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Abstract

We employ the framework of algebraic effects to augment the list monad with the pruning

cut operator known from Prolog. We give two descriptions of the resulting monad: as the

monad of free left-zero monoids, and as a composition via a distributive law of the list

monad and the ‘unary idempotent operation’ monad. The scope delimiter of cut arises as a

handler.

1 Introduction

This paper is about the analysis of monads, as used in functional programming, via

ideas from algebraic theories and universal algebra. From this perspective, combining

monads amounts to combining algebraic theories, and scoping or handling monads

amounts to algebraic structures. This is a case study of this algebraic approach as

applied to backtracking with cut.

Lists, backtracking, and cuts. In functional programming, especially in languages

with lazy evaluation, backtracking computations are often encoded using the list

monad, which is extensively illustrated in the literature with solvers for combinatorial

puzzles such as Sudoku (Bird, 2006). Unfortunately, the list monad is too simple to

allow any control over the course of the computation, such as pruning the search

space based on partial results. In this pearl, we show how to enhance the list monad

with Prolog’s cut operator, which makes it possible to discard some yet uninspected

choices. The desired behaviour of cut in connection with the list monad can be

demonstrated with the following Haskell fragment:
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2 M. Piróg and S. Staton

do x <- [100, 200, 300]

y <- [10, 20, 30]

if x >= 200 && y >= 20 then cut else return ()

z <- [1, 2]

return (x+y+z)

The intended result of the program above is [111, 112, 121, 122, 131, 132,

211, 212, 221, 222]. Invoking cut discards the choice (x = 200, y = 30) together

with the choice (x = 300).

It is impossible to define a value cut :: [()] with the behaviour discussed

above within the list monad. We need a different, enhanced monad to accommodate

this functionality. Moreover, this is somewhat useless unless the scope of cut can

be delimited, so that a cut in one library call does not cause cuts to unrelated

backtracking in another library.

Synopsis. In this pearl, we systematically obtain an enhanced monad that supports

both backtracking and cut, by means of algebraic presentations of monads in terms

of operations and equations (Plotkin & Power, 2004). The list monad has such an

algebraic presentation: the theory of monoids (Section 2). We enhance it with a new

operation and some equations capturing the intended semantics of cut to build a

monad for backtracking with cut.

We show that we can present the resulting theory in two alternative ways: using

a left zero (Section 4) and using an idempotent unary operation (Section 6). These

two ways lead to two different Haskell implementations of the desired monad by

considering normal forms of the theory (Sections 3 and 7). The second way allows

us to see the resulting monad as a composition via a distributive law of two

simpler monads, one of which is the list monad. Moreover, the second way is better

suited to understanding the idea of delimiting the scope of cut, in the context of

handlers (Plotkin & Pretnar, 2013) (Sections 5 and 8).

2 Algebraic theories

In this section, we give an overview of equational theories. Some references are

Baader & Nipkow (1998, Chapter 3), or Mac Lane (1998) for the categorical

aspects, or Plotkin & Power (2004) for the programming languages side.

For our purposes, a theory � consists of a signature Σ� (that is, a non-empty finite

set of function symbols with finite arities, which we write in superscript) and a finite

set E� of formal equations between Σ�-terms with variables from a countable set

X = {x, y, z, . . .}. For example, the theory of monoids Mon can be given as follows:

ΣMon = {·(2), ε(0)}
EMon = {(x · y) · z = x · (y · z), ε · x = x, x · ε = x}

This reads that the signature of Mon consists of a binary symbol · and a nullary

symbol ε such that · is associative, and ε is both a left and a right unit of ·.
The idea of algebraic effects is that the operations are ways of building new

computation structures. In the monoids example, if x and y are computation
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structures of some kind, then x · y is a non-deterministic combination of x and

y, and ε is failure.

We fix a category C with products denoted as × and a terminal object 1. For

instance, the category C can be Set, that is, the category of sets and functions, with ×
given by Cartesian product and 1 given by a one-element set. We define the iterated

product of an object A as A0 = 1 and An+1 = A× An. Given a family of morphisms

fi : X → A for 1 � i � n for some n, by 〈f1, . . . , fn〉 : X → An we denote the product

mediator. In a Haskell implementation, we can use tuples for iterated products, and

the unit type () for the terminal object. The product mediator can be implemented

as \x -> (f1 x, ..., fn x).

