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Abstract

Cordes (1976) introduced the problem of determining the maximum number of resolution
classes of a finite set partitioned into equicardinal subsets such that the number of pairs common
to any 2 classes is minimized. A later paper of Mullin and Stanton (1976) investigated those
conditions under which the configurations were actually BIBD’s. They obtained a bound for
these special configurations and conjectured it applied in general. We prove this in the present
paper. A recursive and a direct construction are also given for a special class of configurations.

1. Introduction

Cordes (1976) introduces the following problem. We are given nk objects
where n and k are positive integers. A partition of the objects into n sets
each of cardinality k will be called a round. Letting o(n, k) denote the least
number of pairs common to the k-sets of any 2 rounds, the Cordes problem
then is to determine the maximum number R (n, k) of rounds such that every
pair of rounds has precisely o(n, k) pairs in common. In his paper Cordes
gives some bounds for R (n, k) and mentions the relationship of the configura-
tion in certain instances to other combinatorial structures such as affine planes
and Hadamard matrices.

Cordes has shown that o(n, k) = ns(2k — ns — n)/2 where s = |k/n] and
! | denotes the greatest integer function. Also o(n, k) is achieved only when
each k-set from one round intersects the k -sets in every other round in either
s or s + 1 elements.

If @ denotes the number of blocks in a round that a k-set meets in s
elements, then the k-set meets n — a blocks in s + 1 elements.

Since sa + (s +1)(n —a)=k we see that a is dependent only on n
and k.
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Following Mullin and Stanton (1976), for given n and k we denote a
Cordes configuration on w rounds by C(n, k, w).

A balanced incomplete block design (BIBD) is a pair (V, B) where Visa
finite set of cardinality v whose elements are called varieties and B is a
collection of b subsets of V called blocks, each of cardinality k < v, such that
each pair of distinct varieties occurs in precisely A blocks. Letting r denote
the number of blocks containing a given variety we write the parameters of
such a BIBD as (v, b, r, k, A). It is easy to show that r is independent of the
variety chosen.

If the blocks of a BIBD can be partitioned into subsets, called resolution
classes, such that each variety occurs precisely once in each resolution class
the BIBD is said to be resolvable (RBIBD).

In their paper Mullin and Stanton prove the following theorem.

THEOREM 1.1. Given positive integers n, k and w such that any C(n, k, w)
is a RBIBD, then R(n, k)= w.

They express w in terms of the parameters n, k,s and «a as follows,

(nk — D{k(k —1)= (k — a)s}
k(k =1y —(nk — 1)(k — a)s.

(1.1) w=r(nk)=

In the following section we actually prove that (1.1) is an upper bound for
all Cordes configurations.

We note that (1.1) is in fact the r parameter of an RBIBD obtained from
certain Cordes configurations. Although RBIBD’s are not obtained from
most Cordes configurations it is reasonable to expect that each pair of
elements tends to occur with the same frequency, as Mullin and Stanton have
noted.

2. An upper bound

For notational convenience we let k = mn + [ where m 20 and 0=1/=
n — 1 such that k > 0. We shall then obtain an upper bound for R(n, mn + 1)
by extending an argument of Cordes based on the principle of inclusion and
exclusion.

We assume we have a C(n,mn +1,8). Let x; (1=i=38) denote the
number of different pairs appearing in exactly i rounds and let N(a;,a, - - a,)
denote the number of different pairs appearing in rounds i), i, - - -, i.

Then

@.1) 21 N(a)= 5n('""2+
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o s n(z)e(n )
2.3) 2 N(a,a, - a,)=x + (t -: 1>x,H + oo (f) X5

If we let K denote the number of pairs which appear in some round then
by the principle of inclusion and exclusion

K =3 N(a)- 3 N(aa)+ 3 Naaa) = -

+(— I)G*IN(aﬂlz e as)

co w5 )
o Qe (e
o O P P

after we substitute the expressions from (2.1), (2.2) and (2.3).

