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Abstract

It is shown that for arbitrary ¢ > 0 there is a function x(¢, x) defined on the square [0, 1] X [0, 1] such
that x(t,s) represents an extremal point of the unit ball in the space of Lipschitz continuous
functions, and the gradient of x(1,s) is equal to 0 except on a set of measure at most &.
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The investigations of Lipschitz observability and theorems concerning forms of
optimal observations [1] stimulate investigations of extremal points of the unit
ball in the space of Lipschitz functions defined on a metric space £ with a metric
p, and with the classical Lipschitz distance

(1) i(fog) = sup WO =8 =[7(1) (]|

1,€0 P(t’tl)

The semimetric 4 is invariant, and hence it induces a seminorm

@) 1/1=d(7,0) = sup LS|

tneQ p(t,tl)

Observe that the semimetric d and the seminorm || || do not distinguish the
functions which differ by a constant. In fact, we consider the quotient space L/C
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of all Lipschitz continuous functions L divided by the space of constant functions
C. The seminorm || || induces a norm on L/C, and L/C is a Banach space with
this norm.

In further considerations it will be easier for us to consider an isomorphic and
isometric image of L/C, namely the space L,, where a € Q, of all Lipschitz
functions vanishing at a. Equation (2) above defines the isometric norm on L,,.

If Q is an interval [a, B], then each function f belonging to L,, a < a < B, is
differentiable almost everywhere. If f is an extremal point of the unit ball in L,
then its derivative f(¢) has modulus equal to one almost everywhere; |f(¢)| =1
a.e. [1].

It is interesting that a similar theorem does not hold in the case when Q is the
square [0,1] X [0,1]. Of course in this case also, every Lipschitz function is
differentiable almost everywhere. However we have

THEOREM 1. For each & > 0, there is a function f € L, being an extremal point
of the unit ball of L,, such that the support of the gradient has Lebesgue measure
less than &,

(3) [{t: vf),# 0} |<e,

where |E| denotes the two dimensional Lebesgue measure of a set E.

The proof of Theorem 1 is based on the following notions and lemmas. Let Q
be a connected metric space. Let {2, } be a covering of £, i.e.U,Q, D Q. We say
that the covering {Q,} is finitely connected if each of the sets §, is connected,
and if, for arbitrary ¢, 7 € £, there is a finite system of sets Qo+ Qu" for which
there are 1, =1, t;, t5,...,t, = fsuchthatt,_;,1,€Q,.

LEMMA 1. Let {Q,} be a finitely connected covering of Q. Let f be an arbitrary
Lipschitz function of seminorm 1 defined on Q. Suppose that for all a the restriction
ftoQ,, f19,, is an extremal point of the unit ball of the space of Lipschitz functions
defined on Q. Then f is an extremal point of the space of Lipschitz functions defined
on Q.

PROOF. Suppose that f is not an extremal point of the unit ball of the space of
Lipschitz functions defined on . Then by definition there are two Lipschitz
functions f,, f, with ||f,|| = || £zl = 1 such that f, # f, and (f; + f,)/2 = f. This
leads to a contradiction. Take any two points ¢ and ¢ such that

(4) L) = f(6) = 71(1) = £(F).
Such points must exist since f; # f,. Since the covering 2, is finitely connected,
there is a system of points 1, = ¢, #;,..., ¢, = ¢ and a system of indices a, ..., a

n
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such that t,_,, ,€Q,, i=1,2,...,n. Since the restrictions of f to the @, are
extremal points of the unit ball in the space of Lipschitz functions, and since
119, and f, |2, have for each &, a pseudonorm not greater than one, the

function f,(t) — f,() is constant on each @, . This implies that

filte) = K1) = fi(t) = fo(1) = -+ = fi(1,) = £,(1,),
and this contradicts (4).

PROOF OF THEOREM 1. Take an arbitrary 6 > 0. Now take the Cantor set
K5 C [0,1] of measure 1 — . This set we obtain by the classical Cantor construc-
tion changed in such a way that, at the nth step, we remove from each interval the
central interval of length (8/(1 + 8))". The complement of K, G® = [0,1]\ K,
is an open set of measure equal to §, and it is dense in [0, 1}. Let

Q= (6% x[0,1]) u([0,1] x [ - 8,1 + 8]).

It is easy to see that the set € is connected and dense in the whole square
[0,1] X [0,1]. Now we shall define a finitely connected covering in the following
way. We enumerate all the components of G°. They are intervals (a,, b,). Now we
define sets

a +b
ﬂl,ﬁ{(x,y):an<x<b,.,0<y<%—8+%(bn—a,.)—X‘ ¥ "|}’
+ b
92,n={(x,y):a"<x<b,,,1>y>%+8—%(b,,—a,,)+ x—a"2 "}

and

90=c1([o,1]><[%— 4+8\ U 9,)
n=1
=12

J
Since @, is closed, the sets
QO’ Ql.n’ QZ,n’ 91,2’ 92,2’ ne
constitute a finitely connected covering. Now we define a function f(x, y) on £
in the following way:
a,+b,
2

a,+b,—2x
2

for (X, y) = Qj,n’ j = 1’ 2’

8—ly—§| for (x, y) € Q,.

It is easy to verify that f(x, y) is a continuous function on £ and that its
restriction to £, and £ in is, for each of these sets, an extremal point of the unit
ball of the corresponding space of Lipschitz functions. Thus by Lemma 1 it is an
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extremal point of the unit ball of the Lipschitz functions defined on £. Observe
that if (x, y) € [0,1] X [0,1], and if (x, y) does not belong to £, then for any
sequence (x,, y,) € & such that(x,, y,) tends to (x, y), we have lim f(x,, y,) = 0.
Thus we can extend the function f from  to a continuous function on the square
[0,1] % [0, 1] by taking

; _[f(x,p) for(x,y)e€q,
fxy) = {0 for (x, y) & Q.

Since Q is dense in [0,1] X [0, 1], the extension is unique, and thus f(x, y) is an
extremal point of the unit ball of the Lipschitz functions defined on [0, 1] X [0,1].

Observe that the gradient of f (x, y) vanishes outside £, and the set £ has two
dimensional Lebesgue measure less than 38. Taking & < ¢/3, we obtain the
theorem.
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