A model A of a theory � in C consists of a carrier, that is, an object A of C, and

an interpretation, that is, a morphism [[f]]A : An → A for every operation f(n) ∈ Σ�.

Notice that given a valuation of variables, that is, a family of morphisms σX : 1→ A

for x ∈ X, we can extend the interpretation to work on Σ�-terms:

[[x]]Aσ = σX

[[f(t1, . . . , tn)]]
A
σ = [[f]]A ◦ 〈[[t1]]Aσ , . . . , [[tn]]Aσ 〉

Additionally, we need [[-]] to respect the equations, that is, for all valuations of

variables σ and all equations (t = s) ∈ E�, we require that [[t]]Aσ = [[s]]Aσ . The theory

Mon has many familiar models. For example, if C = Set, we define the monoid N
of natural numbers with addition. We assign A to be the set of natural numbers

together with [[·]]N(n, m) = n + m and [[ε]]N() = 0.

Given a theory � and its two models A with a carrier A and B with a carrier B,

a homomorphism between A and B is a morphism h : A→ B such that h ◦ [[f]]A =

[[f]]B ◦ hn for all f(n) ∈ Σ�.

Given a theory �, its free model in the category C generated by an object A

consists of

• a model of �, denoted F�A, with a carrier F�A,

• a morphism η�
A : A→ F�A

such that, given any other model B with a carrier B and a morphism g : A → B,

there exists a unique homomorphism from F�A to B (given by a morphism

ĝ : F�A → B in C) such that g = ĝ ◦ η�
A . Free models are important, because they

give rise to monads:

Proposition 1 (e.g., Mac Lane, 1998, Sections IV.1 and VI.1 )

If a theory � has a free model F�A for every object A in the category C, then

the mapping A �→ F�A extends to a monad. In detail, it is an endofunctor with the

action on morphisms given as:

F�(g : A→ B) = ̂η�
B◦g

The unit (return) of the monad is given by the family of morphisms η�, while the

multiplication (join) is given as μ�
A = ̂id for the identity morphism id : F�A→ F�A.

Every theory � has a free model in the category of sets. If E� is empty, F�A is

the set of all Σ�-terms with variables from the set A. (See, e.g., Baader & Nipkow,

https://doi.org/10.1017/S0956796817000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000077


4 M. Piróg and S. Staton

1998, Corollary 3.5.8, or Mac Lane, 1998, Section VI.8.) In other words, the obtained

monad is the free monad generated by the signature understood as an endofunctor.

If there are some equations, F�A is the quotient set of Σ�-terms induced by the

equivalence relation ≈� defined as the smallest congruence generated by E�.

(One can also consider other basic categories; for example, C as a category of

cpo’s allows us consider recursion, e.g., Plotkin & Power, 2004.)

In general, the situation is less straightforward, since C does not necessarily have

quotients. In Haskell, free models of theories with no equations can be modelled by

inductive types, but there is no way to directly encode quotients in Haskell. Thus,

given a theory with some equations, we have to put some effort into implementing

a free model, if one exists.

3 Term rewriting and normal forms

Another possibility to find free models is to represent each equivalence class of

terms by a selected representative, a normal form, such that the set of normal forms

have a representation in C. One technique to obtain normal forms is to interpret the

equations (E�) as a confluent and normalising term-rewriting system.

A rewriting system is confluent if for all terms t, t′, and t′′ such that t � t′ and

t � t′′, there exists a term s such that t′ � · · · � s and t′′ � · · · � s. We call

a rewriting system normalising if for every term t, there exists a term s such that

t � · · · � s and there is no term s′ such that s � s′. We call such s a normal form

of t. In a system that is both confluent and normalising, every term has a unique

normal form. In such a case, we write nf(t) for the normal form of a term t.