Since
% C07(1)=()-()+G)
=3(t—-1)(t-2)
(2.4) becomes

K= 3"<an+ I) - "@ [(" - l)<?>+ l(m; 1)]

2.5) s
+ 24— -2)x
i=3
Since K = (n(nn; * l)> we will estimate a value for 22_,5(i — 1){(i — 2)x;

which (for given 8) is less than or equal to the minimum value of the
expression. We then obtain an inequality for 8 in terms of n, m, I which must
hold in order to satisfy the inequality for K.

In order to obtain an estimate for 2}_,1(i —1)(i —2)x; we need the
average occurrence of pairs in the configuration. We denote this by A. For 8
rounds we easily obtain
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A—_S!nm+l—l!

T nPm+nl-1°
Lemma 2.1. For any C(n,nm +1,8) with A = 1,

WX - 1)(X - 2)("("’; * ’)) =S 1i- 1) - 2)x.

i=3

Proor. For 1=A=2  YA-1(- 2)("("'3 M ’)) =0  while
2P33(i — 1)(i —2)x; is always non-negative since x; =0 for all i. So we
consider the case when A >2, We let A =a + b/c witha=2and 0sbh<c
n(nm +1)

2

We now show that X?_;3(i —1)(i —2)x; is minimized when the only
non-zero x; are x, and x,.;. Let xo, x;, "+ -, xs be a solution which minimizes
22.32(i — 1)(i — 2)x; subject to the necessary constraints that =, x; = ¢ and
B oix, = 6n<nm +

2

solution given by

where ¢ = ( ), the total number of different possible pairs.

. If x;>0 and x..; >0, where j =2, then the new
Xx=x—1, Xivj = Xiyj — 1,

X1 =Xat1, Xivj-1= Xivj1 t+ 1,

X =x, I£Li+ji+1,i+j—1

yields a value
& 8
2R <2 -1 -2)x
i=3 i=3

except when i =0, j = 2. In this case the 2 expressions have the same value.
But A = a + b/c >2, s0o some x; >0 for j = 3. Thus the minimum is obtained
when the only possible non-zero x; are x, and x..;. In fact if b =0, the
minimum is obtained at x, >0 and x; =0, {# a. We note that the minima
obtained are implicitly related to the integrality of the variables x.

So we have

Xa+ Xa1 =6, ax, +(a+ x,.,=ac+b

which yields
(2.6) X =¢— b, X.e1 = b.

Now
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- - (D)

_lfac+b—c\fac+b—2c
@.7) —2< boc)( et )e
_a’c’+2abc —3ac’+b*>—3bc +2c*
2c )
If @ =2, b >0 and so using (2.6)
5
(2.8) S i - 1) —2)x = b.
i=3

Then (2.7) becomes (b’ + bc)/2¢. If we assume (b”+ bc)/2¢ > b then b*> bc
which contradicts 0 = b < c¢. So (2.7) = (2.8) as required.
If a >2 then (2.6) yields

E: Wi—1)(i—2)x =3[(a—1)(a—2)(c - b)+(a)(a-1)(b)]

2.9) = i[a’c —3ac + 2¢ +2ab - 2b].

Assuming (2.7) > (2.9) yields
a’*c®*+2abc —3ac’+ b*—3bc +2¢2>a’c’—3ac*+2c*+ 2abc — 2bc

or b>> bc which again contradicts 0 = b < ¢. Therefore (2.7) = (2.9) and the
proof is complete.
With the previous lemma we now prove the main result of this section.

THEOREM 2.2.

cmtnl-D{mm+1-D)(nm+1)— m(nm —n +21)}
Tmm+Dmm+I-1Y-m@m’m+nl—-1)(nm—-n+2])°

R(n,nm +1)
ProOOF. If A = 8(nm + 1 — 1)/(n*m + nl — 1)< 1 then § < (n’m + nl — 1)/
(nm + [ —1). Now if

n’'m+nl-1_(@'m+nl-D{nm+1-1)(nm+1)—m(nm —n+21)}
nm+1-1 (nm +D(nm +1 -1V -m@n’m +nl—1)(nm —n+2])

then
(nm +D(mm +1-1Y—mn’m +nl - 1)(nm —n +21)

