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Abstract

We study the behaviour of (resonant) dynamic B-tipping in a forced two-dimensional
nonautonomous system, close to a nonsmooth saddle-focus (NSF) bifurcation. The NSF
arises when a saddle-point and a focus meet at a border collision bifurcation. The
emphasis is on the Stommel 2-box model, which is a piecewise-smooth continuous
dynamical system, modelling thermohaline circulation. This model exhibits an NSF
as parameters vary. By using techniques from the theory of nonsmooth dynamical
systems, we are able to provide precise estimates for the general tipping behaviour
close to the bifurcation as parameters vary. In particular, we consider the combination
of both slow drift and also periodic changes in the parameters, corresponding, for
example, to the effects of slow climate change and seasonal variations. The results are
significantly different from the usual B-tipping point estimates close to a saddle-node
bifurcation. In particular, we see a more rapid rate of tipping in the slow drift case,
and an advancing of the tipping point under periodic changes. The latter is made much
more pronounced when the periodic variation resonates with the natural frequency of
the focus, leading both to much more complicated behaviour close to tipping and also
significantly advanced tipping in this case.

2020 Mathematics subject classification: primary 37G15; secondary 37G35, 37N 10.

Keywords and phrases: tipping points, saddle-focus bifurcation, Stommel box model.

1. Introduction

1.1. Overview Various models of phenomena in climate have been used both
to model and to predict abrupt changes in systems with a wide range of time
scales. As a result, there are many climate models that include nonsmooth features
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2 C. Budd and R. Kuske 2]

approximating transitions over short times relative to climate time scales. These
include state-dependent switches, nonsmooth functional descriptions of dynamics and
discrete states delineated by boundaries. Examples of these are given by the PP04
model of sudden changes in carbon dioxide emission rates during glacial cycles [ 16,
17], rainfall [11], the motion of the ice fronts in a glacial cycle [24], as well as the
Stommel 2-box model for thermohaline circulation that we study in this paper. In all
such systems, we see both the dynamics commonly found in smooth systems (such as
possibly co-existing periodic and chaotic states and transitions between them including
tipping points), as well as dynamical behaviours specific to nonsmooth systems, such
as grazing, sliding and nonsmooth bifurcations between different co-existing states [4].

Transitions in the context of bi-stability have been studied in many contexts.
A common setting is where stability is lost at bifurcation points, and the system
experiences hysteresis as parameters vary through these points, depending upon the
form of the parameter variation. For these nonautonomous systems with varying
parameters, the transitions between states may be qualitatively different, depending
on the nonlinearities, the types of underlying static bifurcations and the vector fields
near the stable equilibria. Throughout this paper, we use the term B-tipping to
refer to a sudden transition from one qualitatively different state to another in the
nonautonomous setting, close to a static bifurcation. More broadly, the term tipping is
used in a wider variety of settings, see for example [1], to describe a qualitative change
in behaviour along a particular time-varying trajectory. Bifurcations and tipping are
often related, as tipping may be related to a bifurcation point or some other separatrix
of a particular object in the flow, such as a fold point of a slow manifold or stable
manifold of a saddle. This relationship is indeed present in the systems we study
here: the nonautonomous systems with time-varying parameters have autonomous
counterparts with static parameters treated as bifurcation parameters. Given this
connection, we use the term dynamic bifurcation to refer to the specific setting where a
parameter value varies in time near or through the critical value of a static bifurcation
parameter from an underlying autonomous system.

In this paper, we focus on the dynamic transitions near to a nonsmooth saddle-focus
(NSF) bifurcation in a parametrized, forced, nonsmooth two-dimensional (2D) system
(a reduction of the Stommel 2-box model). The NSF arises when a focus (F) and a
saddle point (S) coalesce at a border collision bifurcation (BCB) when a parameter u is
varied. We consider the dynamic transitions, in particular tipping phenomenon, as the
parameter u is slowly varied through this bifurcation, combined with a periodic forcing
of the system. We obtain results that can be contrasted with analogous transitions near
smooth saddle-node bifurcations (SNBs) [26]. In an earlier paper [6], we considered
B-tipping close to a nonsmooth saddle-node bifurcation in a one-dimensional (1D)
problem where a stable and an unstable node coalesce, also at a BCB. Estimates were
obtained of the location of the tipping point in the case of a dynamic parameter that
had both a slow drift and an oscillatory variation. The 2D case considered in this
paper is more realistic as a climate model than the 1D problem. Whilst similar to the
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1D problem (in particular, for the case of high-frequency forcing), the 2D case also
has a richer dynamics, particularly when the frequency of the forcing resonates with
the natural frequency of the focus. In this paper, we obtain expressions for the tipping
point with and without parameter drift in this nonsmooth model in the cases of rapid
forcing, slow forcing and resonant forcing. Specifically, we show that tipping occurs
earlier, more abruptly and in a less predictable manner, closer to an (nonsmooth) NSF
than in the case of tipping at a (smooth) SNB. This tipping is further advanced by the
impact of resonance of the periodic forcing with the natural frequency of the focus.
We compare our conclusions to observed phenomena in climate dynamics through a
comparison with the Stommel 2-box climate model. In particular, we find conditions
for sudden transitions between temperature-dominated and salinity-dominated states.
In a further study, we will look at the impact of noise on the location of tipping points
close to an NSF, showing that it also tends to advance the location of tipping points.

1.2. Results We study the dynamics of the (nonsmooth) Stommel 2-box model
of the Atlantic meridional overturning circulation (AMOC) [7] close to an NSF. In
particular, we investigate a periodically (seasonally) forced, parametrized piece-wise
linear system which is a reduction of the full model close to the coalescence of a saddle
and a focus at a border collision bifurcation. The NSF occurs when the bifurcation
parameter u reduces to u = 0. If u has a slow drift through zero of rate € << 1 and
the periodic forcing is given by A sin(wt), then we see B-tipping behaviour close to
the NSF. The form of this differs in many respects from both B-tipping with drift at
an SNB [10] and also the oscillatory forced tipping seen at the 1D nonsmooth fold
considered in [6]. The main conclusion of this work is that the impact of resonance
between the natural frequency of the focus at the NSF and the frequency w of the
forcing is to significantly advance tipping. More particularly, we have the following
results.

(1) For the case of slow drift through the NSF without periodic forcing (A = 0),
B-tipping in the Stommel 2-box model is very similar to the 1D model in [6]. If
the drift rate is €, then (to leading order) B-tipping occurs when the bifurcation
parameter u ~ —Cielog(K/€), C; > 0.