Proposition 2 (See, e.g., Baader & Nipkow, 1998, Theorem 2.1.9 )

Let � be a theory and R be a set of rewrite rules obtained from � by associating a

rewrite rule (either t� s or s� t) with each equation (t = s) ∈ E�. If R is confluent

and normalising, then for all Σ�-terms t and s, it is the case that t ≈� s if and only

if nf(t) = nf(s).

If we fix such a confluent and normalising system, the carrier of the induced free

model F�A in Set is given by the set of normal forms of terms with variables from

A together with the interpretations [[f]]F
�A(t1, . . . , tn) = nf(f(t1, . . . , tn)) for f(n) ∈ Σ�.

The associated morphism is given as η�
A (x) = nf(x), while ĝ(t) = [[t]]Bg for any model

B and g : A→ B understood as an A-indexed family of maps 1→ B. In particular,

this means that the monadic multiplication is given simply as μA(t) = nf(μΣ
A(t)),

where μΣ is the multiplication of the monad of Σ�-terms. In general categories, we

can recreate this construction, by using the free monad FΣA generated by Σ� for

the set of terms, a subobject of FΣA for the set of normal forms, and an appropriate

retraction of the inclusion of the subobject for nf(-).

Going back to the example of monoids, we can interpret the equations in EMon as

rewrite rules going from the left-hand sides to the right-hand sides of the equations,

that is:

(x · y) · z � x · (y · z), ε · x� x, x · ε� x.
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It is not too difficult to see that this system is confluent and normalising and that

normal forms are either of the shape ε or x0 ·(x1 ·(. . .·(xn−1 ·xn) . . .)) for n � 1. Terms of

these shapes are in 1–1 correspondence with terms of the shape x0 ·(x1 ·(. . .·(xn ·ε) . . .))
for n � 0. In Haskell, the set of such terms can be expressed as the familiar

cons-list datatype. Thus, in Haskell, the type of lists [a] is an implementation

of the free monoid on a type a, and the list monad is a reasonable monad for

non-determinism.

4 Cut as a left zero

In Section 3, we go through a bit of a hassle to reinvent the usual list monad. The

gain is that we can apply the same machinery to different theories to obtain a list

monad with cut.

To represent the cut operation, we extend the theory Mon with a nullary

symbol !. Its intuitive meaning is to discard all future choices, that is, those

on the right-hand side of ·. We can formalise this as the following algebraic

theory:

ΣLZ = ΣMon ∪ {!(0)}
ELZ = EMon ∪ {! · x = !}

Models of this theory are often called left-zero monoids. Note that ! is nullary, hence,

on the programming languages side, it does not have a result that would play the

role of the rest of the computation. This means that ! in fact represents the cut-fail

operation, while cut described in Section 1, which has the value of the unit type as

its result, can be given as () · !.
Interpreting the equations in ELZ as rewrite rules going from the left-hand

sides to the right-hand sides, we obtain a confluent and normalising term-rewriting

system with the normal forms of the shapes ε, x0 · (x1 · (. . . · (xn−1 · !) . . .)), and

x0 · (x1 · (. . . · (xn−1 · xn) . . .)) for n � 1. They are in 1–1 correspondence with terms of

the shape

x0 · (x1 · (. . . · (xn ·N) . . .))

for n � 0, where N ∈ {ε, !}. We can represent terms of this shape in Haskell as

a datatype, which give us the implementation shown in Figure 1. As discussed in

Section 3, the monadic multiplication arises as an implementation of the rewrite

rules. The function concatC does not implement the rules directly, but one can

easily see that it computes the normal form of its argument.