>(nm + D(nm + -1 —=m(nm + 11— ) (nm — n +2I).
So

mm’m+nl—1)(nm —n+20)<m(nm +1—-1)(nm —n +21).
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If m =0 we have a contradiction. If m >0 we obtain n’m+nl—-1<
nm +1—1 which implies n <1, again a contradiction. So for A <1,
(n*m + nl — 1)/(nm + [ — 1) satisfies the result. For A = 1 we use the expres-

2

an("’"2+ - n<25>[(n - 1)(’2”)+ 1('"; 1)]+é%(i ~ 1) - 2%

<n(mg + l))

sion (2.5) for K where as previously noted K = <n(mn * ”)_ So

IA

n(nm + 1)

Replacing the summation by (A — 1)(A - 2)< )

) as allowed by
Lemma 2.1, the inequality becomes

dn(nm +D)(nm +1-1) n’8(8—Dm(m—1) nd(8—1)im
2 4 2

+(n’m+nl)y(n’m + nl — 1) [8nm + 81 - 8§ —(n°m + nl — 1)]

[6nm + 8l -8 —2(n’m + nl —1)]
4(n*m + nl — 1Y

~(’m+nl)y(n’m+nl-1)
= 2

Multiplying both sides by 4(n’m + nl — 1) yields
(n°’m+nl—-1)

[28n(nm + D(nm +1-1)—n*8(8 — 1)m(m —1)—2n8(8 — 1)Im]
+(n’m +nl)

-[(6nm + 81 —~ &) = 3(n’m + nl — 1)(6nm + 8l — )+ 2(n’m + nl — 1)’]
=2(n’m + nl)(n’m + nl — 1)

Subtracting 2(n*m + nl)(n’m + nl — 1) from both sides and dividing by én
we obtain

(’m+nl-D2(nm +DH(mm +1-1)—n(8 - )m(m —1)—2(8 — 1)im]
+(nm + D[(nm +1-1)8 —=3(nm + 1~ 1)(n’m + nl - 1)] =0.
Collecting terms involving 8 we obtain
S[(nm + l)y(nm +1 =17 —=nm(m —1)(n’m + nl —1)=2Im(n°m + nl - 1)]

s(’m+nl - D){(nm + D(nm +1-1)— m(nm — n +20)}.
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This simplifies to

s ~(’'m+nl-Dinm+D(nm +1-1)—m(nm —n +21)}
T (mm+ D(nm+1-1Y-m@n’m+nl-1)(nm —n +2I)

and the proof is complete. []
Letting k = nm + I, s = m and o = n — | we obtain the suggested bound
of Mullin and Stanton (1976), that

< (nk — D{k(k = 1) = (k — a)s} _
R(m )= 4 k1 — (k= Dy(k=a)s ~ (MK

So although pairs do not occur with equal frequency the size of a C(n, k, 8) is
bounded by considerations that pairs occur with the same average frequency.

3. Some improvements on the bound

In the previous section we obtained an upper bound for R(n, nm +I) by

estimating the minimum value of 2%.,4(i — 1)(i — 2)x; with (A — 1)(A —2)-
ninm +1)

("
improved.

For specified m, n and [, let & be the largest integer less than or equal to
the bound of Theorem 2.2.

Let

(3.1 X*=|8(nm +1—1/(n’m +nl - 1)].

). In many cases this estimate is low and the bound can be

As shown in Lemma 2.1, the minimum occurs when the only non-zero x; are
xx- and x5-.;. Thus we solve the following two equations for integers b and ¢

(3.2) BA*+ c(A*+1)= nk(nm2+ ’)
and

_(n(nm + 1)
(3.3) b+e -( . )

We then calculate K from (2.5) with x; =0 except for x;-=»b and
fiom=c. I K= ("(""Z’ 0
R(n,nm +1)= § — 1 and we repeat the procedure replacing § by § — 1. We
denote the bound obtained by r*(n, nm + I). The above technique was used
as an algorithm in a computer program to calculate r*(n, nm +1) for small

) then R(n,nm +1)=8§, otherwise
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values of n, m and [l The results are listed in Table 3.3 at the end of this
section. Also listed, for comparison, is r(n, nm + ) the bound of Theorem 2.2.

