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Classification of Linear Weighted Graphs
Up to Blowing-Up and Blowing-Down

Daniel Daigle

Abstract. We classify linear weighted graphs up to the blowing-up and blowing-down operations

which are relevant for the study of algebraic surfaces.

The word graph in this paper means a finite undirected graph such that no edge

connects a vertex to itself and at most one edge joins any given pair of vertices.
A weighted graph is a graph in which each vertex is assigned an integer (called its
weight). Two operations are performed on weighted graphs: the blowing-up and
its inverse, the blowing-down. Two weighted graphs are said to be equivalent if one

can be obtained from the other by means of a finite sequence of blowings-up and
blowings-down (see Definitions 1.1–1.2). These weighted graphs and operations are
well known to geometers who study algebraic surfaces. Many problems in the geom-
etry of surfaces can be formulated in graph-theoretic terms and solving these some-

times requires elaborate graph-theoretic considerations. This gives rise to a variety
of questions about weighted graphs, all in connection with the equivalence relation
generated by blowing-up and blowing-down.

The first four sections of the present paper classify linear chains up to equivalence,

where by a linear chain we mean a weighted graph of the form:

r r . . . r

x1 x2 xq
(xi ∈ Z).

In particular Theorem 3.2 shows that each equivalence class of linear chains contains

a canonical form, unique up to an operation which we call transposition; and Corol-
lary 3.4 states that two linear chains are equivalent if and only if they have the same
invariants. The fourth section introduces the notion of prime class and uses it to
express the classification in a very simple form (see Corollary 4.4).

Although this paper is motivated by the theory of algebraic surfaces, we make only
one brief incursion into geometry: Section 5 recalls the geometric interpretation of
weighted graphs and blowing-up, and characterizes the linear chains which occur in
the context of algebraic surfaces. The rest of the paper is pure graph theory, and the

results of Section 5 are not used in other parts of the paper.

The last two sections are concerned with the problem of listing all minimal
weighted graphs equivalent to a given linear chain: the preliminary technical results
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are gathered in Section 6 and the conclusions are given in Section 7. We give a gen-
eral recursive solution and, in some simple cases, an explicit solution. Incidentally,

the cases that we are able to describe explicitely are precisely those which are relevant
for algebraic surfaces.

This paper is essentially a subset of our unpublished [1], with some improvements
and clarifications. Note that [1] is more general, as it classifies weighted forests; how-

ever the classification of linear chains—arguably the most important case—is given
in [1] after a relatively long route, and this is one of the reasons for writing the present
paper. As we wanted this paper to be self-contained we avoided replacing proofs by
references to [1], the only exception being Lemma 6.6: including that proof here

would have required the addition of a substantial amount of material (some version
of Section 6 of [1]); that material is needed for other purposes in [1], but not here.

Remarks Papers [6,7] classify weighted forests up to an equivalence relation weaker
than the one considered here (the relation is generated by blowing-up, blowing-down
and other operations which are not allowed here). Result 3.2.1 of [8] classifies linear
chains but, again, this is relative to a weak equivalence relation. Paper [9] uses the

same equivalence relation as we do, but classifies a set of weighted trees which does
not contain all linear chains.

Proposition 3.2 of [8] almost1 implies the fact (Lemma 2.26) that each linear chain
is equivalent to at least one canonical chain. As we realized a posteriori, there is even

some similarity between the cited result and our method for proving Lemma 2.26.

1 Weighted Graphs

See the introduction for the definition of weighted graph. If G is a weighted graph,
Vtx(G) is its vertex set. If v ∈ Vtx(G) then w(v, G) denotes the weight of v in G;
deg(v, G) denotes the degree of v in G, that is, the number of neighbors of v.

Definition 1.1 We define three types of blowing-up of a weighted graph G.

(i) If v is a vertex of G then the blowing-up of G at v is the weighted graph G ′

obtained from G by adding one vertex e of weight −1, adding one edge joining e to
v, and decreasing the weight of v by 1. (This process is called a blowing-up “at a

vertex”.)

(ii) If ε = {v1, v2} is an edge of G (so v1, v2 are distinct vertices of G), then the
blowing-up of G at ε is the weighted graph G ′ obtained from G by adding one vertex e

of weight−1, deleting the edge ε = {v1, v2}, adding the two edges {v1, e} and {e, v2},
and decreasing the weights of v1 and v2 by 1. (This is called a blowing-up “at an edge”,
or a “subdivisional blowing-up”.)

(iii) The free blowing-up of G is the weighted graph G ′ obtained by taking the

disjoint union of G and of a vertex e of weight −1.

In each of the above three cases, we call e the vertex created by the blowing-up. If
G ′ is a blowing-up of G, then there is a natural way to identify Vtx(G) with a subset of
Vtx(G ′) (whose complement is {e}). It is understood that whenever a blowing-up is

1One also needs Lemma 2.20 for the proof.
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performed, such an injective map Vtx(G) →֒ Vtx(G ′) is chosen. If G ′ is a blowing-up
of G and G ′ ′ is a weighted graph isomorphic to G ′, then G ′ ′ is a blowing-up of G.

Definitions 1.2

(i) A vertex e of a weighted graph G ′ is said to be contractible if the following three
conditions hold:

(a) e has weight −1;
(b) e has at most two neighbors;

(c) if v1 and v2 are distinct neighbors of e, then v1, v2 are not neighbors of each
other.

If e is a contractible vertex of G ′ then G ′ is the blowing-up of some weighted
graph G in such a way that e is the vertex created by this process. Up to iso-
morphism of weighted graphs, G is uniquely determined by G ′ and e. We say

that G is obtained by blowing-down G ′ at e. The blowing-down is the inverse
operation of the blowing-up.

(ii) A weighted graph is minimal if it does not have a contractible vertex.
(iii) Two weighted graphs G and H are equivalent (notation: G ∼ H) if one can

be obtained from the other by a finite sequence of blowings-up and blowings-
down.

Definition 1.3 Given a weighted graph G, consider the real vector space V with
basis Vtx(G) and define a symmetric bilinear form BG : V ×V → R by:

BG(u, v) =







w(u, G) if u = v ∈ Vtx(G),

1 if u, v ∈ Vtx(G) are distinct and joined by an edge,

0 if u, v ∈ Vtx(G) are distinct and not joined by an edge.

One calls BG the intersection form of G. Then define the natural number ‖G‖ =

maxW dim W , where W runs in the set of subspaces of V satisfying

∀x∈W BG(x, x) ≥ 0.

Note that ‖G‖ = 0 if and only if BG is negative definite, in which case we say that G is
negative definite.

Lemma 1.4 For weighted graphs G and G ′, G ∼ G ′
=⇒ ‖G‖ = ‖G ′‖.

Proof See, for instance, [8, 1.14].

Definition 1.5 Consider a weighted graph G and its intersection form BG:

V ×V → R (see Definition 1.3). Let v1, . . . , vn be the distinct vertices of G (enumer-
ated in any order) and let M be the n × n matrix representing BG with respect to the
basis (v1, . . . , vn) of V . That is, Mii = w(vi , G) and if i 6= j, Mi j = 1 (resp. 0) if vi, v j

are neighbors (resp. are not neighbors) in G. Note that det(−M) is independent of
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the choice of an ordering for Vtx(G). One defines the determinant of the weighted
graph G by:

det(G) = det(−M).

Note that det(G) ∈ Z. By convention, the empty graph has determinant 1.

The following is well known, and easily verified.

Lemma 1.6 For weighted graphs G and G ′, G ∼ G ′
=⇒ det(G) = det(G ′).

Remark Without the minus sign in det(−M), Lemma 1.6 would only be true up to

sign.

2 Finite Sequences of Integers

This section classifies finite sequences of integers up to the equivalence relation de-
fined in Definition 2.4 (which of course mimics equivalence of linear chains). From
this, it will be very easy to derive, in the next section, a classification of linear chains.