The Haskell implementation comes with an equational theory, derived from the

algebraic theory of left-zero monoids. This mirrors the algebra-of-programming

style reasoning used by Hinze (2000) in his analysis of backtracking. But we argue

that this approach, starting with algebraic theories, is more principled, because we

distinguish between the fundamental equations of the notion of computation (ELZ)

and the other standard equations such as the monad laws and algebraicity, which

we discuss in the next section.
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data CutList a = a :. CutList a | Nil | Zero

cut :: CutList ()

cut = () :. Zero

fromList :: [a] -> CutList a

fromList (x : xs) = x :. fromList xs

fromList [] = Nil

toList :: CutList a -> [a]

toList (x :. xs) = x : toList xs

toList _ = []

instance Functor CutList where

fmap f (x :. xs) = f x :. fmap f xs

fmap f Nil = Nil

fmap f Zero = Zero

concatC :: CutList (CutList a) -> CutList a

concatC ((a :. xs) :. xss) = a :. concatC (xs :. xss)

concatC (Nil :. xss) = concatC xss

concatC (Zero :. _) = Zero

concatC Nil = Nil

concatC Zero = Zero

instance Monad CutList where

return a = a :. Nil

m >>= f = concatC (fmap f m)

Fig. 1. Haskell implementation via left-zero monoids.

5 Scope delimiter

As defined in Section 4, the cut operator is global: It discards all subsequent choices.

Sometimes, however, we want to delimit its scope. (In Prolog, its scope is always

limited to the predicate in which it is used.) For instance, consider the following

function. It allows us to extract the longest prefix of a CutList for which a predicate

p holds:

fail :: CutList ()

fail = fromList []

takeWhileC :: (a -> Bool) -> CutList a -> CutList a

takeWhileC p xs = do

x <- xs

when (not (p x)) (cut >> fail)

return x

In isolation, this function works as intended. For example:

toList (takeWhileC even (fromList [2,4,5,8])) == [2,4]
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But when we want to use takeWhileC in a bigger program, an unexpected behaviour

occurs. The program below is supposed to return elements from the longest ‘even’

prefixes of the given lists:

prefixes :: CutList Int

prefixes = do

x <- fromList [fromList [2,4,5,2], fromList [8,9,10]]

y <- takeWhileC even x

return y

However:

toList prefixes == [2,4]

Why not the intended [2,4,8]? The reason is that the cut in takeWhileC works

globally: It discards also the choice x = [8,9,10]. A solution would be to delimit

the scope of the cut with a function scope :: CutList a -> CutList a, which

does not allow the cuts to leak outside of its argument. With such a function, the

correct definition of takeWhileC would be:

takeWhileC :: (a -> Bool) -> CutList a -> CutList a

takeWhileC p xs = scope ( do

x <- xs

when (not (p x)) (cut >> fail)

return x )

With this definition, we should get:

toList prefixes == [2,4,8]

Unfortunately, scope does not arise as an operation in an algebraic theory. This

follows from the fact that every such operation is algebraic. In Haskell terms, an

operation op is algebraic if it commutes with the bind operator:

op (t1, ..., tn) >>= f == op (t1 >>= f, ..., tn >>= f)

However, taking into account the intended semantics of scope, we see that it is not

algebraic:

scope (fromList [1,2]) >> cut == cut

while

scope (fromList [1,2] >> cut) == fromList [()]

Such non-algebraic operations (another example is the catch operation related

to exceptions) are often explained in terms of handlers introduced by Plotkin and

Pretnar (2013). A handler of a theory � is a model B with a carrier B together with

a morphism g : A → B. The unique homomorphism ĝ : F�A → B induced by the

freeness of the model represents the action of handling a computation with variables

of the type A. For example, consider the theory Mon and the monoidN of natural
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numbers with addition. Given a value of FMonA and a morphism g : A → N, we

can find the sum of values assigned to elements on the list by the morphism g.

A naive attempt to define a scope handler as a simple erasure of cuts, that is, the

carrier FLZA with the interpretation

[[·]]E(a, b) = a · b
[[ε]]E() = ε

[[!]]E() = ε

and ηLZ for the morphism g, is not a model of LZ. In particular:

[[! · x]]E = [[!]]E · [[x]]E = ε · x = x �= ε = [[!]]E

In order to solve this problem, in the subsequent sections, we introduce a theory

that is equivalent to LZ, but allows us to study the relationship between the cut

operator and the theory Mon in finer details.

