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Abstract

Cordes (1976) introduced the problem of determining the maximum number of resolution
classes of a finite set partitioned into equicardinal subsets such that the number of pairs common
to any 2 classes is minimized. A later paper of Mullin and Stanton (1976) investigated those
conditions under which the configurations were actually BIBD's. They obtained a bound for
these special configurations and conjectured it applied in general. We prove this in the present
paper. A recursive and a direct construction are also given for a special class of configurations.

1. Introduction

Cordes (1976) introduces the following problem. We are given nk objects
where n and k are positive integers. A partition of the objects into n sets
each of cardinality k will be called a round. Letting cr(n, k) denote the least
number of pairs common to the /c-sets of any 2 rounds, the Cordes problem
then is to determine the maximum number R(n, k) of rounds such that every
pair of rounds has precisely a(n, k) pairs in common. In his paper Cordes
gives some bounds for R(n, k) and mentions the relationship of the configura-
tion in certain instances to other combinatorial structures such as affine planes
and Hadamard matrices.

Cordes has shown that cr(n, k)= ns(2k — ns — n)/2 where s = [k/n\ and
[ J denotes the greatest integer function. Also cr(n, k) is achieved only when
each fc-set from one round intersects the fc-sets in every other round in either
5 or s + 1 elements.

If a denotes the number of blocks in a round that a fc-set meets in s
elements, then the fc-set meets n — a blocks in s + 1 elements.

Since sa + (s + \)(n — a) = k we see that a is dependent only on n
and fc.
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440 D. McCarthy and G. H. J. van Rees [2]

Following Mullin and Stanton (1976), for given n and k we denote a
Cordes configuration on w rounds by C(n, k, w).

A balanced incomplete block design (BIBD) is a pair (V, B) where V is a
finite set of cardinality v whose elements are called varieties and 8 is a
collection of b subsets of V called blocks, each of cardinality k < v, such that
each pair of distinct varieties occurs in precisely A blocks. Letting r denote
the number of blocks containing a given variety we write the parameters of
such a BIBD as (v, b, r, k,\). It is easy to show that r is independent of the
variety chosen.

If the blocks of a BIBD can be partitioned into subsets, called resolution
classes, such that each variety occurs precisely once in each resolution class
the BIBD is said to be resolvable (RBIBD).

In their paper Mullin and Stanton prove the following theorem.

THEOREM 1.1. Given positive integers n, k and w such that any C(n, k,w)
is a RBIBD, then R(n,k)Sw.

They express w in terms of the parameters n, k, s and a as follows,

( I D w = r ( n f c ) = ("fc-mfc(fc-i)-(fc-a)s}
{lA) W r(n'k) k(k-\)2-(nk-

In the following section we actually prove that (l.l) is an upper bound for
all Cordes configurations.

We note that (1.1) is in fact the r parameter of an RBIBD obtained from
certain Cordes configurations. Although RBIBD's are not obtained from
most Cordes configurations it is reasonable to expect that each pair of
elements tends to occur with the same frequency, as Mullin and Stanton have
noted.

2. An upper bound

For notational convenience we let k = mn + / where m S O and O S / S
n — \ such that k > 0. We shall then obtain an upper bound for R (n, mn + I)
by extending an argument of Cordes based on the principle of inclusion and
exclusion.

We assume we have a C(n, mn + I, 8). Let Xj ( l g i g S ) denote the
number of different pairs appearing in exactly i rounds and let N(ai,a^ • • • a,,)
denote the number of different pairs appearing in rounds i,, i2, • • •,;',.

Then

(2.1) ^N(a,)=8n{(mn +
2
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(2.3) 2 NKft, • • • a j = x, (

If we let K denote the number of pairs which appear in some round then
by the principle of inclusion and exclusion

K = 2 N(*)~ 2 M«W»>)+ 2 N{iwat)
i i.J i./,k

+ ( - l ) s + I N ( a 1 a 2 - - - a s )

• [-•GV--GH

after we substitute the expressions from (2.1), (2.2) and (2.3).
Since

(2.4) becomes

K = Sn{ 2
(2-5)

2

Since K g ^ n ( " ^ + ' ^ W e will estimate a value forSf.3|(j - l)(j - 2)xf

which (for given 8) is less than or equal to the minimum value of the
expression. We then obtain an inequality for 5 in terms of n, m, I which must
hold in order to satisfy the inequality for K.