The material up to Corollary 2.14 is well known when stated for linear chains. The

main results of the section are Theorem 2.28 and Corollary 2.29.

Notation 2.1 If E is a set, then E∗
=

⋃∞
n=0 En denotes the set of finite sequences in

E, including the empty sequence ∅ ∈ E∗. We write A− for the reversal of A ∈ E∗, i.e.,
if A = (a1, . . . , an), then A−

= (an, . . . , a1). We shall consider Z∗ and N∗, where

N = {x ∈ Z | x < −1}.

Definition 2.2 A linear chain is a weighted tree in which every vertex has degree at
most two. An admissible chain is a linear chain in which every weight is strictly less

than −1. The empty graph is an admissible chain. Given an element X = (x1, . . . , xq)
of Z∗, the linear chain

r r . . . r

x1 x2 xq

is denoted [x1, . . . , xq] or [X]. So we distinguish between the graph [X] and the

sequence X and we note that [X] = [X−].

Notation 2.3 For each i ∈ {1, . . . , r}, let Ai be either an integer or an element of

Z∗. We write (A1, . . . , Ar) for the concatenation of A1, . . . , Ar, that is, (A1, . . . , Ar) ∈
Z∗ is a single sequence. Also, we will use superscripts to indicate repetitions. For
instance, if A = (03,−5,−1) ∈ Z∗ and B = (−23, 3,−2) ∈ Z∗, then

(A,−2, B) = (03,−5,−1,−2,−23, 3,−2)

= (0, 0, 0,−5,−1,−2,−2,−2,−2, 3,−2).

Superscripts occurring in sequences (or linear chains) should always be interpreted
in this way, never as exponents.
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Definition 2.4 If X = (x1, . . . , xn) ∈ Z∗ and X 6= ∅, then any one of the following
sequences X ′ ∈ Z∗ is called a blowing-up of X:

• X ′
= (−1, x1 − 1, x2, . . . , xn);

• X ′
= (x1, . . . , xi−1, xi − 1,−1, xi+1 − 1, xi+2, . . . , xn) (where 1 ≤ i < n);

• X ′
= (x1, . . . , xn−1, xn − 1,−1).

Moreover, we regard the one-term sequence (−1) as a blowing-up of the empty se-
quence ∅. If X ′ is a blowing-up of X, we also say that X is a blowing-down of X ′.

Two elements of Z∗ are said to be equivalent if one can be obtained from the other
by a finite sequence of blowings-up and blowings-down. This defines an equivalence
relation “∼” on the set Z∗ and we write Z∗/∼ for the set of equivalence classes. We
also consider the partial order relation “≤” on the set Z∗ which is generated by the

condition

X ≤ X ′ whenever X ′ is a blowing-up of X.

Thus a minimal element of Z∗ is a sequence which cannot be blown-down, i.e., an
element of (Z \ {−1})∗.

The exact relation between equivalence of sequences (Definition 2.4) and equiv-

alence of linear chains (Definitions 1.2) is given by Lemma 2.6, below. But first we
need to point out the following.

Lemma 2.5 Let L and L ′ be equivalent linear chains. Then there exists a sequence of
blowings-up and blowings-down which transforms L into L ′ and which has the addi-
tional property that every graph which occurs in the sequence is itself a linear chain.

This fact is obtained in [1] as an immediate consequence of a more general result

(see [1, 3.3]). However, Lemma 2.5 is rather trivial and we leave it without proof.

Lemma 2.6 Given X,Y ∈ Z∗,

(i) X ∼ Y ⇐⇒ X− ∼ Y−;
(ii) [X] ∼ [Y ] ⇐⇒ X ∼ Y or X ∼ Y−.

Proof The only nontrivial claim is implication “⇒” in assertion (ii); for proving
this implication we may, by Lemma 2.5, restrict ourselves to the case where [Y ] is
obtained from [X] by blowing-up once; then it is clear that X ∼ Y or X ∼ Y−.

Refer to Definitions 1.3 and 1.5 for the following.

Definition 2.7 Given X ∈ Z∗, we define det(X) = det([X]) and ‖X‖ = ‖[X]‖.

Lemma 2.8 If X,Y ∈ Z∗ satisfy X ∼ Y , then det(X) = det(Y ) and ‖X‖ = ‖Y‖.

Proof Follows from Lemma 2.6, Lemma 1.4 and Lemma 1.6.

By Lemma 2.8 we may define det(C) and ‖C‖ for any equivalence class C ∈ Z∗/∼
(the definitions are the obvious ones).
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Notation 2.9 Given X = (x1, . . . , xn) ∈ Z∗, define:

deti(X) =







det(xi+1, . . . , xn) if 0 ≤ i < n,

1 if i = n,

0 if i > n;

det∗(X) =







det(x2, . . . , xn−1) if n > 2,

1 if n = 2,

0 if n < 2.

In particular, note that det0(X) = det(X). The sequence X determines the ordered
pair Sub(X) = (det1(X), det1(X−)) which is an element of the Z-module Z×Z. This
gives in particular Sub(∅) = (0, 0) and if a ∈ Z, Sub((a)) = (1, 1). Finally, let
d = det(X) and define the pair

Sub(X) = (π(det1(X)), π(det1(X−))) ∈ Z/dZ × Z/dZ,

where π : Z → Z/dZ is the canonical epimorphism and where we regard Z/dZ×Z/dZ

as a Z-module.

Lemmas 2.10–2.13 and Corollary 2.14 are, in one form or another, contained in

[4]. We include the proofs for the reader’s convenience.

Lemma 2.10 If X = (x1, . . . , xn) ∈ Z∗ and n ≥ 1, then

deti(X) = (−xi+1) deti+1(X) − deti+2(X) (0 ≤ i < n).

In particular, det X = (−x1) det1(X) − det2(X).

Proof Let v1, . . . , vn be the vertices of G = [X] = [x1, . . . , xn], where the labelling
is such that w(vi , G) = xi and {vi, vi+1} is an edge for every i. Let M be as in 1.5. The
Laplace expansion of det(−M) along the first row gives det0(X) = (−x1) det1(X) −
det2(X). Applying this formula to (xi+1, . . . , xn) gives the desired result.

Lemma 2.11 The assignment X 7→ (det(X), det1(X)) is a well-defined bijection:

N∗ −→ {(r0, r1) ∈ N
2 | 0 ≤ r1 < r0 and gcd(r0, r1) = 1}.

Proof Consider X = (−q1, . . . ,−qn) ∈ N∗, where qi ≥ 2 for all i. Define ri =

deti(X); then Lemma 2.10 gives

r0 = q1r1 − r2,(2.1)

r1 = q2r2 − r3,(2.2)

...

rn−2 = qn−1rn−1 − rn,(2.3)

rn−1 = qnrn − rn+1,(2.4)
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where rn+1 = 0 and rn = 1 by definition of deti(X). Then (2.4) gives rn−1 > rn and
by descending induction we get

(2.5) 0 = rn+1 < rn < rn−1 < · · · < r1 < r0 = det(X).

Thus 0 ≤ r1 < r0 and gcd(r0, r1) = 1. Moreover, we may interpret (2.1), (2.2), (2.3),

and (2.4) together with (2.5) as the “outer” Euclidean algorithm of the pair (r0, r1),
which shows that the sequence (q1, . . . , qn), and hence X, is completely determined
by (det(X), det1(X)). Bijectivity follows from this remark.

Lemma 2.12 If X ∈ Z∗, d = det(X) and (x, y) = Sub(X), then xy ≡ 1 (mod d).

Proof The result holds trivially when X = ∅. For X 6= ∅, we prove

(2.6) xy = 1 + d det∗(X).

Write X = (x1, . . . , xn). We leave the cases n = 1, 2 to the reader. Assume that n > 2

and that (2.6) holds for the shorter sequence (x2, . . . , xn), i.e., we are assuming that

(2.7) det2(X) det∗(X) = 1 + xδ,

where δ = det∗(x2, . . . , xn). We obtain d = −x1x − det2(X) by Lemma 2.10, so

(2.8) det2(X) = −x1x − d.