6 Cut as a unary idempotent operation

An alternative way to give a theory for backtracking with cut is to extend the

theory Mon with a unary symbol -∗ written postfix. Intuitively, we think of an

expression e∗ as ‘discard the yet uninspected choices and continue with e’. As used

in the example from Section 1, cut corresponds to ()∗, so the Haskell expression

cut >> e corresponds to e∗. We introduce some equations, arriving at the following

theory, which we call Cut:

ΣCut = ΣMon ∪ {-∗(1)}
ECut = EMon ∪ {(x∗) · y = x∗, x · (y∗) = (x · y)∗, (x∗)∗ = x∗}

The first equation simply states that -∗ discards the subsequent choices (that is,

those on the right-hand side of ·). The second equation states that -∗ does not

affect the previous choices. The third one states that -∗ is idempotent. (In future, we

assume that −∗ binds more tightly than ·, so the second equation can be written

x · y∗ = (x · y)∗. )

We prove the equivalence of Cut and LZ. In one direction, we define ! = ε∗. We

verify the equality:

! · x = ε∗ · x ≈Cut ε
∗ = !

In the other direction, we define x∗ = x · !. We verify the equalities:

(x∗)∗ = (x · !) · ! ≈LZ x · (! · !) ≈LZ x · ! = x∗

x∗ · y = (x · !) · y ≈LZ x · (! · y) ≈LZ x · ! = x∗

x · y∗ = x · (y · !) ≈LZ (x · y) · ! = (x · y)∗

The two transformations are mutual inverses. In one direction:

! �→ ε∗ �→ ε · ! ≈LZ !
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Backtracking with cut via a distributive law and left-zero monoids 9

In the other direction:

x∗ �→ x · ! �→ x · ε∗ ≈Cut (x · ε)∗ ≈Cut x
∗

We can see the theory Cut as a sum of the theory Mon with the theory of a

unary idempotent operation Idem:

ΣIdem = {-∗(1)}
EIdem = {(x∗)∗ = x∗}

together with the following set of compatibility equations:

Q = {x∗ · y = x∗, x · y∗ = (x · y)∗}

That is, ΣCut = ΣMon ∪ ΣIdem and ECut = EMon ∪ EIdem ∪ Q.

The theory Idem has normal forms that are easy to describe. Each term is either a

variable, say x, or is provably equal to x∗. One could also recognise the free monad

of Idem as the writer monad for the monoid of truth values with disjunction.

A challenge, then, is to find normal forms for the combined theory Cut.

7 Distributive law

To find normal forms of the theory Cut, we notice that any expression can be

rewritten to an expression e or e∗, where e is an expression in the theory of monoids.

This is done by orienting the equations in Q:

x∗ · y � x∗ x · y∗ � (x · y)∗ (1)

to pull -∗ to the outside of any expression.

However, the situation is slightly subtle. The expression x∗ · y∗ can be rewritten

using (1) in two different ways:

x∗ · (y∗)� x∗ (x∗) · y∗ � ((x∗) · y)∗ � (x∗)∗

The rewriting is only confluent modulo the theories Idem and Mon.

This kind of distributivity is a common phenomenon in algebraic theories.

To illustrate the method, we describe the situation in some generality, since our

treatment appears to be novel. As a shorthand, we write n �� s to mean s is a term

in � with free variables in {x1, . . . , xn}.

Definition 3

Let � be an algebraic theory that contains two theories, say � and �.

1. A term in � is separated if it is a term built from � over terms built from

�. More precisely: The separated terms are of the form s[ti/xi], where m �� s

and n �� t1, . . . , n �� tm.

2. The theory � is a composite of � and � if every term in � is equal (in �)

to a separated term, and moreover this separation is unique-modulo-(�,�) in

the following sense: If there are terms m �� s, m′ �� s′, n �� t1, . . . , n �� tm,

n �� t′1, . . . , n �� t′m′ such that s[ti/xi] ≈� s′[t′i/x
′
i], then there are functions

m
f
−→ p

f′

←− m′ and terms n �� t̄1, . . . , n �� t̄p such that:
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• s[f(i)/xi] ≈� s′[f′(i)/xi],

• ti ≈� t̄f(i) (1 � i � m),

• t′i ≈� t̄f′(i) (1 � i � m′).