(2) If the system has periodic forcing and no parameter drift (¢ = 0), so that the
parameter y is fixed, then for larger values of y, there is always a stable periodic
orbit. This orbit loses stability as i decreases and we see tipping.

(a) For high-frequency forcing of frequency w > 1, B-tipping occurs from a
stable periodic orbit at a cyclic-fold bifurcation point u.. This tipping point
can be estimated with high accuracy to be p. ~ C;/w, where C, > 0 is
given analytically. Close to tipping, the stable periodic orbit takes on a
figure-of-eight form.

(b) If the forcing has a low frequencyw < 1 with scaled amplitudeA = 1, we see
tipping from the stable periodic orbit at the parameter value g, ~ 1 + C3w?,
C; > 0. In this case, the periodic orbit has an “L-shaped” form.
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(c) If the forcing frequency w ~ 1 is close to the natural frequency of the focus,
then the system is near resonant with complex (sometimes chaotic) periodic
orbits arising at period doubling bifurcations as u deceases. The impact of
resonance is to increase the value of the tipping point y. and to advance

tipping.

(3) If the system is both periodically forced and the parameter u has nonzero drift,
then the value of the tipping point u is (apart from the high-frequency limit)
a complex and nonmonotonic function of both the drift rate € and the forcing
frequency w. In all cases, tipping is significantly advanced when w is close to
the resonant values.

1.3. Summary The remainder of this paper is structured as follows. In Section 2,
we describe the forced Stommel 2-box model, and identify its (smooth and nonsmooth)
bifurcation points (including the NSF) and related tipping dynamics. In Section 3,
we derive a normal form for the dynamics of a forced system close to the NSF
and determine simple properties of its dynamics. In Section 4, we give estimates
for B-tipping when the system has slow drift. In Section 5, we study the system
under high-frequency forcing with no drift and give asymptotic estimates for the
tipping point. In Section 6, we repeat this analysis for low-frequency forcing and
in Section 7, for near-resonant forcing showing the existence of complex orbits and
advanced tipping in this case. In Section 8, we consider tipping under the combination
of slow drift and periodic forcing, showing that the tipping point is very sensitively
dependent on the system parameters. In Section 9, we discuss the climatic implications
of these results. Finally, in Section 10, we draw some conclusions from this work.

2. Overview of AMOC and the Stommel 2-box model

2.1. The Stommel 2-box model A well-known class of climate models, where
salinity-dominated and temperature-dominated states are bi-stable, is that of thermo-
haline circulation (THC). Here, abrupt qualitative changes are possible, see Alley
et al. [2], Marotzke [15] or Rahmstorf [18, 19]. Recently, Rahmstorf was able to
find evidence of weakening occurring around these abrupt changes in the AMOC
system of ocean patterns [7]. This evidence of ocean dynamics responding to changes
in surface temperature underscores the need to understand the transitions in these
types of systems. We note that such transitions can be either smooth or nonsmooth
(as described in [4]). In this paper, we focus on the commonly used Stommel 2-box
model [23] as an exemplar for studying the transitions in the THC (or more generally,
the dynamical impact of NSF bifurcations between equilibrium states) in a realistic
climate model. We begin with the nondimensionalized Stommel 2-box model as given
in [8]:

T=m-T+|T -8,

. .1
S=m-8m;+17 - SD.
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Here, the variables 7~ and S are the dimensionless equatorial-to-pole differences for
temperature and salinity, respectively. The parameters 71, 17, and 73 are also dimen-
sionless quantities, with 7; representing thermal variation, 7, is the freshwater flux,
and 73 is the ratio of relaxation times of temperature and salinity. The dimensionless
AMOC strength is captured by the difference

V=7-S,

which plays an important role throughout the dynamical analysis. We can then express
this system as

T =m-T1+IV),

. (2.2)
V=m-m+n3(T -V)-T =VI|VI.

With the dependence on the absolute value [V, (2.2) is a nonsmooth dynamical system.
It has a discontinuity surface X given by

L={V =0}

across which we see a discontinuity in d>7/dt> and d*V/dt*. The equations for 7~ and
V then describe different dynamics in X* (the temperature-dominated state) and X~
(the salinity-dominated state) for

=T, V)| V>0, T ={(T,V)|V<O0.

The model is nonsmooth through the action of the nonlinearity |7~ — S| and takes the
form of a piecewise-smooth continuous system with a degree of discontinuity equal
to 2 [4, 22].

2.2. Static dynamics It is straightforward to analyse the Stommel 2-box model in
the case of static parameters 7; [8, 12]. A standard analysis of the static model, where
typically n7; and 3 are fixed, and 7, is treated as a bifurcation parameter, yields stability
regions for the temperature and salinity-dominated states. Taking values of 77; and 13
(typically 1y = 3,173 = 0.3) as is usual in applications [8], there are either three or
one fixed points. In the case of three fixed points, we identify two different critical
bifurcation points, denoted as 75, and 1y = 171773, with 755, > 1724

For 12, > 112 > 124, there are two fixed points in X* which are respectively a saddle
(S) and a stable node (N). The saddle and node coalesce at the (smooth) SNB 7,,, and
cease to exist for 17, > 1a,.

For 1y > moy, there is a further fixed point in X7, which is a stable focus (F). If
12 < Mg, there is only the stable node N in X*. These observations are illustrated in
Figure 1 for V versus 1n,. Note that N corresponds to the temperature-dominated state
with 7 > S, and F corresponds to the salinity-dominated state with S > 7.

The critical point 17,7, indicated by an o in Figure 1, arises at a BCB [4]. This occurs
when F and S intersect with X. This critical point can be obtained from (2.1) as

st = M13.
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FIGURE 1. The static bifurcation diagram for the Stommel 2-box model showing V as a function of 7,
(blue) when 77y = 3,773 = 0.3. The saddle-focus (NSF) at 7754 = 1173 is indicated by an o, and the saddle
node (SNB) by a +. Tipping at the NSF due to drift when 1, = 1.35 — 0.025 ¢ is shown in dashed red. We
also show the regions S* and S~, and the discontinuity set X at V' = 0.

This (NSF) bifurcation is a nonsmooth fold [4], in which F and S co-exist if 7o > oy
and neither exist if 72 < 7724y. Close to 1724, the NSF has a V-shaped form, with the
focus and saddle point having the form of (7=, V*) with V* proportional to +u, where
H =12 = oy

The coalescence of a saddle S with a focus F can only occur, because this is
a nonsmooth system. Such bifurcations do not arise in smooth systems where an
SNB necessarily indicates collision of a stable node and a saddle. The mathematical
structure near (724, 0) (indicated by an o in Figure 1) is substantially different from
that near the smooth SNB (7, Vay,) (indicated by a + in Figure 1). In particular, at
the saddle-focus NSF, the real parts of the eigenvalues of the linearizations of either
of the fixed points (saddle and focus) do not drop to zero.