In order to obtain an estimate for 2f=3 |(f — l)(i — 2)xf we need the
average occurrence of pairs in the configuration. We denote this by A. For S
rounds we easily obtain
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- 8(nm +1-1)
n2m + n / - l "

LEMMA 2.1. For any C(n, nm + I, 8) with A S I ,

PROOF. For 1 S A S 2 , |(A - 1)(A - 2)(n^nir^ + lA SO while

2f=3I(Ji — l)(j! — 2)x, is always non-negative since JC,=£O for all i. So we
consider the case when A > 2. We let A = a + b/c with a ^ 2 and O S K c

, (n(nm + 1 ) \ , , , , , ~ •, . •
where c = I I, the total number of different possible pairs.

We now show that Sf_3|(j — l)(j — 2)^ is minimized when the only
non-zero JC, are xa and xa+l. Let x0, xu • • -,xs be a solution which minimizes
2f=3|(i — 1)(/' — 2)x, subject to the necessary constraints that Sf=0JC,- = c and

2f,0Wi = Sn(nm'2
+j- If x,- > 0 and xi+i>0, where / g 2 , then the new

solution given by

Xi Xi 1, Xi+j Xi+j 1,

Xj + l = Xj + i + 1, Xi+j-i = X1+;-i + 1,

x, = x,, 1/ i, i + j , i + 1, j + j - 1

yields a value

2 Hi - i)(i - 2)* < j ; j(» - i)(i - 2)Xi
i = 3 i'=3

except when i = 0, /' = 2. In this case the 2 expressions have the same value.
But X = a + b/c > 2, so some x, > 0 for / g 3. Thus the minimum is obtained
when the only possible non-zero xt are xa and xa+l. In fact if b = 0, the
minimum is obtained at xa > 0 and x, = 0 , / / a- We note that the minima
obtained are implicitly related to the integrality of the variables xt.

So we have

xa + Xa+i = c, axa + (a + l)xa + i = ac + b

which yields

(2.6) xa = c - b, xa + 1 = b.

Now
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( 2 7 )

g V + 2abc - 3ac2 + b2 - 3bc + 2c2

2c

li a = 2, b > 0 and so using (2.6)

(2.8) £ H'-1)0"-2)* = 6.

Then (2.7) becomes (fc2 + ftc)/2c. If we assume (b2+ bc)/2c > b then b2>bc
which contradicts O S K c . So (2.7)§ (2.8) as required.

If a > 2 then (2.6) yields

2 Hi - 1)(« - 2)x, = H(a " l)(fl " 2)(c - b) + (fl)(a -

( 2 9 ) =^[a2c

Assuming (2.7) > (2.9) yields

a2c2 + 2abc-3ac2+b2-3bc+2c2>a2c2-3ac2+2c2

or b2 > be which again contradicts O S K c . Therefore (2.-7)§ (2.9) and the
proof is complete. •

With the previous lemma we now prove the main result of this section.

THEOREM 2.2.

( (n2m +nl- \){{nm + I- l)(nm + / ) - m(nm - n +21)}
K(n,nm + / ) = ( ^ + / ) ( n m + , _ 1 ) 2 _ m ^ m + n[ _ 1 ) ( n m _ „ + 2 / ) '

PROOF. If A = 5(nm + / - \)/(n2m + n/ - 1) < 1 then 5 < (n 2 m + n/ - 1)/

(nm + / - 1). Now if

n2m + nl- 1 (n 2 m + n / - l){(nm + / - l ) (nm + I)- m(nm -n +21)}
nm +1-1 (nm + l)(nm + I - I)2 - m (n2m + nl - \)(nm - n + 2l)

then

(nm + l)(nm + I - \f- m{n2m + nl - l)(nm - n + 21)

>(nm + l)(nm + I- I ) 2 - m(nm + I- l)(nm - n +21).