For instance, Cut is a composite of Idem and Mon since the rules (1) rewrite any

expression to a separated one in a way that is unique-modulo-(Idem,Mon).

The classic example of a composite theory is the theory of rings, where the

distributive law x · (y + z) = x · y + x · z separates terms into sums of products. We

consider this precisely for a moment, to illustrate Definition 3. Consider the theory

of Abelian groups:

ΣAb = {0(0),+(2),−(1)}
EAb = {x + 0 = x, x + (y + z) = (x + y) + z, x + y = y + x, x + (−x) = 0}

The theory of rings is:

ΣRing = ΣAb ∪ ΣMon

ERing = EAb ∪ EMon ∪ {x · (y + z) = x · y + x · z, (x + y) · z = x · z + y · z}

It is a composite of the theories Ab and Mon, since every ring expression can be

rewritten as a sum of products, uniquely mod-(Ab,Mon). The uniqueness is not

trivial: Notice that the expression x +−(x · ε) is separated, but so is the expression

0, and they are equal in Ring. Thus, the separated normal form is not unique,

but it is unique-mod-renaming, according to our definition, since x · ε ≈Mon x and

a− a ≈Ab 0.

Composite theories are a tool for building monads. Recall that if S and T are

monads, some extra data are needed to turn the composite functor ST into a monad.

One way to express such data is via a distributive law :

Definition 4 (Beck, 1969 )

Let (S, ηS , μS ), (T , ηT , μT ) be monads on a category. A distributive law is a morphism

λ : TS → ST such that the following hold:

• μST ·Sλ ·λS = λ ·TμS : TSS → ST

• SμT ·λT ·Tλ=λ·μTS : TTS → ST

• λ · ηTS = SηT : S → ST

• λ · TηS = ηST : T → ST

Such a distributive law λ yields a monad (ST , SηT · ηS , μST · SSμT · SλT ).

Theorem 5

Let � be a composite of theories � and �. If, in some category with products, � and

� have free models, then so does �, and the free-model-monad of � arises from a

distributive law λ : F�F� → F�F�.

Conversely, consider theories � and �. Every distributive law λ : F�F� → F�F�

on Set induces a monad that is the free-model-monad of a composite of � and �.

Thus, in particular, the free models of the theory Cut are of the form

FIdem(FMon(A)).

https://doi.org/10.1017/S0956796817000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000077


Backtracking with cut via a distributive law and left-zero monoids 11

Note. We covered this section in some generality because composite theories are

a key part of our method, and Theorem 5 is very important from the perspective

of building monads for functional programming, and yet we cannot find it in the

literature. Distributive laws have long been studied; a popular reference is Barr &

Wells (1985). The idea of composite theories is often mentioned but usually left

informal. The first formal treatment that we can find is Cheng (in press), which

analyses the situation is terms of factorization systems in Lawvere theories. Our

Definition 3 is inspired by Cheng’s Definition 4.10; we built on Cheng’s work by

being more concrete (using algebraic theories instead of Lawvere theories) and by

simplifying the notion of uniqueness condition (the zig-zag condition in Cheng’s

result appears to be redundant in this setting). The readers familiar with Cheng’s

work will find it helpful to visualize the conditions in our definition as the following

diagram in the corresponding Lawvere theory.
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���������������
t̄1 ...̄tp
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t′1 ...t
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m′ ��������������� p

f

��
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��
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���������������

In the case of term-rewriting rules, if the normal forms are separated, the

distributive law λ : F�F� → F�F� can be explicitly defined simply as λA(t) = nf(t),

where t : F�F�A is understood as a Σ�-term. For instance, a Haskell implementation

of the free monad of the theory Cut via such a distributive law is shown in Figure 2.

8 Delimiting scope: models and handlers

Recall from Section 5 the problem of defining a scope delimiter for cut in the theory

LZ. While the intuitive understanding of what we aim at is simple—we want to

erase cuts—the obvious implementation is not a handler, as what we obtain is not

a model of the theory.