2.3. Smooth and nonsmooth tipping In general, parameters are not static in
climate models of this type, but rather can oscillate seasonally and have a mean that
can drift over time due to climatic variation. As an example, the fresh water hosing
from the melting of the Arctic ice leads to variation in 7, of exactly this nature. To
capture the impact of such parameter variation, we consider the case where 7,(¢) is
time dependent, with a mean drift of rate €, and a seasonal oscillation of amplitude A
and frequency w, so that

m(t) = n2o — €t + A sin(wt). 2.3)
Thus,

V=m-mO+mT -V)=T =VIV, T=m-TA+IV), Q24
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with 7,(z) given by (2.3). As is typical for applied settings [8], we follow certain
parameter assumptions. It is frequently assumed that the salinity’s relaxation time is
much longer than that of temperature, giving 3 < 1, which results in an SNB in (2.4)
for the branch V > 0. Furthermore, we take n; = O(1) so that 5. = n3n; = O(1) and
e < nag. That s, there is a nontrivial bi-stability range for the two stable equilibria on
the branches N (V' > 0) and F (‘V < 0), as shown in Figure 1. Variation of a parameter
(typically 1, in (2.2) as given by (2.3)) can lead to tipping, which in the context of this
study corresponds to a solution starting at the focus F (or N) that does not stay close
to F (or N) but rapidly evolves to a qualitatively different state, typically to N (or F) or
to a large amplitude periodic orbit.

2.3.1. Smooth B-tipping If n, is slowly increased through the SNB 1, at a
constant rate dn, /dt = € < 1, then we see canonical B-tipping with a transition from
a stable temperature-dominated state (N) to a stable salinity-dominated state (F). Such
tipping is described by standard theory [10] and occurs at the point

M = Msn + Cn 62/3- (2.5)

In this expression, Cy, > 0, so that the tipping point is delayed till after the bifurcation
(with obvious climatic implications).

2.3.2. Nonsmooth B-tipping In contrast, if 1, is slowly decreased through the
nonsmooth fold at 7,; at a constant rate dn,/dt = —€, then nonsmooth B-tipping
occurs, with a transition from F to N. This is illustrated in Figure 1, where we can
see the lag in the tipping. B-tipping close to an NSF is different in many respects
from B-tipping close to an SNB, partly because the eigenvalues of the linearization of
the nonsmooth system about the fixed point do not drop to zero at a border collision
bifurcation. We show presently (see also the related 1D model discussed in [6]) that
B-tipping occurs for the nonsmooth system, in the sense that |V| = K > 1, at the
parameter value

n2 = gy — Cyp €log(K/e), Cgy > 0.

Observe that the expression for the lag in the tipping point scales differently from the
smooth case in (2.5).

The case of B-tipping due to seasonal forcing (possibly combined with slow drift)
is more subtle and, as in the 1D case, is dominated by the existence of a cyclic-fold
bifurcation which can lead to an advancement of the tipping point. In [6], this was
explored for an NSF in a 1D simplification of (2.2) and a pattern of tipping not
dissimilar to the smooth case was observed. However, in the case of the full 2D
problem (2.2), there are additional effects due to the possibility of resonance between
the seasonal parameter variation and the natural frequency of the focus. This can lead
to complex behaviour close to the tipping point, including chaotic dynamics. This
behaviour is unique to the NSF and cannot occur at a standard SNB as there is no
natural frequency in the latter case.
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3. The normal form of the Stommel 2-box model close to an NSF as a forced
piece-wise smooth system

3.1. Overview Our primary interest in this paper is the nature of the tipping of
the system (2.4) close to the nonsmooth saddle-focus (border collision) bifurcation.
Accordingly, we track the system (2.4) near the two respective fixed points. Following
an expansion around each fixed point, we find that, to leading order, the Stommel
2-box model can be simplified to a piece-wise linear normal form. This is a
continuous dynamical system comprising two linear systems, separated by the surface
2 ={V = 0} across which the solution trajectory loses smoothness. We find that the
properties of the linear operators of each of the two linearized equations play a critical
role in the resulting dynamics. Here, we provide a summary of the linearized system
and its elementary properties.

Consider the Stommel 2-box model (2.4). At the nonsmooth fold, we have V =0
and7 =n;.Weset V=V <land7 =n; +T with T <« 1, and take

m(t) = mns + 0(t) = nay + 6(1),
where from (2.3), we express the parameter drift and seasonal forcing by
0(t) = u(t) + A sin(wt) = py — €t + A sin(wt),

so that a static border collision bifurcation occurs when ¢ = € = A = 0. Furthermore,
let

x=(T. V), e =(10" e=(00D" 3.1)
The Stommel 2-box model is smooth in the respective regions
St={x]elx=V>0}, § ={x|elx<0}
and loses smoothness across the discontinuity set
T={x|elx}=0.

Close to the NSF, the Stommel 2-box model then simplifies to the piece-wise linear
normal form

X =L*x—0(1) ey, (3.2)
where the linear operators
= 7o) o b omy)
m—1 -n m—1 -n
are respectively applied in the regions S* and S™.
Hence, the (forced) Stommel 2-box model (2.4) has the normal form

X = L*x — (u(t) + Asin(wt)) e, = L*x — (uo — €t + A sin(wt)) e,. (3.3)
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We study the normal form (3.3) in detail for the remainder of this paper, looking at the
cases of:

(i) drift-induced tipping close to 4 = 0 when A = 0;
(ii) seasonal tipping when € = 0 with w large, small and resonant; and
(iii)) combined tipping when € and A are both nonzero.

We first derive some elementary properties of this piece-wise linear system (3.2) which
we will refer to in the later Sections 4, 5 and 6.

3.2. Fixed points It is immediate that if u(f) = u = yq is fixed, then there are fixed
points, a saddle S = i s and a focus F = yu f given by

1 1 -
(A S L — ’71), f=(L)"! :—( '71)_
s=d) e n3+m(773—1)(—1 (L) e m—-m@ms -1\ -1
(3.4)

Observe, as expected, that if 0 < n3 < 1 and n; > 53, then S € S* and F € S~ if and
only if y > 0, with the BCB occurring at g = 0. The resulting phase plane of the
linearized system (3.3) either side of the NSF in the case where A =0 and u = +1
is given in Figure 2. In this figure, the (physical) saddle is indicated by an o and the
focus (when u > 1) is clear from the limits of the trajectories.

