetrically-normed ideals of
compact operators and which was rediscovered by T. Ando in [An]. An extension of this
inequality to measurable operators affiliated with an arbitrary semifinite von Neumann
algebra M is due to H. Kosaki (it is given in the appendix to [HN]) with an alternative
version of the proof given in [DD]. We need only a simplest case of this inequality for the
(operator monotone) square root function. By Theorem 1.1 from [DD] (see also [BKS,
Theorem 1]) we have

x1/2 − y1/2 ≺≺ |x − y|1/2(6.3)

for any 0 ≤ x, y ∈ M̃. Combining (6.3) with (6.2) and taking into account that, by the
assumption, the space E(M, τ ) is fully symmetric we have

∥∥∥∥ |D|

(1 + D2)1/2
−

|D0|

(1 + D2
0)1/2

∥∥∥∥
E(M,τ )

=

∥∥∥∥∥
(

D2

(1 + D2)

)1/2

−

(
D2

0

(1 + D2
0)

)1/2
∥∥∥∥∥

E(M,τ )

≤

∥∥∥∥∥
∣∣∣∣ D2

(1 + D2)
−

D2
0

(1 + D2
0)

∣∣∣∣1/2
∥∥∥∥∥

E(M,τ )

≤ C max{‖D− D0‖
1/2, ‖D− D0‖}.

Corollary 6.3 Let the assumptions of Theorem 6.2 be satisfied. Then the functions

‖D(1 + D2)−1/2 − D0(1 + D2
0)−1/2‖E(M,τ )

max{‖D− D0‖1/2, ‖D− D0‖}
and

‖(|D| − |D0|) · (1 + D2
0)−1/2‖E(M,τ )

max{‖D− D0‖1/2, ‖D− D0‖}

are bounded or unbounded simultaneously for all self-adjoint operators D− D0 ∈M.
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Proof Since the operator D is affiliated with M, the partial isometry v in the polar decom-
position D = v|D| belongs to M. It easily follows that the functions

‖|D|
(
(1 + D2)−1/2 − (1 + D2

0)−1/2
)
‖E(M,τ )

max{‖D− D0‖1/2, ‖D− D0‖}
and

‖D
(
(1 + D2)−1/2 − (1 + D2

0)−1/2
)
‖E(M,τ )

max{‖D− D0‖1/2, ‖D− D0‖}

are bounded or unbounded simultaneously for all self-adjoint operators D − D0 ∈ M. It
follows from the equality

|D|

(
1

(1 + D2)1/2
−

1

(1 + D2
0)1/2

)
= −(|D| − |D0|)

(
1

(1 + D2
0)1/2

)
+

|D|

(1 + D2)1/2
−

|D0|

(1 + D2
0)1/2

(6.4)

and Theorem 6.2 that the functions

‖|D|
(
(1 + D2)−1/2 − (1 + D2

0)−1/2
)
‖E(M,τ )

max{‖D− D0‖1/2, ‖D− D0‖}
and

‖(|D| − |D0|) · (1 + D2
0)−1/2‖E(M,τ )

max{‖D− D0‖1/2, ‖D− D0‖}

are bounded or unbounded for all self-adjoint operators D − D0 ∈ M simultaneously.
Finally, it follows from the equality

D

(
1

(1 + D2)1/2
−

1

(1 + D2
0)1/2

)
=

D

(1 + D2)1/2
−

D0

(1 + D2
0)1/2

+ (D− D0)
1

(1 + D2
0)1/2

(6.5)

that the functions

‖D
(
(1 + D2)−1/2 − (1 + D2

0)−1/2
)
‖E(M,τ )

max{‖D− D0‖1/2, ‖D− D0‖}
and

‖D(1 + D2)−1/2 − D0(1 + D2
0)−1/2‖E(M,τ )

max{‖D− D0‖1/2, ‖D− D0‖}

are bounded or unbounded for all self-adjoint operators D−D0 ∈M simultaneously.

If additional restrictions are imposed on the algebra M and/or the symmetric space E
then some refinements are possible. In the next corollary we consider the class of symmetric
function spaces E with non-trivial Boyd indices (see [LT2]). Such spaces are known to be
interpolation spaces for some pair of non-trivial Lp-spaces. We assume, in addition, that
(D − D0) ∈ E(M, τ ). For the definition of the Fatou property in the setting of symmetric
operator spaces, we refer to [DDP2] and [DDPS1].