Applying Lemma 2.10 to (x1, . . . , xn−1) gives y = −x1 det∗(X) − δ and hence

(2.9) δ = −x1 det∗(X) − y.

Substituting (2.8) and (2.9) in (2.7) yields the desired conclusion (2.6).

Lemma 2.13 Suppose that A, B ∈ Z∗ satisfy A ∼ B and let d = det(A) = det(B).

Then there exists (x, y) ∈ Z2 such that

(2.10) Sub(A) = Sub(B) + d(x, y).

Proof Note that det(A) = det(B) by Lemma 2.8. Since A ∼ B, performing a certain
sequence of blowings-up and blowings-down on A produces B; if the same sequence
of operations is performed on (0, A), then (obviously) we obtain (x, B) for some

x ∈ Z, which shows that (0, A) ∼ (x, B). By the same argument, (A, 0) ∼ (B, y)
for some y ∈ Z. By Lemma 2.10, we have det(0, A) = − det1(A) and det(x, B) =

−xd − det1(B); since (0, A) ∼ (x, B) implies det(0, A) = det(x, B), we obtain
det1(A) = det1(B) + dx. Similarly, we have (0, A−) = (A, 0)− ∼ (B, y)− = (y, B−),

so det(0, A−) = det(y, B−) and consequently det1(A−) = det1(B−) + dy. So (x, y)
satisfies (2.10).

Corollary 2.14 If A, B ∈ Z∗ and A ∼ B, then Sub(A) = Sub(B).
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Proof This is an obvious consequence of Lemma 2.13.

We shall now develop a classification of sequences up to equivalence. Sequences
of the form (02i , A) (see Notation 2.3) play an important role in that classification.

Lemma 2.15 Let i ∈ N and A ∈ Z∗.

(i) det(02i, A) = (−1)i det(A);
(ii) Sub(02i, A) = (−1)i Sub(A).

Proof We may assume that i > 0; then Lemma 2.10 gives

det(02i, A) = 0 det1(02i , A) − det2(02i, A) = − det(02i−2, A),

and assertion (i) follows by induction. We also have:

(2.11) det1(02i, A) = det(02i−2, 0, A)
(1)
= (−1)i−1 det(0, A)

2.10
= (−1)i−1(0 det(A) − det1(A)) = (−1)i det1(A)

so, to prove (ii), there remains only to show that

(2.12) det1((02i , A)−) = (−1)i det1(A−).

If A = ∅ then (2.12) reads det(02i−1) = 0, which is true by assertion (i). So we may

assume that A = (a1, . . . , an) with n ≥ 1, in which case

det1

(
(02i, A)−

)
= det(an−1, . . . , a1, 02i) = det(02i , a1, . . . , an−1)

(1)
= (−1)i det(a1, . . . , an−1) = (−1)i det(an−1, . . . , a1) = (−1)i det1(A−).

So (2.12) holds and assertion (ii) follows from (2.11) and (2.12).

Lemma 2.16 If i ∈ N and A ∈ Z∗, then ‖(02i, A)‖ = i + ‖A‖.

Proof This is an exercise in diagonalization. It suffices to prove that ‖(0, 0, A)‖ =

1 + ‖A‖ for every A ∈ Z∗. This is obvious if A = ∅, so assume that A 6= ∅ and write
A = (a1, . . . , an). Consider the linear chain

L = [0, 0, A] =

q q q . . . q
0 0 a1 an

u1 u2 v1 vn

and let V be the real vector space with basis Vtx(L). Then the matrix representing
BL with respect to the basis (u1, u2, v1 − u1, v2, . . . , vn) of V is:

(2.13)










0 1 0 · · · 0
1 0 0 · · · 0

0 0
...

... M

0 0









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where M is the n × n matrix given by Mii = ai , Mi j = 1 if |i − j| = 1 and Mi j = 0
if |i − j| > 1, that is, M is the matrix representing the intersection form of the linear

chain [A]. Now
(

0 1
1 0

)
can be diagonalized to

(
1 0
0 −1

)
, and we conclude that a diagonal

matrix congruent to (2.13) has 1 +‖A‖ nonnegative entries on its main diagonal, i.e.,
‖L‖ = 1 + ‖A‖.

Lemma 2.17 Let a, b, x ∈ Z and A, B ∈ Z∗. Then

(A, a, 0, b, B) ∼ (A, a − x, 0, b + x, B) ∼ (A, 0, 0, a + b, B).

Proof (A, a, 0, b, B) ∼ (A, a− 1,−1,−1, b, B) ∼ (A, a− 1, 0, b + 1, B), from which
the result follows.

Lemma 2.18 Let n ∈ N and A, B,C ∈ Z∗. Then (A, B, 02n,C) ∼ (A, 02n, B,C).

Proof If A,C ∈ Z∗ and b ∈ Z then by Lemma 2.17

(A, b, 0, 0,C) ∼ (A, b − b, 0, 0 + b,C) = (A, 0, 0, b,C),

from which the result follows.

Lemma 2.19 Let n ∈ N, x, y ∈ Z and A ∈ Z∗. Then (02n+1, x, A) ∼ (02n+1, y, A).

Proof We first consider the case n = 0: (0, x, A) ∼ (−1,−1, x − 1, A) ∼ (0, x −
1, A), from which we deduce (0, x, A) ∼ (0, y, A). Now the general case:

(02n+1, x, A)
2.18
∼ (0, x, 02n, A)

(n = 0)
∼ (0, y, 02n, A)

2.18
∼ (02n+1, y, A).

Lemma 2.20 Let n ∈ N and A, B ∈ Z∗. Then

A ∼ B =⇒ (02n, A) ∼ (02n, B).

Remark We will see in Corollary 2.30 that the converse of Lemma 2.20 is also true.

Proof of Lemma 2.20 We may assume that n ≥ 1. If A ∼ B, then performing a
certain sequence of blowings-up and blowings-down on A produces B; if the same
sequence of operations is performed on (02n, A) = (02n−1, 0, A), then we obtain
(02n−1, x, B) for some x ∈ Z, i.e., only the rightmost zero in 02n is affected. So

(02n, A) ∼ (02n−1, x, B)
2.19
∼ (02n−1, 0, B) = (02n, B).

Definition 2.21 Let B = (b1, . . . , bn) ∈ Z∗.

(i) Given x ∈ Z, define xB = (0, x, B) = (0, x, b1, . . . , bn) ∈ Z∗ and Bx =

(B, x, 0) = (b1, . . . , bn, x, 0) ∈ Z∗.

https://doi.org/10.4153/CJM-2008-003-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-003-2


Classification of Linear Weighted Graphs 73

(ii) Suppose that B 6= ∅. Given i ∈ {1, . . . , n} and x, y ∈ Z such that x + y = bi ,
define B(i;x,y) = (b1, . . . , bi−1, x, 0, y, bi+1, . . . , bn) ∈ Z∗.

Definition 2.22 Given a minimal element M = (m1, . . . , mk) of Z∗, let M⊕ be the
set of sequences Z ∈ Z∗ which can be constructed in one of the following ways.

(i) Pick x ∈ Z and let Z be the unique minimal sequence such that Z ≤ xM.
(ii) Pick x ∈ Z and let Z be the unique minimal sequence such that Z ≤ Mx.
(iii) Assuming that M 6= ∅, pick j ∈ {1, . . . , k} and x, y ∈ Z such that x + y = m j

and let Z be the unique minimal sequence such that Z ≤ M( j;x,y).

(iv) Pick M ′
= (µ1, . . . , µℓ) such that M ′ ≥ M and exactly one term µ j is equal to

−1; pick x, y ∈ Z \ {−1} such that x + y = −1 and let Z = M ′
( j;x,y).

Note that each element of M⊕ is a minimal element of Z∗.

Lemma 2.23 If M is a minimal element of Z∗ and Z ∈ M⊕, then Z ∼ (0, 0, M).
Moreover, det Z = − det M and ‖Z‖ = ‖M‖ + 1.

