ON EXTREMAL POINTS OF THE UNIT BALL IN THE BANACH SPACE OF LIPSCHITZ CONTINUOUS FUNCTIONS

S. ROLEWICZ

(Received 1 June 1984; revised 12 February 1985)

Communicated by H. Rubinstein

Abstract

It is shown that for arbitrary $\epsilon > 0$ there is a function x(t, x) defined on the square $[0, 1] \times [0, 1]$ such that x(t, s) represents an extremal point of the unit ball in the space of Lipschitz continuous functions, and the gradient of x(t, s) is equal to 0 except on a set of measure at most ϵ .

1980 Mathematics subject classification (Amer. Math. Soc.): 46 A 55, 52 A 07. Keywords and phrases: convexity, Choquet theory, convex sets in topological vector spaces.

The investigations of Lipschitz observability and theorems concerning forms of optimal observations [1] stimulate investigations of extremal points of the unit ball in the space of Lipschitz functions defined on a metric space Ω with a metric ρ , and with the classical Lipschitz distance

(1)
$$d(f,g) = \sup_{t,t_1 \in \Omega} \frac{\left| \left[f(t) - g(t) \right] - \left[f(t_1) - g(t_1) \right] \right|}{\rho(t,t_1)}.$$

The semimetric d is invariant, and hence it induces a seminorm

(2)
$$||f|| = d(f,0) = \sup_{t,t_1 \in \Omega} \frac{|f(t) - f(t_1)|}{\rho(t,t_1)}.$$

Observe that the semimetric d and the seminorm $\| \|$ do not distinguish the functions which differ by a constant. In fact, we consider the quotient space L/C

^{© 1986} Australian Mathematical Society 0263-6115/86 \$A2.00 + 0.00

of all Lipschitz continuous functions L divided by the space of constant functions C. The seminorm $\| \|$ induces a norm on L/C, and L/C is a Banach space with this norm.

In further considerations it will be easier for us to consider an isomorphic and isometric image of L/C, namely the space L_a , where $a \in \Omega$, of all Lipschitz functions vanishing at a. Equation (2) above defines the isometric norm on L_a .

If Ω is an interval $[\alpha, \beta]$, then each function f belonging to L_a , $\alpha \le a \le \beta$, is differentiable almost everywhere. If f is an extremal point of the unit ball in L_a , then its derivative f(t) has modulus equal to one almost everywhere; |f(t)| = 1 a.e. [1].

It is interesting that a similar theorem does not hold in the case when Ω is the square $[0,1] \times [0,1]$. Of course in this case also, every Lipschitz function is differentiable almost everywhere. However we have

THEOREM 1. For each $\varepsilon > 0$, there is a function $f \in L_a$, being an extremal point of the unit ball of L_a , such that the support of the gradient has Lebesgue measure less than ε ;

$$(3) |\{t: \nabla f|_t \neq 0\}| < \varepsilon,$$

where |E| denotes the two dimensional Lebesgue measure of a set E.

The proof of Theorem 1 is based on the following notions and lemmas. Let Ω be a connected metric space. Let $\{\Omega_{\alpha}\}$ be a covering of Ω , i.e. $\bigcup_{\alpha} \Omega_{\alpha} \supset \Omega$. We say that the covering $\{\Omega_{\alpha}\}$ is *finitely connected* if each of the sets Ω_{α} is connected, and if, for arbitrary t, $\bar{t} \in \Omega$, there is a finite system of sets $\Omega_{\alpha_1}, \ldots, \Omega_{\alpha_n}$ for which there are $t_0 = t$, $t_1, t_2, \ldots, t_n = \bar{t}$ such that $t_{i-1}, t_i \in \Omega_{\alpha_i}$.

LEMMA 1. Let $\{\Omega_{\alpha}\}$ be a finitely connected covering of Ω . Let f be an arbitrary Lipschitz function of seminorm 1 defined on Ω . Suppose that for all α the restriction f to Ω_{α} , $f \mid \Omega_{\alpha}$, is an extremal point of the unit ball of the space of Lipschitz functions defined on Ω_{α} . Then f is an extremal point of the space of Lipschitz functions defined on Ω .