Corollary 6.4 Let E(0,∞) be an interpolation space for some couple
(
Lp(0,∞), Lq(0,∞)

)
,

1 < p, q <∞ with the Fatou property. If the self-adjoint operator D−D0 belongs to E(M, τ ),
then

‖D(1 + D2)−1/2 − D0(1 + D2
0)−1/2‖E(M,τ ) ≤ C max{‖D− D0‖

1/2
E(M,τ ), ‖D− D0‖E(M,τ )}

for some C > 0.

https://doi.org/10.4153/CJM-2000-037-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-037-8


892 F. A. Sukochev

Proof It follows from [DDPS1, Theorem 3.4] that

‖(|D| − |D0|)(1 + D2
0)−1/2‖E(M,τ ) ≤ CE‖D− D0‖E(M,τ )

for some CE > 0. Letting C1 = ‖(1 + D2
0)−1/2‖E(M,τ ) we clearly have

‖(D− D0)(1 + D2
0)−1/2‖E(M,τ ) ≤ C1‖D− D0‖,

and by Theorem 6.2 we have that

‖|D|(1 + D2)−1/2 − |D0|(1 + D2
0)−1/2‖E(M,τ ) ≤ C2‖D− D0‖

1/2

for some C2 > 0. Combining identities (6.5) and (6.4) with the preceding estimates and
letting M = 3 max{C1,C2,CE}, we obtain

‖D(1 + D2)−1/2 − D0(1 + D2
0)−1/2‖E(M,τ )

≤ C1‖D− D0‖ + CE‖D− D0‖E(M,τ ) + C2‖D− D0‖
1/2

≤ M max{‖D− D0‖
1/2
E(M,τ ), ‖D− D0‖E(M,τ )}.

From [CP, Appendix A, Theorem 8] we have

‖D(1 + D2)−1/2 − D0(1 + D2
0)−1/2‖ ≤ ‖D− D0‖.

The assertion (with C = max{M, 1}) follows now from the two preceding estimates.

In the special case that M = B(H), a stronger result may be achieved. We first present
a result which is of interest in its own right. Its proof is a slight extension of original argu-
ments of Yu. B. Farforovskaya.

Proposition 6.5 Let f be a Lipschitz function with a constant 1 and let E be an interpolation
space for the couple (l1, l2). If T ∈ CE commutes with D0, then

(
f (D)− f (D0)

)
T ∈ CE and,

moreover
‖
(

f (D)− f (D0)
)
T‖CE

≤ ‖D− D0‖ · ‖T‖CE .

Proof We shall present the proof assuming, in addition, that both D0 and D have complete
orthonormal systems of eigenvectors {ei}∞i=1 and {h j}∞j=1 respectively. It should be noted

that in the special case T = (1 + D2
0)−1/2 this assumption is satisfied automatically. Indeed,

T has a complete orthonormal system of eigenvectors as a compact operator, whence the
same holds for D0 too. Using the first inequality from the proof of Theorem 6.2, the same
arguments may be repeated for the operators (1 + D2)−1/2 and D.

Using interpolation theorems from [Ar], it suffices to consider only the two cases E = l1
and E = l2. Further we may also identify T with the diagonal matrix (ti) (with respect to
the basis {ei}∞i=1). Let {k(i)}∞i=1 and {l( j)}∞j=1 be the systems of eigenvalues of D0 and D
corresponding to the systems {ei}∞i=1 and {h j}∞j=1 respectively. Now we consider the matrix
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representation ( fi j )∞i, j=1 of the difference f (D)− f (D0) with respect to the bases {ei}∞i=1 and
{h j}∞j=1. It is given by the formulae

fi j =
(

f
(
k(i)
)
− f

(
l( j)
))
· 〈ei, h j〉

=
f
(
k(i)
)
− f

(
l( j)
)

k(i)− l( j)
· 〈(D− D0)ei , h j〉, if k(i) �= l( j),

and

fi j = 0, if k(i) = l( j).

It follows from the preceding identities, from the fact that (D−D0) = (D−D0)∗ ∈ B(H)
and from the fact that f is a Lipschitz function with the constant 1 that

sup
i, j

{ ∞∑
j=1

| fi j |
2,

∞∑
i=1

| fi j |
2
}
≤ ‖D− D0‖

2.(6.6)

It follows from (6.6), that if P j is the orthogonal projection on the linear span of the vector
e j , j = 1, 2, . . . , we have

‖
(

f (D)− f (D0)
)

P j‖2 = ‖
(

f (D)− f (D0)
)
P j‖1 =

( ∞∑
i=1

| fi j |
2
)1/2
≤ ‖D− D0‖.(6.7)

Further, the matrix representation (gi j)∞i, j=1 of the operator
(

f (D) − f (D0)
)
T (again with

respect to the bases {ei}∞i=1 and {h j}∞j=1), is given by

gi j = fi j t j , i, j = 1, 2, . . . .