Proof By definition of M⊕, one of the following holds:

Z ≤ xM, Z ≤ Mx, Z ≤ M( j;x,y) or Z = M ′
( j;x,y) where M ′ ∼ M.

Consequently, one of the following holds:

Z ∼ xM, Z ∼ Mx or Z ∼ M ′
( j;x,y) where M ′ ∼ M.

By Lemma 2.19, xM = (0, x, M) ∼ (0, 0, M). Since X ∼ Y implies X− ∼ Y−, we
also have Mx = (x(M−))− ∼ (0, 0, M−)− = (M, 0, 0) ∼ (0, 0, M) by Lemma 2.18.

Let M ′
= (b1, . . . , bm) be any nonempty sequence equivalent to M and let j ∈

{1, . . . , m} and x, y ∈ Z be such that x + y = b j ; then

M ′
( j;x,y)

= (b1, . . . , b j−1, x, 0, y, b j+1, . . . , bm)
2.17
∼ (b1, . . . , b j−1, 0, 0, x + y, b j+1, . . . , bm)

= (b1, . . . , b j−1, 0, 0, b j, b j+1, . . . , bm)
2.18
∼ (0, 0, M ′)

2.20
∼ (0, 0, M).

Thus Z ∼ (0, 0, M) whenever Z ∈ M⊕. By Lemma 2.15 and Lemma 2.16 we get
det Z = − det M and ‖Z‖ = ‖M‖ + 1.

Proposition 2.24 Let Z be a minimal element of Z∗ such that ‖Z‖ > 0 and Z 6= (0).
Then Z ∈ M⊕ for some minimal element M of Z∗.

Proof Assume that Z = (z1, . . . , zn) is minimal, ‖Z‖ > 0 and Z 6= (0). In partic-

ular, ‖Z‖ > 0 implies that zi ≥ −1 for some i; so by minimality of Z there exists i
such that zi ≥ 0. If zi = 0 for some i, we distinguish three cases:

(i) If z1 = 0, then since Z 6= (0), we have Z = (0, x, M) = xM for some M ∈ Z∗

and x ∈ Z; then M is minimal and Z ∈ M⊕.
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(ii) If zn = 0, then, similarly, Z = Mx for some M ∈ Z∗ and x ∈ Z; then M is
minimal and Z ∈ M⊕.

(iii) If zi = 0 for some i such that 1 < i < n, then

Z = (z1, . . . , zi−1, 0, zi+1, . . . , zn) = B(i−1;zi−1,zi+1),

where B = (z1, . . . , zi−2, zi−1 + zi+1, zi+2, . . . , zn). If B is minimal, then Z ∈ M⊕

where M = B. If B is not minimal, then its (i − 1)-th term (zi−1 + zi+1) is the only
one which is equal to −1; we have B ≥ M for some minimal M, then Z ∈ M⊕.

From now on, assume that z j 6= 0 for all j ∈ {1, . . . , n}. Then zi > 0 for some i
and we have four cases.

(iv) If Z = (p) where p > 0, then Z ≤ (0,−1,−2p−1) = −1M where M =

(−2p−1) is minimal; then Z ∈ M⊕.

(v) If z1 > 0 and n > 1, then Z ≤ (0,−1,−2z1−1, z2 − 1, z3, . . . , zn) = −1M
where M = (−2z1−1, z2 − 1, z3, . . . , zn) is minimal; then Z ∈ M⊕.

(vi) If zn > 0 and n > 1, then Z ≤ (z1, . . . , zn−2, zn−1 − 1,−2zn−1,−1, 0) = M−1

where M = (z1, . . . , zn−2, zn−1 − 1,−2zn−1) is minimal; then Z ∈ M⊕.

(vii) If zi > 0 and 1 < i < n, then

Z ≤ (z1, . . . , zi−1, 0,−1,−2zi−1, zi+1 − 1, zi+2, . . . , zn) = M(i−1;zi−1,−1),

where M = (z1, . . . , zi−2, zi−1 − 1,−2zi−1, zi+1 − 1, zi+2, . . . , zn) is minimal; then
Z ∈ M⊕.

Definition 2.25 An element C of Z∗ is a canonical sequence if it has the form C =

(0r, A), where r ∈ N, A ∈ N∗ and if A 6= ∅ then r is even.

We now proceed to show that each element of Z∗ is equivalent to a unique canon-
ical sequence. The proof consists of Lemmas 2.26 and 2.27, below.

Lemma 2.26 Every element of Z∗ is equivalent to a canonical sequence.

Proof It suffices to show that every minimal element Z of Z∗ is equivalent to a
canonical sequence. We proceed by induction on ‖Z‖. If ‖Z‖ = 0, then Z ∈ N∗, so
Z itself is canonical. If ‖Z‖ > 0 then, by Proposition 2.24, either Z = (0) or Z ∈ M⊕

for some minimal element M of Z∗. In the first case, Z is canonical and we are done.
In the second case, Lemma 2.23 gives ‖M‖ < ‖Z‖ so we may assume by induction
that M is equivalent to a canonical sequence C ; then Z ∼ (0, 0, M) ∼ (0, 0,C) by
Lemma 2.23 and Lemma 2.20, and clearly (0, 0,C) is canonical.

Lemma 2.27 Let L ∈ Z∗, let n = ‖L‖ and let d be the absolute value of det(L).
If (0r, A) (where r ∈ N and A ∈ N∗) is a canonical sequence equivalent to L, then

(i) if d = 0, then r = 2n − 1 and A = ∅;

(ii) if d 6= 0, then r = 2n and A is the unique element of N∗ which satisfies

det(A) = d and Sub(A) = (−1)n Sub(L).
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In particular, r and A are uniquely determined by L.

Proof The claim that r and A are uniquely determined by L is obvious in case (i),
and follows from Lemma 2.11 in case (ii). Consider any canonical sequence (0r, A)
equivalent to L; we have r ∈ N, A ∈ N∗, and if A 6= ∅, then r is even. To prove (i)
and (ii), it suffices to show

(i ′) If r is odd, then d = 0 and r = 2n − 1.

(ii ′) If r is even, then det(A) = d 6= 0, r = 2n and Sub(A) = (−1)n Sub(L).

If r is odd, then A = ∅; writing r = 2i + 1, we get ±d = det(L) = det(02i+1) =

det(02i, 0) = (−1)i det(0) = 0 by Lemma 2.15 and

n = ‖L‖ = ‖(02i+1)‖ = i + ‖(0)‖ = i + 1

by Lemma 2.16. This proves (i ′).
If r is even, then Lemma 2.16 gives n = ‖L‖ = ‖(0r, A)‖ =

r
2

+ ‖A‖ =
r
2
, so

r = 2n. Then Lemma 2.15 gives ±d = det(L) = det(02n, A) = (−1)n det(A); since

det(A) > 0 by Lemma 2.11, we obtain det(A) = d 6= 0. Since (02n, A) ∼ L, Lemma
2.13 implies that there exist (u, v) ∈ Z2 such that Sub(02n, A) = Sub(L) + d(u, v). On
the other hand, Lemma 2.15 gives Sub(A) = (−1)n Sub(02n, A), so

Sub(A) = (−1)n(Sub(L) + d(u, v)).

It follows that Sub(A) = (−1)n Sub(L) and that (ii ′) is true.

As an immediate consequence of Lemmas 2.26 and 2.27, we obtain the following

fundamental result.

Theorem 2.28 Each element of Z∗ is equivalent to a unique canonical sequence.

Corollary 2.29 For L, L ′ ∈ Z∗, the following are equivalent:

(i) L ∼ L ′;
(ii) ‖L‖ = ‖L ′‖, det(L) = det(L ′) and Sub(L) = Sub(L ′).

Proof (i) implies (ii) by Lemma 2.8 and Corollary 2.14, and (ii) implies (i) by
Lemma 2.27.