Since the technique that determines r*(n,nm +1) uses the actual
minimum of E!_,3i(i —1)(i —2)x; instead of an estimate, r(n, nm +1[)—
r*(n,nm + 1)z 0.

In fact, this difference can be arbitrarily large in certain instances.

THeOREM 3.1.

lim[r(2p,3p)— r*(2p,3p)] = =.
m

ProOF. Letting n =2p, m =1 and [ = p Theorem 2.2 gives

rp.3p) =2 = DIGp — DBp)—2p]_54p°—30p°—9p +5
’ 3pGp — 1) —(6p° - 1)(2p) 15p*—18p +5

Using the procedure outlined above we obtain r*(2p,3p)=3p +2 for
p>4.So

*—6p’+12p—35
15p>—18p +5

. 9
r(2p,3p)— r*(2p,3p) =L

and the result follows. [
THEOREM 3.2. R(2,2m +1)=4m +4 for m = 2.
Proor. From Theorem 2.2

< @m+1)PmQ2m+1)—m@2m)]

R(2,2m + 1)=(2m +1)Cm) —m@m +1)2m)

which reduces to
R(2,2m+1)=4m +5+% or R2,2m+1)=4m +5.

Letting 8 = 4m + 5, solving (3.1), (3.2) and (3.3) yields
A= | (dm +5)2m)/(dm + 1) =2m + 1
so b=4m +2 and ¢ = 2m + 1)(4m —1). Thus (2.5) gives

wmams5n )2 (5) (75

+1Cm)Cm —1)22m + D+i2m + HCm)Cm + 1)(dm — 1)

which simplifies to
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K=8m>+7m ><4m2+2>.
Therefore 8 =4m +4 and solving as above for 6§ =4m +4 we obtain
dm +2

5 ) so R2,2m +1)=4m +4. I

K=m(8m+5)<(

Using the same method it can be shown that R(2,2m)=<4m — 1 as has
also been shown by Cordes (1976).

=3 =1 n=>5 n="6 =7
mn + 1 r(s) r*(s) r(s) r*(s) r(s) r*(s) r(s) r*(s) r(s) r*(s)
4 79 7
5 93 8§ 81 6
6 85 7 103 9 88 7
7 123 11 108 9 119 96 8
8 138 13 103 9 123 11 120 9 105 9
9 13.0 13 135 13 126 11 136 13 129 10
10 16.8 16 15.5 14 123 11 143 13 146 12
1 183 17 16.1 14 151 13 144 13 158 15
12 17.5 16 157 14 17.2 16 142 13 163 15
13 213 20 188 17 185 17 168 15 164 15
14 28 22 208 19 18.8 17 190 17 162 15
15 20 2 215 21 185 17 206 19 18.7 16
16 258 25 210 21 213 21 214 20 209 18
17 273 26 241 22 234 22 216 20 26 2
18 265 25 261 25 247 23 214 20 238 22
19 303 29 268 25 251 23 240 22 244 23
20 318 31 263 25 248 23 262 25 245 23
21 3.0 31 295 29 276 26 277 26 243 23
R 348 34 31430 297 28 286 26 269 24
23 363 35 321 30 309 29 288 27 290 27
24 355 34 31730 313 31 286 26 30.7 29
25 39.3 38 348 33 310 31 312 31 319 30
26 40.8 40 368 35 338 32 334 32 325 30
27 400 40 374 37 359 34 349 33 327 30
28 138 43 370 37 372 36 358 33 325 30
29 453 44 10.1 38 37.6 36 360 34 350 32
30 445 43 421 41 373 36 358 33 372 36