We see now that if T ∈ C1 then ‖T‖1 =
∑∞

j=1 |t j | <∞ and therefore it follows from (6.7)
that

∞∑
j=1

‖
(

f (D)− f (D0)
)

TP j‖1 =

∞∑
j=1

( ∞∑
i=1

|gi j |
2
)1/2

=
∞∑
j=1

|t j |
∞∑
i=1

(| fi j |
2)1/2

≤ ‖D− D0‖ · ‖T|1.

(6.8)

We infer from (6.8) that
(

f (D)− f (D0)
)
T ∈ C1 and ‖

(
f (D)− f (D0)

)
T‖1 ≤ ‖D− D0‖ ·

‖T‖1.
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If T ∈ C2 then ‖T‖2 = (
∑∞

j=1 |t j |2)1/2 < ∞ and therefore it follows from (6.6) and
(6.7) that

‖
(

f (D)− f (D0)
)

T‖2
2 =

∞∑
j=1

‖
(

f (D)− f (D0)
)

TP j‖
2
2

=
∞∑
j=1

( ∞∑
i=1

|gi j |
2
)

=

∞∑
j=1

|t j |
2
∞∑
i=1

| fi j |
2

≤ ‖D− D0‖
2 · ‖T‖2

2.

It suffices to complete the proof of Proposition 6.5.

Corollary 6.6 Given an interpolation space E for the couple (l1, l2) and the operator D0 = D∗0
with d0 ∈ E we have (|D| − |D0|)(1 + D2

0)−1/2 ∈ CE for all self-adjoint D − D0 ∈ B(H).
Moreover

‖(|D| − |D0|)(1 + D2
0)−1/2‖CE ≤ ‖D− D0‖ · ‖d0‖E.

Combining now Corollary 6.3 with Corollary 6.6 we arrive at the following result.

Corollary 6.7 Let E be an interpolation space for the couple (l1, l2) and let d0 ∈ E. There
exists a positive constant C such that for all self-adjoint (D− D0) ∈ B(H) we have

‖D(1 + D2)−1/2 − D0(1 + D2
0)−1/2‖CE ≤ C max{‖D− D0‖

1/2, ‖D− D0‖}.

Let A be a unital Banach ∗-subalgebra of B(H). We shall assume below that the span
u(A) of all unitary elements from A generate A (see Definition 0.1).

Corollary 6.8 If E is an interpolation space for the couple (l1, l2) and (H,D0) is an odd
unbounded Fredholm module associated with CE and A, then

(
H, sgn(D0)

)
is an odd bounded

Fredholm module associated with CE and A.

Proof We first show that
(
H, φ(D0)

)
is an odd bounded Fredholm module associated with

CE and A. For an arbitrary u ∈ u(A) we have

[φ(D0), u] = φ(D0)u− uφ(D0) = u
(

u∗φ(D0)u− φ(D0)
)
= u
(
φ(u∗D0u)− φ(D0)

)
.

By the assumption u∗D0u−D0 = u∗[D0, u] is a bounded self-adjoint operator from B(H),
therefore, letting D = u∗D0u we have by Corollary 6.7, that φ(D)−φ(D0) ∈ CE. It follows,

immediately that [φ(D0), u] ∈ CE and, since
(
1 − φ(D0)2

)1/2
obviously belongs to CE, it

follows that
(
H, φ(D0)

)
is an odd bounded Fredholm module associated with CE and A.

It is now easy to verify that
(
H, sgn(D0)

)
is an odd bounded Fredholm module associated
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with CE and A. Indeed, condition (1) from Definition 0.1 obviously holds. To verify that
condition (2) holds, we note that(

sgn(D0)− φ(D0)
)(

sgn(D0) + φ(D0)
)
= sgn(D0)2 − φ(D0)2

= sgn(D0)2 − D2
0(1 + D2

0)−1

= (1 + D2
0)−1| sgn(D0)|

≤ (1 + D2
0)−1/2 ∈ CE,

and since ((
sgn(D0) + φ(D0)

)
| sgn(D0)|

)−1
∈ B(H)

it follows

sgn(D0)− φ(D0) = (1 + D2
0)−1| sgn(D0)|(

(
sgn(D0) + φ(D0)| sgn(D0)|

)−1
∈ CE,

whence
[sgn(D0), u] = [sgn(D0)− φ(D0), u] + [φ(D0), u] ∈ CE

for any u ∈ u(A).
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