We observe, trivially, that in contrast to the SNB, the linearization of the system
(3.2) about the fixed points is independent of the value of u. The corresponding linear
operators L* have eigenvalues o7, and eigenvectors uy,, where

+

o+ oy ==(l+m), ofoy =03 mps -1,
so that if 3 < 1,

or =—1+ 3Vl x4y, o3 =-1-1\1x4n.

1,1
272

Hence, for the typical range of i1, 773, we have that o7, are real with o7 > 0 > 073, and
o7, are complex with negative real part. For most of this paper, we will consider the
representative values of
m =3, n3=0.3.
In this case,
ol =084, oy =-214---, o] =-065---+141-- 1,
o, =-065---—141--- i
Accordingly, we may expect resonant behaviour in the system when the forcing

frequency is close to the frequency of the focus and satisfies w ~ 1.4.

3.3. Smooth periodic orbits in S~ and grazing Now, consider the case of u
fixed and seasonal forcing with A > 0. Provided A/u is sufficiently small, the system
(3.3) has a smooth and stable periodic solution lying wholly in S~. A straightforward
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FIGURE 2. Solutions of the linearized problem (3.3) in the (7, V) phase plane when A = 0. (a) u = —1.
The (unphysical) saddle is shown as an o. (b) u = 1 showing the (physical) saddle as an o and the stable
focus.

calculation shows that the periodic orbit is given by
P (1) = uf + A(W?T + (L7)*) ! [wcos(wr)e, + sin(wr)L™e;].
It also has a smooth unstable periodic orbit lying wholly in S* given by
P (1) = us + A(W?I + (L")*) ™! [wcos(wt)e, + sin(wr)L e, ]. (3.5)

Both orbits play a critical role in understanding tipping close to the NSF under seasonal
forcing.
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FIGURE 3. The grazing value y,, when A = 1,17, = 3,773 = 0.3.

If w > 1, then we have to leading order that the stable periodic orbit is given by

P(1) = uf + 4525

€.

This periodic orbit lies wholly in S~ provided that
A
— < wlesfl. (3.6)
U

Similarly, if w < 1, then to leading order, the periodic orbit is given by
P (¢) = puf + A sin(wn)f. (3.7)
This orbit lies wholly in S~ provided that

A
— <1,
u

and if A/u = 1, it touches the origin.

The stable periodic orbit P~(7) in S~ will have its largest amplitude when w is close
to the resonant value of w = . (Note that resonance is not important in S*.)

In general, as u is decreased from a large value (or equivalently, as A is increased
from zero), then there will be a first value u, (equivalently A,) when the periodic solu-
tion P~(t) grazes the line X. This occurs when max(e,’P~()) = 0. As u is decreased
through 1, (A is increased), the periodic orbit will persist before vanishing at a cyclic
fold at u = p.. At this point, we see cyclic B-tipping or more complex behaviour. We
consider this case presently. We present in Figure 3 a plot of the (grazing) value u, as a
function of w in the case of A = 1,77, = 3,573 = 0.3. Note that y, takes its largest value
at the resonant frequency w ~ 1.4. We deduce that y, increases close to the resonant
value and, for these values of w, we expect to see significantly advanced tipping. This
is quite different from tipping in the 1D map case studied in [6].
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4. Drift-induced B-tipping

We first consider the case of drift-only-induced tipping when A = 0 for which
u(t) = po — et and we take x(0) = pof. The analysis is similar to the 1D case [6] and is
also given in [5].

To make the calculations of tipping precise, we observe that as the normal form we
are considering is a piece-wise linear system, any divergence to infinity of the solution
occurs only in infinite time (unlike the case of tipping close to an SNB where (owing
to the quadratic form of the nonlinearity) the divergence to infinity takes place in finite
time). In the case of the piece-wise linear normal form, we (as described earlier) define
tipping, in this and future sections, to have occurred when

ex=V=K

for some suitably large K > 0 (typically, we take K = 10). A similar definition of
tipping for a 1D piece-wise linear system was used in [6].

The estimate (4.1) agrees well with numerical experiments for small values of e.
In Figure 4, we present the tipping value of u calculated numerically (blue) and the
estimate (4.1) (red) for the case of ; = 3,13 = 0.3, for which 1/0; = 1.18.

The form of the tipping: (i) as a function of u(#) and (ii) in the (7', V) phase plane,
is shown in Figure 5. When x € S™, and ignoring rapidly decaying exponential terms,
the trajectory takes the form

x (1) = u(nf — e(L)'f.

This trajectory intersects the discontinuity set X at the time # when
u(t) =€ eg (L) 'f] /eg f. It then enters S*, where (again ignoring rapidly decaying
terms) it takes the form

X"() = u(t)s — e(L") 's +a e 71w,
where the eigenvalue o] is as given in Section 3, and the precise value of a is given by
matching x~ to x* on X. The dominant feature of this expression is the exponentially
growing term parallel to the eigenvector uj of L* (as can be seen in Figure 5).
Accordingly, we predict that B-tipping occurs, to leading order in €, when

u= —Ui log(K/€) + O(e). 4.1)
1

S. High-frequency B-tipping when p is fixed and o > 1

In this section, we consider high-frequency periodic forcing with no drift, so that u
is fixed, with € = 0 and w > 1. This case was first considered in [5] and also in [6],
and we extend the results obtained in these papers. The main result is then given in the
following proposition.
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FIGURE 4. Drift-induced tipping comparing the calculated tipping point u (blue) with the estimate (4.1)
(red).
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FIGURE 5. (a) Drift-induced B-tipping as a function of y for a range of values of € = 0.2,0.1, 0.05, 0.01
and with K = 10 (from left to right respectively in green, red, black and blue). (b) Tipping (blue trajectory)

in the (7, V) phase plane when € = 0.05. In this figure, the locus of the two points uf € S~ and us € S*
are shown in red.

PROPOSITION 5.1. Let the parameter A be defined by

Then, we have the following results.

(1) Ford< g = |eg f|, the system (3.2) has a stable periodic solution lying entirely

within S~ centred on the focus pf. As A is decreased to A = Ag, this orbit
grazes X.

(ii) For Ay < A < A, the stable periodic orbit persists and lies in both S~ and S*,
and for 4, < A = Ag < A, it has a figure-of-eight form centred on 'V = Q.