With the development from Section 7, we can use the fact that Cut is a compatible

composition of Idem and Mon to solve the problem. The idea is to interpret only

the ‘outer’ layer, that is, the monad FIdem. We use the model of Idem with the carrier

FIdemFMonA, the interpretation

[[-∗]](a) = a,

and ηIdem : FMonA → FIdemFMonA for g. It is a proper handler, and so the induced

morphism is a homomorphism of Idem (but it is not a homomorphism of Cut). In

Haskell, such erasure of cuts can be implemented without difficulty:

scope = fromList . toList
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data Idem a = Ret a | Flag a

fromIdem :: Idem a -> a

fromIdem (Ret a) = a

fromIdem (Flag a) = a

instance Functor Idem where

fmap f (Ret a) = Ret (f a)

fmap f (Flag a) = Flag (f a)

instance Monad Idem where

return a = Ret a

Ret a >>= f = f a

Flag a >>= f = Flag (fromIdem (f a))

distr :: [Idem a] -> Idem [a]

distr (Ret a : xs) = fmap (\y -> a : y) (distr xs)

distr (Flag a : xs) = Flag [a]

distr [] = Ret []

type CutList a = Idem [a]

cut :: CutList ()

cut = Flag (return ())

fromList :: [a] -> CutList a

fromList xs = Ret xs

toList :: CutList a -> [a]

toList x = fromIdem x

instance Monad CutList where

return a = fmap return (return a)

m >>= f = fmap join (join (fmap distr (fmap (fmap f) m)))

Fig. 2. Haskell implementation via a distributive law.

9 Remarks

Equations defining cut. The equations specifying the semantics of cut are similar to

the ones studied by Hinze (2000), who presents them as equations between Haskell

expressions involving the monadic operators return and bind:

(! >>m) · n = ! >>m

! >> (m · n) = m · (! >> n)

! >> return () = !

With equational theories as used in this pearl—as well as the more general algebraic

theories à la Plotkin and Power (2004)—we do not think about the monadic structure,

as it is determined by the algebraic specification.

The normal forms of FCut and FLZ are somewhat dual: If cut is present, it

is always the outermost operation in the former, and the innermost operation in

the latter. Hinze (2000) also essentially obtain the left-zero implementation of a list

with two terminators. A similar construction was considered also by Billaud (1990).
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To the authors’ best knowledge, the dual construction that uses a distributive law

is new.

Distributive laws. It is known that the list monad distributes over any commutative

monad in a canonical way. The unary-idempotent monad is commutative, but

the canonical distributive law is a different one than distr shown in Figure 2. The

canonical one checks whether at least one element is ‘flagged’, but it does not discard

any elements. It arises from the theory ΣMon ∪ΣIdem together with EMon ∪EIdem ∪C ,

where the coherence set C is given as follows:

C = {x · (y∗) = (x · y)∗, (x∗) · y = (x · y)∗} (2)

For example:

x · y∗ · z · t∗ · u � (x · y · z · t · u)∗

There is also a third non-trivial distributive law, which arises from the sum of

theories Mon and Idem together with the following set of coherence equations D:

D = {x · y∗ = y∗, x∗ · y = (x · y)∗}

It is equivalent to the theory of right-zero monoids. One could interpret this as

backtracking with a ‘start over’ operator, which discards previous results.

These three distinct possibilities define three different ways to make the endofunc-

tor FIdem(FMon(−)) into a monad while still respecting the monads FIdem and FMon

(according to Section 7). As an aside we recall that Hyland et al. (2006) have observed

that many theories can be built by combining other theories using tensor and sum

constructions; a ‘distributive tensor’ has also been proposed, which corresponds to

the ‘canonical’ distributive law of (1). But we contend that constructions like these

will never be enough to capture all the useful ways of combining theories. The main

example of this paper (Section 6) shows that it is ultimately profitable to consider

arbitrary distributive laws.

Monad transformers. As discussed by Jaskelioff & Moggi (2010), and by Piróg (2016),

to obtain a proper combination of backtracking with other effects, one can compose

a theory � with Mon by adding the following set of equations:

Q = {f(x1, . . . , xn) · y = f(x1 · y, . . . , xn · y)}f(n)∈Σ�

The free models of such combinations give rise to the list monad transformer (done

right) known from Haskell libraries. Interestingly, if we want to combine � with

Cut or LZ, it seems that we do not need any additional coherence equations except

for Q. While the left-zero approach easily scales to the transformer case, yielding a

list monad transformer with two possible terminators, the distributive-law approach

fails, as there is no general way to pull -∗ outside of �-operations.