So

m(n2m + nl - \)(nm - n + 21)< m(nm + I - l)(nm - n + 21).
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If m = 0 we have a contradiction. If w > 0 we obtain n2m + nl - 1 <

nm + I - \ which implies n < 1, again a contradiction. So for A^<1,

(n2m + nl - l)/(nm +1-1) satisfies the result. For A S l we use the expres-

sion (2.5) for K where as previously noted K g I ). So

n(nm +
2

Replacing the summation by l(\ - l)(X - 2)1 ) as allowed by
Lemma 2.1, the inequality becomes

5w(n/w +f)(nm + / - l ) n2g(5 - l)m(m - 1) n8(8 - \)lm

+ (n2m i

\8nm

^{n2m -

2

Vnl){n

+ 81-
4(n2

f nl)(n

2m + nl

8-2{n2

m + nl -
2m + nl

-\)[8nm

m + nl —
-I)2

4

+ 81

1)1

-8 - (n2m -

2

h nl - 1)]

Multiplying both sides by 4(n2m + nl — 1) yields

(n2m + n / - l )

- \)m{m - 1)-2n8(8 -

+ (n2m + n / )

• [(8nm + 5/ - 5)2 - 3(n2m + n/ - l)(Snm + 5/ - 8) + 2(n2m + nl - If]

S2(n2m +nl)(n2m + nl-\f.

Subtracting 2(ri2m + nl)(n2m + nl - I)2 from both sides and dividing by 8n
we obtain

(n2m +nl-\)[2{nm + l)(nm + I - 1 ) - n(8 - \)m(m - I)- 2(8 - l)lm]

+ (nm +l)[(nm + I - \)2 8 - 3(nm +l~ \){n2m + nl - 1)]SO.

Collecting terms involving 8 we obtain

8[(nm + l)(nm + I - I ) 2 - nm(m - \){n2m + nl - \)-2lm(n2m + nl - 1)]

§ (n2m + nl - \){{nm + l)(nm +1-1)- m(nm - n + 21)}.
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This simplifies to

(n2m + nl- \){{nm + l)(nm + / - l ) - m ( n m - n +21)}
= (nm + l)(nm + I- I ) 2 - m(n2m + nl - l ) ( n m - n + 21)

and the proof is complete. •
Letting k = nm + I, s = m and a = n — I we obtain the suggested bound

of Mullin and Stanton (1976), that

R(n fc><

So although pairs do not occur with equal frequency the size of a C(n, k, 8) is
bounded by considerations that pairs occur with the same average frequency.

3. Some improvements on the bound

In the previous section we obtained an upper bound for R(n, nm + /) by

estimating the minimum value of S?_3 |( i - l ) ( i - 2)Xj with j ( A - l ) ( A - 2 ) -

ln(nm +
,. In many cases this estimate is low and the bound can be

improved.

For specified m, n and /, let S be the largest integer less than or equal to

the bound of Theorem 2.2.

Let

(3.1) A * = [8(nm + / - l ) / (n 2 m + nl - l)\ .

As shown in Lemma 2.1, the minimum occurs when the only non-zero x{ are

XA- and XA.+ I . Thus we solve the following two equations for integers b and c

(3.2) foA-* +

and

(3.3) b + c

We then calculate K from (2.5) with x< = 0 except for **• = b and

xA-.+1 = c. If K g (n(nm + ' ) \ t h g n R(n,nm +1)^8, otherwise

R(n, nm + / ) S 8 - 1 and we repeat the procedure replacing 8 by 8 - 1. We

denote the bound obtained by r*(n, nm + / ) . The above technique was used

as an algorithm in a computer program to calculate r*(n, nm +'l) for small
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values of n, m and /. The results are listed in Table 3.3 at the end of this
section. Also listed, for comparison, is r(n, nm + /) the bound of Theorem 2.2.

Since the technique that determines r*(n,nm+l) uses the actual
minimum of 2?_3j(/— l)(i — 2)xf instead of an estimate, r(n,nm+l) —
r*(n, nm + /) g 0.

In fact, this difference can be arbitrarily large in certain instances.

THEOREM 3.1.

lim[r(2p,3p)-r*(2p,3p)] = s°.