(iii) At A = A, the stable periodic orbit ceases to exist at a cyclic fold bifurcation.
For A > A, the solution diverges to infinity and we see tipping behaviour.
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FIGURE 6. The behaviour under high-frequency periodic forcing with w =10 and n; = 3,73 = 0.3.
Parameter values: A, = 0.416, 19 = 0.748 and A, = 0.767. This shows the stable periodic orbits that exist
for 1 =0.4,0.5,0.6,0.75,0.76 (respectively cyan, blue, red, orange, mauve). Observe that the centre of
the periodic orbit shifts to the left when it lies on both sides of £ and in the case of the symmetric
figure-of-eight orbit, it is centred on V = 0,7 = —1/(1 — n3). For larger A = 0.77 > A, the stable periodic
orbit ceases to exist and, instead, the solution diverges to infinity (tipping behaviour). This behaviour is
seen in the left-most orbit in the figure. The discontinuity set V = 0 is indicated.

The conclusions of Proposition 5.1 are illustrated in Figure 6. In this figure, we
take w = 10 and plot the stable periodic orbit for different values of 1 < A, and an
orbit (left-most) for A just greater than A., which is diverging to infinity. We see the
transition from a near-circular orbit wholly in S~ to a figure-of-eight orbit for A slightly
smaller than A, and then to a solution which diverges to infinity (tipping behaviour)
as A increases.

We now derive the results in this proposition. Result (i) follows immediately from
the results described in Section 3.2.

To derive the other results for large w, we set x = uz, 1 = A/(wp) and 7 = wt. Under
rescaling, the linear normal form of the Stommel 2-box model becomes

z=L*z/w - Asin(1)e; — €/ w.
We assume that A = O(1) and set
Z=7)+Zi/w+ .

We then have, for some constant vector C = [C;, C»]” (to be estimated at the next level
of the asymptotics),

zo(1) = C + Acos(1)e;. 5.1)
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Hence, zy(7) is a periodic orbit centred on C. Observe that in this limit, zy(7) only
oscillates in the V direction parallel to e;. If 4 < |C;|, this periodic orbit lies wholly
inS~.
At the next level of asymptotics,
7 = LtZO — €. (52)

This differential equation admits a periodic solution provided that
27
I= f L*zy dt = 2re;. (5.3)
0

We use this identity to determine C. It is immediate that e;”zy = C, + A cos(t). Hence,
the choice of + in the integrand (5.3) depends only upon C,. The following results are
immediate:

ex'L*e; = -1, e L*e;=7Fny, L'e =(-Ln3-1), (5.4)
where e; and e, are as defined in (3.1). Multiplying I by e,” and applying (5.4) gives
(- DC—mCy =1

We now make some estimates for C; and C, which allow us to deduce the existence
of the cyclic fold at A = A..

LEMMA 5.2.

(i) In general,
2
2n Cy = -m f |C> + Acos(T)| dT < 0.
0

@i1) If A < |G|, then the periodic orbit 7 lies only in S~ and C; = —n1|C3|.
(iii) If A > |Cs|, then the periodic orbit 7y lies in both S~ and S*, and we have

2
6 -2 {F G o

PROOF. (i) To obtain this identity, we multiply I by e;”. This gives

2m
=2nCy + f F11(Cy + Acos(1))dt = 0.
0
However, by definition, the sign of C, + Acos(7) is precisely the opposite of the sign
of ¥. Hence, the result (i). Results (ii) and (iii) follow by direct quadrature. O

We now consider the effect of increasing A from zero to a maximum value at which
there is a cyclic-fold bifurcation.
If A < |G|, the periodic orbit lies only in S~, and from the earlier results (3.4), (3.6),

Ci=-m/m-m@z—1), Co=-1/(p3—m@m3—-1)) <0,
Ag =1/(3 —mi(nz — 1)).
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C1,2

FIGURE 7. The values of C; (red) and C, (blue) as a function of A when 7, = 3 and 13 = 0.3. The cyclic
fold is clearly visible and occurs when (4., C2) = (0.7672,0.17).

Now, consider the case of 4 > A, when the periodic orbit lies both in St and S”.
Combining the results above, we have that C, satisfies the identity

2 -1
A= DI e - 3+ Cosin (Co/] - msCr = 1. (5.5)

The solution C, of this together with C; is plotted in Figure 7. We see that this
has a (cyclic-)fold bifurcation with A taking its largest value A, when dC,/dA1 =0
for a small value of C, > 0. For the case plotted of A = 1,1, = 3,173 = 0.3, we have
(A, C2) = (0.7672,0.17).

LEMMA 5.3.
() C;=0if
1
= 7T 9 Cl = .
2m(1 —13) =1

(1) Ifns3 < 1, then A takes its maximum values A = A, when

/lE/lo

1 _op(l-m3)  mn e

L o b -ms) 7 21— 13)
PROOF. Result (i) follows by inspection. To establish result (ii), we first assume that
C, is small. We then approximate (5.5) by the quadratic equation

2m1(n3 — 1)( C%)
S (0 p 2) -0y = 1.
7 +2/l kL&)

< 1. (5.6)

Hence, in this limit,

LemG _2my, &)
(1-mn3) Vg 24
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This quadratic equation has a fold bifurcation at A = A, when its discriminant vanishes.
This gives the expressions for 4. and C; in (5.6). Note that if 3 < 1, then C; < 1,
justifying the assumptions made. ]

We conclude that the periodic solution zy vanishes in a cyclic-fold bifurcation for
A= A.. For 4> A, in this high-frequency limit, we do not have a stable periodic
solution and (cyclic) B-tipping occurs. Equivalently, this tipping occurs if A > A, or if
H< He-

To complete the calculation of the form of the periodic solution, we explain the
figure-of-eight shape of the orbit which occurs when 4 = Ay and is shown in Figure 6.
The first-order contribution to the periodic orbit is given by z;(7) which satisfies the
ordinary differential equation (ODE) (5.2) using (5.1),

721 = L*(Cie; + (Cy + Acos(1)ep)) — €.
Letz; = (p,g)". By taking projections, we find that
p=-Ci—mlC+Acos(r), ¢ =3 —1C1—n3Cy =1 —m3dcos(7).

As (13 — 1)Cy —n3C, — 1 = 0, we see that g simply oscillates in phase with zy. Now,
consider p. If |C;| is sufficiently large, then C, — A cos(7) takes one sign only. Hence,
p has the same frequency of oscillation as z,. The orbits in this case will be elliptical,
as we can see in the numerical calculation presented in Figure 6. In contrast, if |Cs| is
small and, in particular, if A = Ay, C, = 0, the function |4 cos(7)| is a “rectified cosine
wave”. This has period x, half that of the function cos(r). Indeed, to a first Fourier
mode approximation,

lcos(7)| ~ cos*(7) = (1 + cos(27)).