Remark Note the following consequence of Lemma 2.27:

If L ∈ Z∗ and det(L) = 0 then L ∼ (02i+1) for some i ∈ N.

Remark One can state some variants of Corollary 2.29, for instance:
• Suppose that L, L ′ ∈ Z∗ satisfy det(L) = 0 = det(L ′). Then

L ∼ L ′ ⇐⇒ ‖L‖ = ‖L ′‖.

https://doi.org/10.4153/CJM-2008-003-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-003-2


76 D. Daigle

• Suppose that L, L ′ ∈ Z∗ satisfy det(L) = d = det(L ′) and ‖L‖ = ‖L ′‖. Then

L ∼ L ′ ⇐⇒ det1(L) ≡ det1(L ′) (mod d).

We may now prove the converse of Lemma 2.20.

Corollary 2.30 Let n ∈ N and A, B ∈ Z∗. Then

A ∼ B ⇐⇒ (02n, A) ∼ (02n, B).

Proof Implication “⇒” is Lemma 2.20. Conversely, if (02n, A) ∼ (02n, B), then

‖A‖
2.16
= −n + ‖(02n, A)‖

2.29
= −n + ‖(02n, B)‖

2.16
= ‖B‖,

det A
2.15
= (−1)n det(02n, A)

2.29
= (−1)n det(02n, B)

2.15
= det B,

Sub(A)
2.15
= (−1)n Sub(02n, A)

2.29
= (−1)n Sub(02n, B)

2.15
= Sub(B),

so we obtain A ∼ B by Corollary 2.29.

Definition 2.31 Let C = (0r, A) ∈ Z∗ be a canonical sequence (where r ∈ N and
A ∈ N∗). The transpose Ct of C is defined by Ct

= (0r, A−). Note that Ct is a

canonical sequence.

Lemma 2.32 Let X ∈ Z∗. If C is the unique canonical sequence equivalent to X, then
Ct is the unique canonical sequence equivalent to X−.

Proof Since X− ∼ C−, it suffices to show that C− ∼ Ct . Write C = (0r, A) with

A ∈ N∗. If r is odd, then A = ∅ and the result holds trivially. Assume that r is even.
Then

C−
= (0r, A)− = (A−, 0r)

2.18
∼ (0r, A−) = Ct .

3 Classification of Linear Chains

This section reformulates Theorem 2.28 and Corollary 2.29 in terms of linear chains.

Definition 3.1 By a canonical chain, we mean a linear chain of the form [L] where
L ∈ Z∗ is a canonical sequence. The transpose Lt of a canonical chain L is defined by
Lt

= [Lt ] where L ∈ Z∗ is a canonical sequence satisfying L = [L] and where Lt was

defined in Definition 2.31. Note that Lt is a canonical chain.

Remark The linear chain Lt is well defined even when L is not uniquely determined
by L. Indeed, if L and L ′ are distinct canonical sequences such that [L] = L = [L ′],
then L ∈ N∗ and L ′

= L−
= Lt , so [Lt ] = [L−] = L and [(L ′)t ] = [L] = L, so Lt is

well defined and equal to L.
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Concretely, a linear chain is canonical if it is [0r] with r odd or if it has the form

(3.1)
q . . . q q . . . q

0 0 a1 an

︸ ︷︷ ︸

r vertices
(r ≥ 0 is even, n ≥ 0 and ∀i ai ≤ −2).

The transpose of [0r] is the same graph [0r] and the transpose of (3.1) is:

q . . . q q . . . q
0 0 an a1

︸ ︷︷ ︸

r vertices

.

As a corollary to the classification of sequences, we obtain the following.

Theorem 3.2 Every linear chain is equivalent to a canonical chain. Moreover, if L

and L ′ are canonical chains, then

L ∼ L ′ ⇐⇒ L ′ ∈
{

L, Lt
}

.

Proof In view of Lemma 2.6, this is a corollary to Theorem 2.28 and Lemma 2.32.

For the next result, we need the following.

Definition 3.3 Let L be a linear chain. Define a subset Sub(L) of Z as follows:
choose L ∈ Z∗ such that L = [L], let (x, y) = Sub(L) ∈ Z × Z and set

Sub(L) = {x, y}.

We also define the subset Sub(L) of Z/dZ, where d = det(L), by taking the image of

Sub(L) via the canonical epimorphism Z → Z/dZ.

Corollary 3.4 For linear chains L and L ′, the following are equivalent.

(i) L ∼ L ′;

(ii) ‖L‖ = ‖L ′‖, det L = det L ′ and Sub(L) ∩ Sub(L ′) 6= ∅;
(iii) ‖L‖ = ‖L ′‖, det L = det L ′ and Sub(L) = Sub(L ′).

Proof Follows immediately from Corollary 2.29. Note that the condition Sub(L) ∩
Sub(L ′) 6= ∅ is equivalent to Sub(L) = Sub(L ′) by Lemma 2.12.

4 Prime Classes of Sequences

Let Z∗/∼ denote the set of equivalence classes of sequences. Given C ∈ Z∗/∼, let
min C = {M ∈ C | M is a minimal element of Z∗} denote the set of minimal ele-
ments of C (see Definition 2.4 for the notion of minimal sequence).

Recall that if M ∈ Z∗ is a minimal sequence, then M⊕ ⊂ Z∗ is a nonempty set of
minimal sequences (see Definition 2.22).

Definition 4.1 For each C ∈ Z∗/∼ we define an element C⊕ of Z∗/∼ in two ways:
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(i) Pick a minimal element M of C, pick X ∈ M⊕ and let C⊕ be the class of X.
(ii) Pick any X ∈ C and let C⊕ be the class of (0, 0, X).

The two definitions are equivalent (and logically sound) by Lemma 2.23 and Corol-

lary 2.30. Corollary 2.30 also gives:

(4.1) C 7−→ C⊕is an injective map from Z
∗/∼ to itself.

Note that ‖C⊕‖ = 1 + ‖C‖ by Lemma 2.16. We call C⊕ the successor of C. If C = C
⊕
1

for some C1, then C1 is unique by (4.1); in this case we say that C has a predecessor

and we call C1 the predecessor of C.

Remark The symbol U⊕ has two meanings, depending on the nature of U .

(i) If U ∈ Z∗ is a minimal sequence, then U⊕ is the set of minimal sequences
defined in Definition 2.22;

(ii) if U ∈ Z∗/∼ is an equivalence class of sequences, then U⊕ ∈ Z∗/∼ is another

equivalence class of sequences, as defined in Definition 4.1.

Lemma 4.2 For an element C of Z∗/∼, the following are equivalent:

(i) min C is a singleton;

(ii) min C is a finite set;
(iii) the canonical element of C is either (0) or an element of N∗;
(iv) C does not have a predecessor.

Proof Note that ¬(ii) ⇒ ¬(i) is trivial; we prove ¬(i) ⇒ ¬(iv) ⇒ ¬(iii) ⇒ ¬(ii).
If ‖C‖ = 0 then the canonical element of C is a sequence X ∈ N∗; clearly, X is

then the unique minimal element of C, so the condition ‖C‖ = 0 implies (i).
Hence, if (i) is false then ‖C‖ > 0; since min C has more than one element, we

may pick a minimal X ∈ C such that X 6= (0); then Proposition 2.24 gives X ∈ M⊕

for some minimal element M of Z∗. Thus (iv) is false.
If (iv) is false, then we may consider the canonical element C of the predecessor of

C; then (0, 0,C) is the canonical element of C, so (iii) is false.

If (iii) is false, then the canonical element (0r, A) of C (where r ∈ N and A ∈ N∗)
satisfies r ≥ 2. By Lemma 2.19, (0, x, 0r−2, A) ∈ min C for every x ∈ Z \ {−1}, so
(ii) is false.

Definition 4.3 A prime class is an element C of Z∗/∼ which satisfies conditions
(i)–(iv) of Lemma 4.2.

Remark All prime classes are known explicitly, by condition (iii) of Lemma 4.2.