PROOF. Letting n = 2p, m = 1 and / = p Theorem 2.2 gives

(2 T. \ - (6P2 ~ })K3P ~ !)(3P) ~ 2Pl =
 5 V ~ 3QP2 ~ 9p + 5

n P' P) 3p(3p- l ) 2 - (6p 2 - l ) (2p) 15p2-18p+5

Using the procedure outlined above we obtain r*(2p,3p) = 3p + 2 for
p >4. So

/i I \ */T -i \ 9p3 —6p2+12p — 5r(2p, 3p) - r*(2p, 2>p) = l5 i_ 1 8 p + 5

and the result follows. •

THEOREM 3.2. R (2,2m + 1) S 4m + 4 for m g 2.

PROOF. From Theorem 2.2

, ^ ( 4 m + l)f2m(2m + l)-m(2m)l
/ - ( 2 m + l)(2m)2-m(4m

which reduces to

R(2,2m + I ) g 4 m +5 + — or R(2,2m + l)S4m +5.

m

Letting 5 = 4m + 5, solving (3.1), (3.2) and (3.3) yields

A*= [(4m +5)(2m)/(4m + 1)J = 2m + 1

so b = Am + 2 and c = (2m + l)(4m — 1). Thus (2.5) gives

+ \(2m){2m - 1)2(2m + l) + 2
x(2m +l)(2m)(2m + l)(4m -

which simplifies to
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Therefore 5 S= Am + A and solving as above for 8 = Am + 4 we obtain

K = m(8m + 5) < (4m^ 2 ) , so R(2,2m + 1)S Am + 4. •

Using the same method it can be shown that R(2,2m)g4m — 1 as has
also been shown by Cordes (1976).

mn + 1

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21
T)

23

24

25

26

27

28

29

30

n =

r(s) r

7.9

9.3

8.5

12.3

13.8

13.0

16.8

18.3

17.5

21.3

22.8

22.0

25.8

27.3

26.5

30.3

31.8

31.0

34.8

36.3

35.5

39.3

40.8

40.0

43.8

45.3

44.5

3

*(s)

7

8

7

11

13

13

16

17

16

20
22

22

25

26
25

29

31

31

34

35

34

38

40

40

43

44

43

n =

r(s) r

8.1

10.3

10.8

10.3

13.5

15.5

16.1

15.7

18.8

20.8

21.5

21.0

24.1

26.1

26.8

26.3

29.5

31.4

32.1

31.7

34.8

36.8

37.4

37.0

40.1

42.1

4

*(s)

6

9

9

9

13

14

14

14

17

19

21

21

22

25

25

25

29

30

30

30

33

35

37

37

38

41

n =

r(s) r

8.8

11.1

12.3

12.6

12.3

15.1

17.2

18.5

18.8

18.5

21.3

23.4

24.7

25.1

24.8

27.6

29.7

30.9

31.3

31.0

33.8

35.9

37.2

37.6

37.3

5

*(*)

7

9

11

11

11

13

16

17

17

17

21

22

23

23

23

26

28

29

31

31

32

34

36

36

36

n =

r(s) r

9.6

12.0

13.6

14.3

14.4

14.2

16.8

19.0

20.6

21.4

21.6

21.4

24.0

26.2

27.7

28.6

28.8

28.6

31.2

33.4

34.9

35.8

36.0

35.8

6

*(s)

8

9

13

13

13

13

15

17

19

20

20

20

22

25

26

26

27

26

31

32

33

33

34

33

n =

r(s) r

10.5

12.9

14.6

15.8

16.3

16.4

16.2

18.7

20.9

22.6

23.8

24.4

24.5

24.3

26.9

29.0

30.7

31.9

32.5

32.7

32.5

35.0

37.2

7

*00

9

10

12

15

15

15

15

16

18

22

22

23

23

23

24

27

29

30

30

30

30

32

36

(table continued on next page)
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mn + I
9
10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

n =
r(s) r

11.5
13.8
15.7
17.0
17.9
18.2

18.3
18.1
20.6
22.8

24,6
26.0
26.9
27.3
27.5
27.3
29.7
31.9
33 7

35.0
35.9
36.4

8

*(*)
10
11
12
15
17
17
17
17
18
20
22
25
25
26
26
26
27
29
33
34
34
34

n =
r(s) ,

12.4
14.7
16.6
18.2
19.3
19.9
20.2
20.3
20.1

22.5
24.7
26.6
28.1
29.2
29.9
30.3
30.4
30.3
32.6
34.8
36.6

9
•*(s)