Thus, in this case, p has half the period of z, which gives the figure-of-eight curve
observed in this case in Figure 6.

6. Low-frequency periodic forcing with no drift

Suppose now that w < 1. We have shown in Section 3.2 (3.7) that in the case of
small w and for sufficiently large ., the orbit in S~ takes the leading-order form

P~ (t) =x(t) = [u + Asin(w?)] f.
As u decreases, at p = i, ~ A, this orbit touches X close to the origin. For smaller
values of y, this trajectory enters the region S*, where it becomes subject to the

exponential growth arising from the positive eigenvalue of the linear operator L*.
Then, for such a periodic orbit to exist in this range, it must spend a short time in
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S*, limiting the effect of the exponential growth, before returning to the region S™. At
a value . < 1, the periodic orbit loses stability at a cyclic-fold.

To pursue the construction of the periodic orbit, we consider first a scaling
argument. Setting 7 = wt with w < 1 gives

w X, = L*x — (u + A sin(1))es.

To leading order in (small) w, noting from Section 3.1 that s = (L") 'e, and
f = (L") 'e,, we then have

X = u(l +sin(r))f or x = u(l + sin(r))s.

Hence, the orbit will be “L-shaped” with two sections meeting close to the origin,
a longer one in S~ parallel to f and a shorter one in S* parallel to s. Examples
of such periodic orbits, when A = 1,71 = 3,13 = 0.3 with v =0.1,u = 1.008 and
w = 0.25,u = 1.007, are shown in Figure 8, where the dynamics in the respective
regions S~ and S* is close to being parallel to the vectors f and s.

In the region S*, we see linear dynamics associated with the linear operator L*.
This operator has eigenvalues o} > 0 > o5 with corresponding eigenvectors u; and
u;. The corresponding dynamics in §* is then given by

X(1) = us + a1 e’ 1'ut + aze”2 'l + A(w’l + (L)) (w cos(wi)e; + sin(wr)L"ey),

so that expanding in w, we have the following expression for the trajectory:

x(1) = u(1 + (A/p) sin())s + w cos(T)(L) s + ale‘rﬁ/“’uir + age‘T;T/“’u;r +O(w?).
(6.1)
A similar expression for the trajectory applies in the region S™.

The trajectory (6.1) enters S* close to the origin and moves towards s, but returns
to X due to the effect of the term @ exp(c 7/w)uy . Because of this strong exponential
growth in the region S*, the orbit can only remain in this region for a scaled time of
7 = O(w). As a consequence, the deviation of the orbit in the direction towards s is
also O(w). It follows that if x leaves and returns to the set X in this time, then « and a»
must also both be of O(w). Hence, the length and the width of the orbit in S* are O(w).
Similarly, the orbit is of approximate length 2u in S™. This behaviour can be clearly
seen in Figure 8 when we compare the solutions for w = 0.1 and w = 0.25.

In Figure 9, we present numerical experiments for small w < 0.5 in which we
calculate the value of y. at which the periodic orbit loses stability, and compare this
value with the grazing point y, and a fitted parabola. In this and later calculations
of u., we calculate the stable periodic orbit at p, numerically (using the Matlab
routine odel5s) as the w-limit set of the trajectory starting from the focus F. We then
systematically reduce u, following the orbit, until it loses stability at .

From examining this figure, we conclude that if w < 0.35, there is a reasonable fit
to a parabola so that

e ~A(l+C %, C>0,
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FIGURE 8. Periodic orbits for small w: (a) w = 0.1,u = 1.0008; (b) w = 0.25,u = 1.007. The two fixed
points uf and ps are shown circled. Observe the broadening of the orbit as w increases. The discontinuity
set V = 0 is indicated.

FIGURE 9. The small w values of the grazing point yu, (blue), the tipping point y. (red) and the fitted
parabolic estimate (1 + 0.1w?) (dashed magenta) when A = 1,7, = 3,773 = 0.3.

https://doi.org/10.1017/51446181125100114 Published online by Cambridge University Press


https://doi.org/10.1017/S1446181125100114

20 C. Budd and R. Kuske [20]

where for; = 3,73 = 0.3, we have C = 0.1. For w > 0.35, the values of u, depart from
the fitted parabolic curve, as the effect of resonance at w =~ 1 becomes more important.

7. Near-resonant periodic forcing with no drift

Having studied the periodic orbit for the large and small w limits, we now look at
forcing frequencies in the range of w = O(1). Of special interest are values close to the
natural frequency of the focus in S™, which for the canonical values of the parameters
is given by w = 1.4. The resonance linked to this leads to significantly more complex
behaviour than the cases of small- and large-w studies earlier, with a more complicated
path to tipping as u is decreased from u,. We see the “simple” orbit at u = u, develop
additional structure through (possibly a sequence of) bifurcations, leading to (possibly)
chaotic behaviour. The chaotic attractor then loses stability as u decreases, giving rise
to tipping.

To illustrate this, we fix w =1 and consider a range of orbits as we decrease
u towards a tipping value estimated to be y = u, = 1.205. These orbits are shown
in Figure 10. We see here very different behaviour from before. In particular, as y
decreases, the “simple” periodic orbit does not vanish at a cyclic fold bifurcation.
Instead, it has a period-doubling bifurcation at u = 1.27 evolving, through more
bifurcations and the creation of extra loops, into a (stable) chaotic orbit as i decreases.
This chaotic orbit then ceases to exist at y. leading to tipping. The corresponding
bifurcation diagram is shown in Figure 11(a) for w = 1. This diagram is obtained for
each u by evolving the orbit forward till it reaches its w-limit set and then plotting V at
time intervals t, = 2nm/w. In Figure 11(b), we contrast this with a similar bifurcation
diagram when w = 1.2. In this, we also see a single period-doubling bifurcation, but
the period-two orbit then becomes unstable to tipping at u. = 1.17 without evolving
into a chaotic attractor.