We now give a remarkably simple formulation of the classification of linear chains.
Given C ∈ Z∗/∼ and n ∈ N, let C⊕n ∈ Z∗/∼ be the equivalence class of (02n, X),
where X is an arbitrary element of C. Thus C⊕0

= C, C⊕1
= C⊕, C⊕2

= (C⊕)⊕, etc.
Then we note that Theorem 2.28 implies the following.
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Corollary 4.4 If P ⊂ Z∗/∼ denotes the set of prime classes, then the map

P × N −→ Z∗/∼
(C, n) 7−→ C⊕n

is bijective.

5 Geometric Weighted Graphs

We recall the classical notion of the dual graph of a divisor on an algebraic surface.
Then we characterize the linear chains which can arise as dual graphs.

Definition 5.1 Let S be a nonsingular projective algebraic surface (over some alge-
braically closed field). By an SNC-divisor of S we mean a reduced effective divisor of
S, say D =

∑n
i=1 Ci where C1, . . . ,Cn are distinct irreducible curves on S, satisfying

the following conditions:
• each Ci is a nonsingular curve;
• if i 6= j then the intersection number Ci ·C j is 0 or 1;
• if i, j, k are distinct then Ci ∩C j ∩Ck = ∅.

Given an SNC-divisor D =

∑n
i=1 Ci of S, one defines a weighted graph G(D, S) by

stipulating the following:
• the vertices of G(D, S) are C1, . . . ,Cn;
• distinct vertices Ci,C j are joined by an edge if and only if Ci ∩C j 6= ∅;
• the weight of the vertex Ci is the self-intersection number C2

i of the curve Ci .

The weighted graph G(D, S) is called the dual graph of D in S.

Remark Let D be an SNC-divisor of a nonsingular projective surface S, let π : S ′ → S
be the blowing-up of S at a point P ∈ S and let D ′ be the unique SNC-divisor of S ′

whose support is equal to π−1
(
{P} ∪ supp(D)

)
. Then G(D ′, S ′) is a blowing-up of

G(D, S). The exceptional curve E = π−1(P) is an irreducible component of D ′ and
hence is a vertex of G(D ′, S ′); in the terminology of Definition 1.1, E is in fact the
vertex which is created by the blowing-up of G(D, S). Moreover, if we write D =
∑n

i=1 Ci , then
• if P belongs to exactly one irreducible component Ci of D, then G(D ′, S ′) is the

blowing-up of G(D, S) at the vertex Ci ;
• if P belongs to Ci and C j where i 6= j (so Ci ∩ C j = {P}), then G(D ′, S ′) is the

blowing-up of G(D, S) at the edge {Ci ,C j};
• if P 6∈ supp(D), then G(D ′, S ′) is the free blowing-up of G(D, S).

Remark If D ′ is an SNC-divisor of a nonsingular projective surface S ′ and E is a

contractible vertex of G(D ′, S ′), then we may blow-down the graph G(D ′, S ′) at the
vertex E, and this graph-theoretic operation can be realized geometrically if and only
if the curve E is rational. Indeed, if E is a rational curve then it can be shrunk to
a smooth point; what we mean by this is that there exists a nonsingular projective
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surface S such that the blowing-up of S at a suitable point P ∈ S is S ′ and the excep-
tional curve is E; if π : S ′ → S is this blowing-up morphism, then there is a unique

SNC-divisor D of S satisfying π(supp D ′) = {P} ∪ supp D. Then G(D, S) is the
blowing-down of G(D ′, S ′) at the vertex E.

Definition 5.2 A weighted graph G is said to be geometric if it is isomorphic to
G(D, S) for some pair (D, S), where:
• S is a smooth projective algebraic surface over an algebraically closed field;
• D is an SNC-divisor of S and every irreducible component of D is a rational curve.

Proposition 5.4, below, states (in particular) that a linear chain is geometric if and
only if it is equivalent to one of the following:

(5.1) q
0

q q q
0 0 0

q . . . q

a1 an
q q q . . . q

0 0 a1 an

where in the last two graphs n is any nonnegative integer and a1, . . . , an are any inte-

gers satisfying ai ≤ −2 for all i. This claim, and more generally the fact that the first
three conditions of Proposition 5.4 are equivalent, was at least partially known prior
to this work (compare, for instance, [8, 3.2.4]), but we do not know a suitable refer-
ence so we shall give a proof. The main novelty in Proposition 5.4 is the observation

that conditions (i) and (iv) are equivalent, which can be paraphrased as follows:

The prime classes and their immediate successors give exactly the set of geometric

linear chains.

Also note that the weighted graphs pictured in (5.1) are canonical chains, by Def-

inition 3.1. So, by Theorem 3.2, we immediately know when two such chains are
equivalent.

The following is needed for proving Proposition 5.4.

Lemma 5.3 Let G be a geometric weighted graph.

(i) ‖G‖ ≤ 1 or det(G) = 0.

(ii) If G ′ ∼ G then G ′ is geometric.
(iii) Every induced subgraph of G is geometric.
(iv) Let G ′ be a weighted graph with the same underlying graph as G and such that

w(v, G ′) ≤ w(v, G) holds for every vertex v. Then G ′ is geometric.

Note that a subgraph G ′ of a graph G is induced if every edge of G which has its
two endpoints in G ′ is an edge of G ′. Lemma 5.3 is well known. (The first assertion

is a consequence of the Hodge index theorem, see, for instance, [8]; (ii) and (iii) are
trivial; and (iv) follows from (ii) and (iii).)

Proposition 5.4 For a linear chain L, the following conditions are equivalent:

(i) L is geometric;
(ii) ‖L‖ ≤ 1 or L ∼ [0, 0, 0];
(iii) L is equivalent to either [0], [0, 0, 0], [A], or [0, 0, A] (for some A ∈ N∗);
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(iv) Let X ∈ Z∗ be such that L = [X]; then the equivalence class of X is either a prime
class or the successor of a prime class.

Proof By Lemma 4.2, (iii) is equivalent to (iv); we prove (i) ⇒ (ii) ⇒ (iii) ⇒ (i).
Suppose that L is geometric and that det(L) = 0. By Lemma 2.27, L ∼ [02n+1] for

some n ∈ N; by parts (ii) and (iii) of Lemma 5.3, it follows that [02n+1] is geometric
and then that [02n] is geometric. We have det[02n] 6= 0 and ‖[02n]‖ = n by Lemmas
2.15 and 2.16, so n ≤ 1 by part (i) of Lemma 5.3. Thus

If L is geometric and det L = 0 then L is equivalent to [0] or [0, 0, 0].

The fact that (i) and (ii) follows from this and part (i) of Lemma 5.3.

Consider a canonical linear chain [0r, A] equivalent to L (with r ∈ N, A ∈ N∗ and
r is even if A 6= ∅). If (ii) holds, then r < 4, so [0r, A] is one of the chains displayed

in assertion (iii). So (ii) implies (iii).

To show that (iii) implies (i), we have to check that each of [0], [0, 0, 0], [A],

and [0, 0, A] (where A ∈ N∗) is geometric; by part (iii) of Lemma 5.3, it suffices to
prove that [0, 0, 0] and [0, 0, A] are geometric, where we may assume that A 6= ∅.
Considering a pair of lines in P2 shows that [1, 1] is geometric; so [0, 0, 0] ∼ [1, 1]
is geometric. Let n ≥ 1 be such that A = (a1, . . . , an). If n = 1, then [0, 0, A] is

geometric by applying part (iv) of Lemma 5.3 to [0, 0, A] and [0, 0, 0]; if n > 1, then
[0, 0,−1,−2n−2,−1] ∼ [0, 0, 0] is geometric and, by part (iv) of Lemma 5.3 applied
to [0, 0, A] and [0, 0,−1,−2n−2,−1], [0, 0, A] is geometric.

6 Description of Certain Sets of Sequences

Given a minimal element M of Z∗, a set M⊕ ⊂ Z∗ of minimal sequences was defined
in Definition 2.22. This notion was used in proving the classification results of Sec-
tion 2 and in discussing the concepts of prime class and successor in Section 4. The

aim of this section is to solve the following two problems.