11
12
13
15
19
19
19
19
19

20
22
23
26
28
28
29
29
29
30
32
34

n -
r(x)

13.3
15.6
17.6
19.3
20.6
21.4
22.0
22.2
22.2
22.1
24.5
26.6
28.5
30.1
31.4
32.3
32.9
33.3
33.3
33.2

Table 3.3

= 10
r*(s)

12
13
14
15
17
21
21
21
21
21
22
24

25
27
31
31
31

32
32
32

n -
r{s)

14.3
16.6
18.6
20.3
21.8
22.8
23.5
24.0
24.2
24.2

24.1
26.4
28.6
30.5
32.2
33.6
34.7
35.4
36.0

= 11

r'U)

13
14
15
16
18
20
23
23
23
23
23
24
25
27
28
30
34
34
35

n =
r(s)

15.3
17.5
19.6
21.4
22.9
24.1

25.0
25.6
26.0
26.2
26.2
26.1
28.4

30.5
32.5
34.2
35.7
36.9

= 12

r*(s)

14
15
16
17
18
20
22
25
25
25
25
25
26
27
29
30
32
34

4. Other results

The class of configurations C(2, k, R(2, k)) are interesting due to their
relationship with other combinatorial structures. For k = 2m Cordes has
shown the following.

THEOREM 4.1. R(2,2m)S4m - 1 with equality if and only if there exists
a Hadamard matrix of order Am.

We refer the reader to Wallis, Street, Wallis (1972) for the definition and
an account of Hadamard matrices. For k = 2m +1, less is known. Cordes
showed that R (2, 3) = 10 and Theorem 3.2 proves that R (2,2m + 1) § Am + 4
for m g 2 . We obtain a lower bound for R(2,2m + 1) in the following.

THEOREM 4.2.

R(2,2m + l ) g R(2,2m).

PROOF. It is straightforward to verify that adding a new element x to one
block in each round and adding a new element y to the other block in each
round transforms a C(2,2m, w) into a C(2,2m + 1, w). •
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Generalizing a recursive technique of Cordes one obtains the following
result.

THEOREM 4.3.

i?(2,4n + l)s2min[R(2,2n), R(2,2n + 1)] + 1.

PROOF. Take a C(2,2n, a) and choose one block from each of the a
rounds. We form the a x 4n incidence matrix A for these blocks as follows.
A =(«•;) where a0 = 1 if object / is in the block chosen from round i.
Otherwise a,, = 0. Similarly we take a C(2,2n + 1, /?) and choose one block
from each of the /3 rounds. We then form the /3 x (An + 2) incidence matrix B.
We shall assume without a loss of generality that a < /3. We then truncate B
to Ba, where Ba is obtained from B by dropping rows a + 1, a + 2, • • •, /3.

We now form the incidence matrix

C = A
A

111.. .1

Ba
B*

1000.. .0

where B* is obtained from Ba by interchanging 0's and l's. It is straightfor-
ward to verify that C is a (2a + l)x(8n +2) matrix with row sums being
An + 1. It is also easy to see that any 2 rows of C have either 2n or 2n + 1 l's
in common. Thus we can interpret C as the incidence matrix of a set of
blocks, one from each round, of a C(2,4n + 1,2a + 1). •

Using the technique above one can also prove

THEOREM 4.4.

i? (2 ,4n- l )g2min[K(2,2n- l ) , i? (2 ,2n)]+l .

Since a Hadamard matrix of order 2" always exists and R (2,3) = 10 (see
Cordes (1976)) we use Theorem 4.4 recursively to obtain

THEOREM 4.5.

" - l ) g 2 " + 1 for « § 3 .

It is possible by methods of differences to obtain lower bounds for some
configurations with k = 2m + 1. For a block B = {v,, v2, • • \ v2m + i} we form all
possible differences ± (v, - v,) mod Am + 2. For iyt j one obtains each residue
/ modulo Am +2 a, times. It is easy to see that for l/2m + 1,B and
B + I = {vi + I, v2+ I, • • •, v2m + i + 1} have precisely a, elements in common.
Also B and B + (2m + 1) have precisely 2a2m+i elements in common since
2m + 1 = - (2m + 1) modulo Am + 2.