Because of the complexity of the behaviour close to resonance, the calculation of
the location of the tipping value p. (so that tipping occurs if u < u.) of u is harder in
this case. For example, we must distinguish between a (possibly) chaotic orbit tipping
and tipping with a chaotic transient. Numerical plots of . (obtained using the method
described earlier, with A = 1,17 = 3,3 = 0.1) are given in Figure 12 for the wider
range of w € [0, 10], along with the grazing value y, and the large, and small, w and
estimates for u.. We see that y. agrees closely with the high-frequency estimate for
values of w > 3. As w decreases, we can see the effect of resonance, leading to a peak
in the value of u. at w ~ 1. It is interesting that whilst the curve of the values of p.
shows a resonant peak, the amplitude of this peak is less marked than the peak of the
curve of the grazing values u, and occurs at a smaller value of w. No such peak is
seen in the case of the 1D map studied in [6]. The lack of smoothness of the curve
around the resonance point arises from the difficulties in exactly locating u, remarked
on above. For values of p > ., but close to y. in the “resonant region”, we observe
the complex behaviour described above arising from a period-doubling bifurcation for

some f,q With fte < tpq < .
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@ ()"

FIGURE 10. w =1 (a—f) = 1.35,1.29,1.27,1.25,1.23, 1.21, respectively, showing the evolution of a
simple periodic orbit to a chaotic one as u decreases.

8. Slow drift and oscillatory forcing

We now consider the case of tipping under the combination of slow drift, so that
u(t) = up — €t, € >0 combined with oscillatory forcing of amplitude A > 0. In all
cases, we start the evolution from the point x(0) = uof and define tipping to occur
when V = e,7x(t) = K = 10 with u(¢) = uzp at this point.
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FIGURE 11. Bifurcation diagram of the omega-limit set of the sampled orbits as a function of i (a) w = 1
showing the period doubling bifurcation and evolution to chaos before tipping, (b) w = 1.2 where we only
see a single period-doubling bifurcation before tipping.

We consider two cases (respectively Case A and Case B). In Case A, we take pg = 2
so that at = 0 (as can be seen from Figure 12), we have u(0) > p. for all values of w.
As t increases, we then see a transition from a stable solution to one which experiences
tipping. In Case B, we consider the case of up = 1. In this case, (again with reference
to Figure 12), we have p(0) < u. for some values of w, so that we immediately enter a
tipping regime in this instance.
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FIGURE 12. The values of the tipping point y,. (in the case of zero drift) computed from simulations in
red. These values are compared with the grazing point u, in blue, the high-frequency estimate 1/(wA.) for
U in dashed black and the low-frequency estimate 1 + 0.1 w? in dashed magenta. The impact of resonance
is apparent in the sharp peak of the curve u, at w ~ 1.4 and the less pronounced peak of the curve . close
tow = 1.4.

Case A: py = 2.

The form of tipping is presented in Figure 13(a,b) in the cases of € = 0.1,0.01 and a
variety of values of w including small, large and values close to the resonant frequency
of w = 1.4. We can see that the value of u7p increases in the region close to the resonant
values of w = 1.4 (in a similar manner to y.), although this effect is combined with
abrupt change in the curve (due to grazing which we describe shortly) as w increases
above one.

In Figure 14(a), we present the tipping value urp as a function of w for
€ = 0.005,0.01,0.05,0.1. Also plotted (in red) is the location of the tipping point
M. when € = 0. We note that u7p < . in all cases and that u7p — u. as € — 0. We can
see two things from this picture. The first is that (as expected and seen in other related
systems) increasing € delays tipping. Second, we see that for the smaller values of
€ = 0.005,0.01, resonance has an impact on tipping. Observe that tipping is advanced
for all of the values of w € [1,2]. Similar complexity is revealed when we plot the
tipping value of u as a function of the drift rate €, see Figure 14(b).

For many values of € and w, particularly close to the resonant value of w ~ 1.4,
we see abrupt changes in u7p as parameters vary. This makes the tipping point p7p
hard to predict. For example, if € = 0.05,0.1, then these jumps occur respectively if
w=we ~ 1.2 and w = wg = 1.415. This effect is a result of the grazing phenomena
identified for the 1D system in [6] and [26], which is then enhanced by resonance. As
a partial explanation of this phenomenon, we note that if p(t) = uo — €t, then there is a
(unique up to terms with a decaying exponential) nonexponentially growing solution
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FIGURE 13. uo = 2. The trajectory of V() at tipping: (a) drift € = 0.1w = 10, 5,2, 1.5, 1,0.25 (blue, red,
black dashed, magenta, black, green); (b) drift € = 0.0lw = 10,5, 2, 1.5, 1,0.25 (blue, red, black dashed,
magenta, black, green).

in S* given by
Xg(1) = p(t)s — (L) 's + PH(),

where the periodic orbit P*(¢) is given by (3.5). Suppose that € is fixed. The shift in the
tipping point as w varies through w¢ arises when the orbit starting from x(0) grazes
the orbit Xg, so that if w < wg, it stays in S* and tips early, or if w > wg, it returns
briefly to S~ and tips significantly later. The time-dependent orbits x(¢) for w close to
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FIGURE 14. po = 2. Tipping value of p7p: (a) as a function of w with drift e = 0.005, 0.01, 0.05, 0.1 (green,
blue, black, and magenta), showing the significant effects of resonance. Also plotted are the tipping values
U for € = 0 (red) computed earlier; (b) as a function of the drift rate e when w = 0.5, 1, 1.4, 2, 5 (magenta,

black, blue, dashed black, green).

wg are shown in Figure 15(a) and the orbits in the phase plane in Figure 15(b). Note
that the red orbit has an extra “loop” briefly re-entering S~.

Case B: ug = 1.

The form of tipping is presented in Figure 16(a,b) in the cases of € = 0.1,0.01 and
a variety of values of w. We can immediately see from these figures that tipping is
advanced for a range of forcing frequencies close to the resonant values of w = 1.4.
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FIGURE 15. pp = 2, € = 0.1. Jumps in the tipping value u7p when w = 1.4, 1.41,1.42 (blue, red, black)
varies through wg: (a) variation with p(#); (b) phase plane plotted for the cases of w = 1.4 and w = 1.41
in blue and red. These figures show the abrupt change in the tipping point close to w = 1.41 arising at a
graze of the orbit with x5 (7). In panel (b), the blue curve tips immediately in S* whereas the red curve
has an extra loop, briefly re-enters S~ and tips significantly later.

This is because in this case, we, in general, have u < p. so that the trajectory in this
case immediately enters a tipping state. In Figure 17(a), we present the tipping point
urp as a function of w for € = 0.05.01, 0.05, 0.1, together with the location of ., and
in Figure 17(b) the value of urp as a function of € in this case. We can see from
the plot in panel (a) of the effect of w on w7p that resonance has a bigger effect on
tipping when compared with Case B. Observe that for all of the values of w in the
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FIGURE 16. (a) o = 1: drift e = 0.1w = 10,5, 2, 1.5, 1,0.25 (blue, red, black dashed, magenta, black,
green). (b) Drift e = 0.0lw = 10, 5,2, 1.5,1,0.25,0.1 (blue,red, black dashed, magenta, black, green).