PROOF. Suppose that f is not an extremal point of the unit ball of the space of Lipschitz functions defined on Ω . Then by definition there are two Lipschitz functions f_1 , f_2 with $||f_1|| = ||f_2|| = 1$ such that $f_1 \neq f_2$ and $(f_1 + f_2)/2 = f$. This leads to a contradiction. Take any two points t and \bar{t} such that

(4)
$$f_1(t) - f_2(t) \neq f_1(\bar{t}) - f_2(\bar{t}).$$

Such points must exist since $f_1 \neq f_2$. Since the covering Ω_{α} is finitely connected, there is a system of points $t_0 = t$, $t_1, \ldots, t_n = \overline{t}$ and a system of indices $\alpha_1, \ldots, \alpha_n$

such that t_{i-1} , $t_i \in \Omega_{\alpha_i}$, i = 1, 2, ..., n. Since the restrictions of f to the Ω_{α_i} are extremal points of the unit ball in the space of Lipschitz functions, and since $f_1 \mid \Omega_{\alpha_i}$ and $f_2 \mid \Omega_{\alpha_i}$ have for each α_i a pseudonorm not greater than one, the function $f_1(t) - f_2(t)$ is constant on each Ω_{α_i} . This implies that

$$f_1(t_0) - f_2(t_0) = f_1(t_1) - f_2(t_1) = \cdots = f_1(t_n) - f_2(t_n),$$

and this contradicts (4).

PROOF OF THEOREM 1. Take an arbitrary $\delta > 0$. Now take the Cantor set $K_{\delta} \subset [0,1]$ of measure $1-\delta$. This set we obtain by the classical Cantor construction changed in such a way that, at the *n*th step, we remove from each interval the central interval of length $(\delta/(1+\delta))^n$. The complement of K_{δ} , $G^{\delta} = [0,1] \setminus K_{\delta}$, is an open set of measure equal to δ , and it is dense in [0,1]. Let

$$\Omega = (G^{\delta} \times [0,1]) \cup ([0,1] \times \left[\frac{1}{2} - \delta, \frac{1}{2} + \delta\right]).$$

It is easy to see that the set Ω is connected and dense in the whole square $[0,1] \times [0,1]$. Now we shall define a finitely connected covering in the following way. We enumerate all the components of G^{δ} . They are intervals (a_n, b_n) . Now we define sets

$$\Omega_{1,n} = \left\{ (x,y) \colon a_n < x < b_n, 0 \le y \le \frac{1}{2} - \delta + \frac{1}{2} (b_n - a_n) - \left| x - \frac{a_n + b_n}{2} \right| \right\},\,$$

$$\Omega_{2,n} = \left\{ (x, y) \colon a_n < x < b_n, 1 \ge y \ge \frac{1}{2} + \delta - \frac{1}{2} (b_n - a_n) + \left| x - \frac{a_n + b_n}{2} \right| \right\}$$

and

$$\Omega_0 = \operatorname{cl}\left(\left[0,1\right] \times \left[\frac{1}{2} - \delta, \frac{1}{2} + \delta\right] \setminus \bigcup_{\substack{n=1\\j=1,2}} \Omega_{j,n}\right).$$

Since Ω_0 is closed, the sets

$$\Omega_0$$
, $\Omega_{1,n}$, $\Omega_{2,n}$, $\Omega_{1,2}$, $\Omega_{2,2}$, ...

constitute a finitely connected covering. Now we define a function f(x, y) on Ω in the following way:

$$f(x,y) = \begin{cases} \frac{a_n + b_n}{2} - \left| \frac{a_n + b_n - 2x}{2} \right| & \text{for } (x,y) \in \Omega_{j,n}, \ j = 1, 2, \\ \delta - \left| y - \frac{1}{2} \right| & \text{for } (x,y) \in \Omega_0. \end{cases}$$

It is easy to verify that f(x, y) is a continuous function on Ω and that its restriction to Ω_0 and $\Omega_{j,n}$ is, for each of these sets, an extremal point of the unit ball of the corresponding space of Lipschitz functions. Thus by Lemma 1 it is an

extremal point of the unit ball of the Lipschitz functions defined on Ω . Observe that if $(x, y) \in [0, 1] \times [0, 1]$, and if (x, y) does not belong to Ω , then for any sequence $(x_n, y_n) \in \Omega$ such that (x_n, y_n) tends to (x, y), we have $\lim_{n \to \infty} f(x_n, y_n) = 0$. Thus we can extend the function f from Ω to a continuous function on the square $[0, 1] \times [0, 1]$ by taking

$$\tilde{f}(x,y) = \begin{cases} f(x,y) & \text{for } (x,y) \in \Omega, \\ 0 & \text{for } (x,y) \notin \Omega. \end{cases}$$

Since Ω is dense in $[0,1] \times [0,1]$, the extension is unique, and thus $\tilde{f}(x,y)$ is an extremal point of the unit ball of the Lipschitz functions defined on $[0,1] \times [0,1]$.

Observe that the gradient of $\tilde{f}(x, y)$ vanishes outside Ω , and the set Ω has two dimensional Lebesgue measure less than 3δ . Taking $\delta \leqslant \varepsilon/3$, we obtain the theorem.

References

[1] S. Rolewicz, 'On optimal observability of Lipschitz systems', in Selected topics in operations research and mathematical economics, Lecture Notes in Economics and Mathematical Systems 226, Springer-Verlag, pp. 151-158.

Instytut Matematyczny Polskiej Akademii Nauk, Sniadeckich 8 00 950 Warszawa Poland