Implementation via continuations. Hinze (2012) shows how to derive a continuation-

based implementation of the list monad using the codensity monad construction

complemented with Cayley representation of monoids. It is an interesting challenge
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to find similar representations of the constructions presented in this article to obtain

more efficient implementations.

10 Conclusion

The goal of this pearl is to investigate how algebraic understanding of effects

relates to monads as used in functional programming. Backtracking with cut is an

appealing example: It can be captured by simple algebraic theories, but it is still

peculiar enough not to be reduced to an instance of the most standard constructions,

such as sums and different kinds of tensors (Hyland & Power, 2006; Hyland et al.,

2006).

We argue that the choice of a presentation of a theory can lead to different

implementations of the notion of computation and that it can reveal interesting

properties of the induced monad—in our example it is the fact that backtracking

with cut can be obtained as a principled composition of the list monad with the

‘unary idempotent operation’ monad.

Acknowledgments

We would like to thank Ralf Hinze, who encouraged us to write this pearl in the first

place, Kwok-Ho Cheun for enlightening discussions, and the anonymous reviewers,

whose comments and suggestions helped us improve the presentation.

References

Baader, F. & Nipkow, T. (1998) Term Rewriting and All That. Cambridge University Press.

Barr, M. & Wells, C. (1985) Toposes, Triples and Theories. Springer-Verlag.

Beck, J. M. (1969) Distributive laws. In Seminar on Triples and Categorical Homology Theory,

Lecture Notes in Mathematics, vol. 80. Berlin/Heidelberg: Springer, pp. 119–140.

Billaud, M. (1990) Simple operational and denotational semantics for Prolog with cut. Theor.

Comput. Sci. 71(2), 193–208.

Bird, R. S. (2006) Functional pearl: A program to solve Sudoku. J. Funct. Progr. 16(6),

671–679.

Cheng, E. (2011) Distributive laws for Lawvere theories. Algebra Universalis.

arXiv:1112.3076.

Hinze, R. (2000) Deriving backtracking monad transformers. In Proceedings of the 5th ACM

SIGPLAN International Conference on Functional Programming (ICFP ’00), pp. 186–197.

Hinze, R. (2012) Kan extensions for program optimisation or: Art and Dan explain an

old trick. In Proceedings of Mathematics of Program Construction—11th International

Conference, MPC 2012, Lecture Notes in Computer Science, vol. 7342. Berlin/Heidelberg:

Springer, pp. 324–362.

Hyland, M. & Power, J. (2006) Discrete Lawvere theories and computational effects. Theor.

Comput. Sci. 366(1), 144–162.

Hyland, M., Plotkin, G. D. & Power, J. (2006) Combining effects: Sum and tensor. Theor.

Comput. Sci. 357(1–3), 70–99.

Jaskelioff, M. & Moggi, E. (2010) Monad transformers as monoid transformers. Theor.

Comput. Sci. 411(51–52), 4441–4466.

https://doi.org/10.1017/S0956796817000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000077


Backtracking with cut via a distributive law and left-zero monoids 15

Mac Lane, S. (1998) Categories for the Working Mathematician, 2nd ed. Springer.

Piróg, M. (2016) Eilenberg–Moore monoids and backtracking monad transformers. In

Proceedings 6th Workshop on Mathematically Structured Functional Programming,

Electronic Proceedings in Theoretical Computer Science, vol. 207, pp. 23–56.

Plotkin, G. D. & Power, A. J. (2004) Computational effects and operations: An overview.

Electron. Notes Theor. Comput. Sci. 73, 149–163.

Plotkin, G. D. & Pretnar, M. (2013) Handling algebraic effects. Log. Methods Comput. Sci.

9(4).

https://doi.org/10.1017/S0956796817000077 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796817000077