“resonant region” of w € [1,2] that tipping is advanced, and the range of values of w
over which the resonant affects advance is broader, and flatter, than in Case A. The
curve in panel (b) is also much smoother than the related curve for uy = 2. It is likely
that the flattening/smoothness of these curves is a consequence of taking o = 1. In [6],
it was shown for the 1D start with larger u, that is, farther away from tipping, that the
phase of the forcing plays a more significant role, which yields more fluctuations in the
tipping curve as a function of w. It is also interesting that these figures are smoother,
and more monotone, than the related figures for the 1D problem for which there is no

resonance.
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9. Climate implications

The Stommel 2-box model we have studied is a significant simplification of the
more complex models used to study tipping of the AMOC phenomenon, although it
can be embedded as a part of much more complex models where tipping is observed
[8, 9] and can give insights into these. In [6], a summary of the climatic implications of
tipping in the simplified 1D Stommel box model is given, together with related studies
of the Rooth model of thermohaline circulation (THC) [14, 20] (which is a piecewise
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smooth 3-box model with a series of switches for temperature T and salinity S). Some
of these are relevant to the current study which considers the tipping dynamics close to
the “off state” close to the nonsmooth fold. In particular, the first conclusion that the
lack of smoothness of the system at the NSF advances tipping when the parameters
are subject to slow drift. Similar results are found in [25]. These results are all similar
to those discussed in this paper and the statements in these papers about very large
bi-stability regions in the THC models are related to features in our study. The results
in this paper also extend some of these earlier observations by including the oscillatory
form of the forcing and by doing so, allow the low-dimensional models to capture
variability in tipping (as discussed in [9]). The key observation (shared with the 1D
model) is that oscillatory forcing terms can advance tipping (at both an NSF and at
an SNB) and that oscillatory forcing combined with drift can lead to unpredictable
tipping behaviour, with large changes in the tipping time as parameters (such as the
drift rate and/or the forcing frequency) are varied. This has clear implications in the
predictability of tipping in climate models. A significant conclusion from the study
of the tipping close to the nonsmooth focus (NSF) bifurcation of the Stommel 2-box
model is that the natural frequency of the focus plays an important role in tipping. In
particular, if the oscillatory forcing frequency is close to resonating with this, then we
see both much more complex behaviour close to tipping (such as chaotic orbits) and
also significantly advanced tipping. Whilst the analysis here is only given for the 2D
model, we may well expect to have an NSF embedded as a low-dimensional reduction
of a bifurcation of similar nonsmooth higher dimensional problems and with various
forcings of different frequencies. This then has the potential for further resonance
phenomena occurring due to the existence of the focus with again complex dynamics
and advanced tipping with clear climate implications. We repeat that by concentrating
on the dynamics close to the NSF where we tip from the “off state” to the “on state”, we
have only studied a small part of the dynamics of the Stommel 2-box or more general
climate models, and that the more physically relevant (to the AMOC) tipping from the
“on state” is best described by the analysis for an SNB. We emphasize that comparable
resonance phenomena to those seen in this paper do not appear close to tipping at a
smooth SNB, and this is a novel feature of the NSF and any physical system where an
NSF might occur. However, it is important to note that transitions both at the SNB and
at the NSF contribute to the hysteresis window of stable behaviour seen when moving
between states, for example, effecting the return to the on state in a hysteresis loop,
and this impacts on the full dynamics of the climate model.

10. Conclusions and future work

We have studied the dynamics of tipping close to a nonsmooth saddle-focus (NSF)
in an oscillatory forced nonsmooth system with slow drift derived from the Stommel
2-box mode. In this context, we consider the influence of both the slow variation
of a critical parameter u, and an external oscillatory forcing with amplitude A and
frequency w. Traditional studies of the detection of tipping in (for example) climate
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systems have centred around dynamic bifurcations near to the saddle-node bifurcations
(SNBs), where we have real eigenvalues of the linearization with one eigenvalue
becoming zero. In this setting, with slow parameter drift, it is possible to make certain
estimates of the location of the tipping points close to equilibria, and these estimates
vary smoothly with the parameters in the system. These estimates are typically
made either by determining the system parameters, or by making measurements and
observing a “slowing down” in the system response as tipping is approached and the
critical eigenvalue approaches zero [9, 13]. This analysis helps to identify the lag of
tipping relative to the related static SNB. Significantly, when considering a nonsmooth
system close to an NSF, there is no equivalent of tipping occurring when an eigenvalue
of the linearization drops to zero. Furthermore, there is a dominant effect on the
dynamics of the system of the complex eigenvalues associated with the focus in the
NSF, neither of which drops to zero at the bifurcation. These differences from an SNB
both rule out the identification of the closeness to tipping at the NSF by monitoring
the “slowing down” in the behaviour associated with a zero eigenvalue and also allow
for the significant influence of resonant effects on the location of the tipping point. In
future work, we plan to consider stochastic fluctuations for dynamics near the NSF in
the nonautonomous Stommel model, instead of the periodic forcing considered here.
In comparison with a variety of studies of noise-dominated tipping near an SNB, as
in [3] and [21], our preliminary results indicate an increased sensitivity to stochastic
forcing near the NSF.

In this paper, we exploit the piece-wise linear structure of the normal form reduction
of the system close to the NSF of the Stommel 2-box model to give a careful analysis of
the tipping behaviour close to the NSF. Observations from our results, in comparison
with the SNB problem, indicate that predictions of tipping close to an NSF rely on a
different balance of factors, leading to the following conclusions.

(1) The nonsmoothness of the NSF leads to more advanced and complex tipping,
when compared with tipping close to the SNB. This behaviour is enhanced by
the impact of resonance.

(2) The critical value of the tipping parameter uyp for the oscillatory forced system
with drift close to the NSF does not behave monotonically for smaller values of
w. Indeed, we may see large transitions in the tipping times as parameters vary.
This feature is also observed in SNB, for smaller w, but its impact on tipping
is enhanced by resonance. This makes the difficult problem of the estimation of
tipping times in the context of noisy parameter values in these cases even more
uncertain, especially if resonance is encountered.

As a broader conclusion, this analysis points to the need for care when drawing
conclusions about the time and location of tipping points for systems close to an NSF,
especially if we are close to resonance. Nature generally has more complexities, such as
disparate time scales and multiple contributing factors, which may motivate the study
of (resonant) tipping close to an NSF as a more realistic description of the behaviour of
the system in certain cases than the idealized smooth models studied in the literature.
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