Problem 1 Given a minimal element M of Z∗, describe the set M⊕.

Actually, the problem that really interests us is:

Problem 2 List all minimal weighted graphs equivalent to a given linear chain.

The latter problem will be addressed in Section 7, where we will in fact reduce
Problem 2 to Problem 1.

Remark In the present section and the next one we prove some mathematical re-
sults and then claim that those results solve certain problems. Such claims are useful

for psychological reasons, but the extent to which the results are indeed satisfactory
solutions to the problems is partly a matter of interpretation, because the problems
are stated in imprecise terms. What do we mean by “describing” the set M⊕, or by
“listing” all minimal weighted graphs equivalent to a given one?
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Definition 6.1 Let Z, Z ′ ∈ Z∗. We say that Z can be (+,−)-contracted to Z ′

(resp. (−, +)-contracted, (+, +)-contracted) if there exists a sequence of blowings-

down which transforms Z into Z ′ and such that no blowing-down is performed at
the leftmost (resp. rightmost, leftmost or rightmost) term of a sequence.

For instance, let Z = (0,−3,−1,−2); then Z can be (+,−)-contracted to Z ′
=

(1), but Z cannot be (−, +)-contracted or (+, +)-contracted to Z ′.

Definition 6.2 We define two subsets of Z∗.

M = {(x1, . . . , xn) ∈ Z
∗ | n ≥ 1, x1 6= −1 and ∀i>1 xi ≤ −2},

M−
= {X− | X ∈ M}

and, given α, β ∈ Z, four subsets of Z∗ × Z∗:

E = {(X,Y ) ∈ N∗ × N∗ | (X,−1,Y ) ∼ ∅}

αE = {(X,Y ) ∈ M × N∗ | (X,−1,Y ) can be (+,−)-contracted to (α)}

Eα
= {(X,Y ) ∈ N∗ × M− | (X,−1,Y ) can be (−, +)-contracted to (α)}

αEβ
= {(X,Y ) ∈ M × M− | (X,−1,Y ) can be (+, +)-contracted to (α, β)}.

Note that in the above, (X,Y ) is an ordered pair of sequences (i.e., we do not
concatenate X and Y ), whereas (X,−1,Y ) is the sequence obtained by concatenating

X, −1 and Y .

The first step in solving Problem 1 is to describe the four subsets E, αE, Eα and αEβ

of Z∗ × Z∗, for any choice of α, β ∈ Z. This is achieved by Lemma 6.6, below.

If x ∈ R, let ⌈x⌉ denote the least integer n such that x ≤ n.

Lemma 6.3 X 7→ (det X, det1 X) is a bijection from M to

S := {(r0, r1) ∈ Z
2 | r1 > 0, gcd(r0, r1) = 1 and

⌈
r0

r1

⌉
6= 1}

and X 7→ (det(X−), det1(X−)) is a bijection from M− to S.

Proof It is well known that gcd(det(X), det1(X)) = 1 holds for every X ∈ Z∗.
Consider an element X = (−q, N) of Z∗ \{∅}, where q ∈ Z and N ∈ Z∗. By Lemma
2.10,

det(X) = q det(N) − det1(N).

If N ∈ N∗, then by Lemma 2.11 we have 0 ≤ det1(N) < det(N), so q =

⌈
det X
det N

⌉
;

thus M is mapped into the set S. If (r0, r1) belongs to the set S, there is a unique pair

(q, r2) ∈ Z2 such that r0 = qr1 − r2 and 0 ≤ r2 < r1; by Lemma 2.11, a unique
N ∈ N∗ satisfies det(N) = r1 and det1(N) = r2; then (−q, N) ∈ M and this defines
a map from the set S to M. It is clear that the two maps are inverse of each other, so
the first assertion is proved. The second assertion follows from the first.
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Elaborating the above proof yields the following fact, which gives a concrete de-
scription of the inverse of the bijection X 7→ (det X, det1 X) given in Lemma 6.3.

Lemma 6.4 If (r0, r1) belongs to the set S, (cf. Lemma 6.3), then the unique X ∈ M

satisfying (det X, det1 X) = (r0, r1) is the sequence X = (−q1, . . . ,−qk) determined by
the “outer” Euclidean algorithm of the pair (r0, r1):

r0 = q1r1 − r2,

...

rk−2 = qk−1rk−1 − rk,

rk−1 = qkrk − 0,

where qi, ri ∈ Z and r1 > · · · > rk = 1.

Definition 6.5 Given α, β ∈ Z, define the following subsets of N3.

P = {(n, p, c) ∈ N
3 | 1 ≤ p ≤ c and gcd(c, p) = 1},

αP = Pα
= {(n, p, c) ∈ N

3 | 1 ≤ p ≤ c, gcd(p, c) = 1 and
⌈

c
nc+p

⌉
6= α + 1},

αPβ
= {(n, p, c) ∈ N

3 | 1 ≤ p ≤ c, gcd(p, c) = 1,
⌈

c
nc+p

⌉
6= α + 1 and n 6= β},

and define four maps

(i) f : P → E, (n, p, c) 7→ (X,Y ),
(ii) αf : αP → αE, (n, p, c) 7→ (X,Y ),
(iii) f α : Pα → Eα, (n, p, c) 7→ (X,Y ),

(iv) αf β : αPβ → αEβ , (n, p, c) 7→ (X,Y ),

by declaring in each case that (X,Y ) is the unique pair of sequences satisfying the
following:

(i ′) (X,Y ) ∈ N∗ × N∗ and

det(X) = nc + p, det(Y−) = c,

det1(X) ≡ −c (mod nc + p), det1(Y−) = c − p.

(ii ′) (X,Y ) ∈ M × N∗ and

det(X) = c − α(nc + p), det(Y−) = c,

det1(X) = nc + p, det1(Y−) = c − p.

(iii ′) (X,Y ) ∈ N∗ × M− and

det(X) = c, det(Y−) = c − α(nc + p),

det1(X) = c − p, det1(Y−) = nc + p.

https://doi.org/10.4153/CJM-2008-003-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2008-003-2


84 D. Daigle

(iv ′) (X,Y ) ∈ M × M− and

det(X) = c − α(nc + p), det(Y−) = (n − β)c + p,

det1(X) = nc + p, det1(Y−) = c.

Lemma 6.6 The maps f , αf , f α and αf β are well defined and bijective.

For the proof of Lemma 6.6, refer to [1, Lemma 7.4.1].

Example 6.7 To describe −2E−3, we first note that

−2P−3
= {(n, p, c) ∈ N

3 | 1 ≤ p ≤ c, gcd(p, c) = 1,
⌈

c
nc+p

⌉
6= −1 and n 6= −3}

= {(n, p, c) ∈ N
3 | 1 ≤ p ≤ c, gcd(p, c) = 1}.

Then the desired description of −2E−3 is given by the bijection −2f −3 : −2P−3 →
−2E−3, where by definition −2f −3(n, p, c) is the unique element (X,Y ) of M × M−

satisfying

det(X) = c + 2(nc + p), det(Y−) = (n + 3)c + p,

det1(X) = nc + p, det1(Y−) = c.

For any given element (n, p, c) of −2P−3, the actual sequences X and Y can be ob-
tained (if desired) from these equalities via the outer Euclidean algorithm; see
Lemma 6.4.

Remark The description of E, αE, Eα and αEβ given by Lemma 6.6 is explicit to some
extent, but not fully explicit. However we think that knowing the determinants of
sequences is often more useful than knowing the sequences themselves, so the present

form of Lemma 6.6 is probably more useful than would be a fully explicit description.
Similar comments apply to Propositions 6.8 and 6.9, below.

The next two results solve Problem 1 (Proposition 6.8 solves the case where M is
the empty sequence and Proposition 6.9 solves all other cases). Note that the solution
is expressed in terms of the sets E, αE, Eα and αEβ , which are described by Lemma 6.6.