Now if B intersects B + 1, B + 2, • • •, B + (Am + 2) in either m o r m + 1
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elements then Bc, the complement of B in the set of residues modulo 4m +2
intersects each block B + 1, • • •, B + (4m + 2) in the remaining m o r m + 1
elements. Similarly for Bc + 1, Bc + 2, • • -, Bc + (4m + 2) we find the desired
intersection with B and Bc of either m or m + 1 elements. Since the
differences in B are the same as in B + I, the existence of a block B, in which
each difference / occurs m o r m + 1 times except 2m + 1 for which 2a2m+i is m
o r m + 1 , implies the existence of a C(2,2m + 1,4m + 2). By taking B and Bc

as the first round and forming 4m + 1 other rounds by generating B + i, Bc + i
for ( = 1,2, • • •, 4m + 1 we obtain such a C(2,2m + 1,4m + 2).

With this approach a computer search generated the following difference
blocks for m =2 ,4 ,5 ,6 and showed none existed for m = 3,

m = 2 B ={1,2,3,4,7}

m = 4 B ={1,2,3,4,5,7,10,14,15}

m = 5 B ={1,2,3,4,5,7,8,10,14,15,18}

m = 6 B ={1,2,3,4,5,6,8,11,14,16,18,22,23}.

If B contains m even (odd) integers and m + 1 odd (even) integers then
we can add a new round in which 1 block contains the even integers and the
other block contains the odd integers from the residues modulo 4m + 4. We
note that this is the case in the blocks displayed for m = 2,4 and 5.

Another construction is possible using the method of differences and a
well-known result of Bose. The configurations obtained are also relatively
close to the upper bound of Theorem 3.2. We shall form a difference block B
with the elements being taken from GF(p") where p" = 1 mod 4. Since p^ 2
if the non-zero field element y occurs as a difference Av times then B and
B + y will have precisely Ay elements in common. The following result is
taken from Bose (1947).

LEMMA 4.6. Let p" = 4n + 1 where p is a prime and write the non-zerc
elements of GF(pa) which are squares (the quadratic residues) ai
x", x2, • • •, x4n'2 (x is a primitive element). Then among the totality of differ-
ences of the quadratic residues every non-zero quadratic residue occurs n - 1
times and every quadratic non-residue occurs n times.

Letting B = {», x", x2, • • -, x4"~2} we see that B intersects B + )
(y G GF(p°)\{0}) in n or n + 1 elements since oo+ y = oo. Letting the blocks
B, B + x°, B + x, • • •, B + xAn~' represent one block from each round of a
C(2,2n + l ,4n + 1) defined on the variety set GF(pa) Ufa} we have the
following result.
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THEOREM 4.7. If p" = 4n + 1 then 4n + 1 g R(2,2n + l ) S 4 n +4.

Cordes showed that R(2,3)= 10. Using this, the difference blocks given
earlier, and the recursive constructions, the following small values are
bounded as shown below

11 Si?(2,5) S12

15§/?(2,7) S16

19=iR(2,9) §20

23 § R(2, 11) §24

26§.R(2,13)§28

Now R(2,5) = 12 as the following 12 rounds shows,

12 3 4 5 6 7 8 9 10
1 2 3 9 10 4 5 6 7 8
1 4 5 9 10 2 3 6 7 8
1 2 4 6 10 3 5 7 8 9
1 2 4 7 8 3 5 6 9 10
12 5 79 3 4 6 8 10
2 3 4 7 9 1 5 6 8 10
2 3 58 10 1 4 6 7 9
2 4 5 6 9 1 3 7 8 10
3 4 5 7 10 1 2 6 8 9
13 4 8 9 2 5 6 7 10
13 5 6 7 2 4 8 9 10

The above C(2,5, 12) was obtained by an exhaustive computer search.
Also obtained in this fashion was a C(3,4,7) which originally motivated
Cordes. This shows that R(3,4) = 7 and is shown below,

1 2 3 4 a b e d
1 2 a A 3 b c B
1 3 b C 2 c d D
\ 2 d B 4 a b D
1 4 c B 3 a d C
2 4 c C 1 b d A
3 4 d A 1 a c D

A
4
4
3

3
2

B
d
a
c
b
a
b

C
C
A
A
A
B
B

D
D
B
C
D
D
C
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