Proposition 6.8 The elements of ∅
⊕ are:

(i) (1),
(ii) (0, x) where x ∈ Z \ {−1},
(iii) (x, 0) where x ∈ Z \ {−1},
(iv) (X, x, 0,−1 − x,Y ), where x ∈ Z \ {−1, 0} and (X,Y ) ∈ E.
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Proposition 6.9 If M = (m1, . . . , mk) 6= ∅ is a minimal element of Z∗, the elements
of M⊕ are:

(1) (a) (0, x, m1, . . . , mk), for all x ∈ Z \ {−1},
(b) the unique minimal sequence obtained by blowing-down (0,−1, m1, . . . , mk);

(2) (a) (m1, . . . , mk, x, 0), for all x ∈ Z \ {−1},

(b) the unique minimal sequence obtained by blowing-down (m1, . . . , mk,−1, 0);
(3) For each j ∈ {1, . . . , k},

(a) (m1, . . . , m j−1, x, 0, m j − x, m j+1, . . . , mk), for all x ∈ Z \ {−1, m j + 1},
(b) the unique minimal sequence obtained by blowing-down

(m1, . . . , m j−1,−1, 0, m j + 1, m j+1, . . . , mk),

(c) the unique minimal sequence obtained by blowing-down

(m1, . . . , m j−1, m j + 1, 0,−1, m j+1, . . . , mk);

(4) (a) (X, x, 0,−1− x,Y, m2, . . . , mk), for all x ∈ Z \ {−1, 0} and all (X,Y ) ∈ Em1 ,

(b) (m1, . . . , mi−1, X, x, 0,−1 − x,Y, mi+2, . . . , mk), for all x ∈ Z \ {−1, 0}, all
(X,Y ) ∈ miEmi+1 and all i such that 1 ≤ i < k,

(c) (m1, . . . , mk−1, X, x, 0,−1−x,Y ), for all x ∈ Z\{−1, 0} and all (X,Y ) ∈ mkE.

Proof of Propositions 6.8 and 6.9 Both results follow immediately from Defini-

tions 2.22 (of M⊕) and 6.2 (of E, αE, Eα and αEβ).

Example 6.10 Let M = (−2,−3). By 6.9, the elements of M⊕ are

(1a) (0, x,−2,−3), for all x ∈ Z \ {−1},
(1b) (2,−2),
(2a) (−2,−3, x, 0), for all x ∈ Z \ {−1},
(2b) (−2,−2, 1),

(3 j=1 a) (x, 0,−2 − x,−3), for all x ∈ Z \ {−1},
(3 j=1 b,c) (2,−2),
(3 j=2 a) (−2, x, 0,−3 − x), for all x ∈ Z \ {−1,−2},
(3 j=2 b) (2,−2),

(3 j=2 c) (−2,−2, 1),
(4a) (X, x, 0,−1 − x,Y,−3) for all x ∈ Z \ {−1, 0} and (X,Y ) ∈ E−2,
(4b) (X, x, 0,−1 − x,Y ) for all x ∈ Z \ {−1, 0} and (X,Y ) ∈ −2E−3,
(4c) (−2, X, x, 0,−1 − x,Y ) for all x ∈ Z \ {−1, 0} and (X,Y ) ∈ −3E.

7 Minimal Sequences and Minimal Linear Chains

We are interested in the second problem stated in Section 6, which we repeat for the
reader’s convenience:

Problem 2 List all minimal weighted graphs equivalent to a given linear chain.
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It is well known that any minimal weighted graph equivalent to a linear chain is
itself a linear chain. Consequently, if X ∈ Z∗, and if X ⊂ Z∗ is the set of minimal

sequences equivalent to X, then {[Y ] | Y ∈ X} is the set of minimal weighted graphs
equivalent to [X]. So the above problem reduces to:

Problem 3 Given X ∈ Z∗, list all minimal sequences equivalent to X.

Apparently, very little is known about these problems. One notable exception
is [5], which can be interpreted as solving Problem 3 for X = (1). This section is a

modest contribution to solving Problem 3; in particular, result 7.1 gives a recursive
solution.

The notations Z∗/∼ and min(C) are defined before Definition 4.1.

Proposition 7.1 If C ∈ Z∗/∼ then, min
(
C⊕) =

⋃

M∈min C

M⊕.

Proof The inclusion “⊇” is trivial by definition 4.1 of C⊕. Consider Z ∈ min(C⊕).
Since C⊕ has a predecessor we have (0) 6∈ C⊕ by 4.2 and hence Z 6= (0); we also

have ‖Z‖ = ‖C⊕‖ = 1 + ‖C‖ > 0, so Proposition 2.24 gives Z ∈ M⊕ for some
minimal element M of Z∗. We have M ∈ C by uniqueness of the predecessor of C⊕,
so Z ∈ ∪M∈min CM⊕.

Together with Propositions 6.8 and 6.9, and keeping in mind Corollary 4.4, this
gives substantial information about Problem 3. Note in particular that Proposition
7.1 immediately implies the following.

Corollary 7.2 Suppose that C ∈ Z∗/∼ is the successor of a prime class C∗, and let M
be the unique minimal element of C∗ (see Lemma 4.2). Then min C = M⊕.

Example 7.3 Let C denote the equivalence class of the sequence (1). Then C = C
⊕
∅

,
where C∅ is the equivalence class of the empty sequence ∅. Since C∅ is a prime class
and its unique minimal element is ∅, we have min C = ∅

⊕ by Corollary 7.2 so, by

Proposition 6.8, the minimal elements of C are:
• (1),
• (0, x) where x ∈ Z \ {−1},
• (x, 0) where x ∈ Z \ {−1},
• (X, x, 0,−1 − x,Y ), where x ∈ Z \ {−1, 0} and (X,Y ) ∈ E.

See Lemma 6.6 for a description of E.

Remark The result contained in 7.3 first appeared in [5] (with a different formula-

tion) and was later reproved by several authors.

Example 7.4 Let C ∈ Z∗/∼ be the equivalence class of (0, 0, 0). Then C = C
⊕
0 ,

where C0 is the equivalence class of the sequence (0). By Lemma 4.2, C0 is a prime
class and its unique minimal element is (0); so Corollary 7.2 gives min C = (0)⊕ and,
by Proposition 6.9, the complete list of minimal elements of C is:
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• (1, 1),
• (0, x, 0) where x ∈ Z \ {−1},
• (x, 0,−x) where x ∈ Z \ {1,−1}
• (X, x, 0,−1 − x,Y ), where x ∈ Z \ {−1, 0} and (X,Y ) ∈ E0 ∪ 0E.

See Lemma 6.6 for a description of E0 and 0E.

By Section 6, we know how to describe M⊕ for any given M ∈ min Z∗. So by
Corollary 7.2:

We can list the minimal elements of any class C ∈ Z∗/∼ which is either a prime
class or the successor of a prime class.

In other words, we can solve Problems 2 and 3 exactly in the cases which are relevant
for the study of algebraic surfaces (see Section 5). For the other cases, one would

have to describe M⊕ for infinitely many M, and we do not know how to do that. To
illustrate this point, consider the following:

Example 7.5 Let C ∈ Z∗/∼ be the equivalence class of (0, 0, 1). Then C = C
⊕
1 ,

where C1 is the equivalence class of (1). In view of the description of min(C1) given
in Example 7.3, Proposition 7.1 tells us that min(C) is the following union:

(1)⊕ ∪
⋃

x∈Z\{−1}

(0, x)⊕ ∪
⋃

x∈Z\{−1}

(x, 0)⊕ ∪
⋃

x∈Z\{−1,0}
(X,Y )∈E

(X, x, 0,−1 − x,Y )⊕.

Here we do not know how to describe the last union, even though we can describe
(X, x, 0,−1 − x,Y )⊕ for any given choice of x ∈ Z \ {−1, 0} and (X,Y ) ∈ E.
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