(table continued on next page)
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n=28 n=9 n =10 n=11 n=12
mn+ 1 r(s) r*(s) r(s) r*(s) r(s) r*(s) r(s) r*(s) r(s) r*(s)
9 11.5 10
10 13.8 11 124 11
11 157 12 147 12 133 12
12 17.0 15 16.6 13 156 13 143 13
13 179 17 182 15 17.6 14 16.6 14 153 14
14 182 17 19.3 19 193 15 18.6 15 175 15
15 183 17 199 19 206 17 203 16 19.6 16
16 18.1 17 202 19 214 21 21.8 18 214 17
17 206 18 203 19 220 21 22.8 20 229 18
18 228 20 20.1 19 222 21 235 23 241 20
19 246 22 225 20 222 21 240 23 250 22
20 260 25 247 22 22,1 21 242 23 256 25
21 269 25 266 23 245 22 242 23 260 25
22 273 26 281 26 26.6 24 241 23 262 25
23 275 26 292 28 28.5 25 264 24 262 25
24 273 26 299 28 30.1 27 28.6 25 26.1 25
25 29.7 27 303 29 314 31 305 27 284 26
26 319 29 304 29 323 3t 322 28 305 27
27 33.7 33 303 29 329 31 33.6 30 325 29
28 350 34 326 30 333 32 347 34 342 30
29 359 34 348 32 333 32 354 34 357 32
30 364 34 36.6 34 332 32 36.0 35 369 34
Table 3.3

4. Other results

The class of configurations C(2, k, R(2, k)) are interesting due to their
relationship with other combinatorial structures. For k =2m Cordes has
shown the following.

THEOREM 4.1. R(2,2m)=4m — 1 with equality if and only if there exists
a Hadamard matrix of order 4m.

We refer the reader to Wallis, Street, Wallis (1972) for the definition and
an account of Hadamard matrices. For kK =2m + 1, less is known. Cordes
showed that R(2,3)= 10 and Theorem 3.2 proves that R(2,2m + 1)=4m +4
for m =z 2. We obtain a lower bound for R(2,2m + 1) in the following.

THEOREM 4.2.
R(2,2m +1)=Z R(2,2m).

Proor. It is straightforward to verify that adding a new element x to one
block in each round and adding a new element y to the other block in each
round transforms a C(2,2m,w) into a C(2,2m +1,w). O
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Generalizing a recursive technique of Cordes one obtains the following
result.

THEOREM 4.3.
R(2,4n+1)=2min[R(2,2n),R(2,2n + )] + 1.

Proor. Take a C(2,2n,«) and choose one block from each of the «
rounds. We form the a X 4n incidence matrix A for these blocks as follows.
A = (a;) where a; =1 if object j is in the block chosen from round i
Otherwise a; = 0. Similarly we take a C(2,2n + 1, 8) and choose one block
from each of the 8 rounds. We then form the 8 X (4n + 2)incidence matrix B.
We shall assume without a loss of generality that « < 8. We then truncate B
to B., where B, is obtained from B by dropping rows a +1,a +2,---, 8.

We now form the incidence matrix

A B.
C‘( A B* )
111...1/1000...0

where B is obtained from B, by interchanging 0’s and 1’s. It is straightfor-
ward to verify that C is a 2a + 1) X (8n + 2) matrix with row sums being
4n + 1. It is also easy to see that any 2 rows of C have either 2n or2n+1 I's
in common. Thus we can interpret C as the incidence matrix of a set of
blocks, one from each round, of a C(2,4n +1,2a +1). [

Using the technique above one can also prove

THEOREM 4.4,
R(2,4n—-1)=Z2min[R(2,2n - 1),R(2,2n)]+ 1.

Since a Hadamard matrix of order 2" always exists and R (2,3) = 10 (see
Cordes (1976)) we use Theorem 4.4 recursively to obtain

THEOREM 4.5.
2"'—-1=R2,2"-1=2"" for n=3.

It is possible by methods of differences to obtain lower bounds for some
configurations with k = 2m + 1. For a block B = {v,, 03, - - -, U2,,.1} We form all
possible differences = (v, — v;) mod 4m + 2. For i # j one obtains each residue
! modulo 4m +2 a times. It is easy to see that for I[#2m +1,B and
B+Il={vi+Lv,+1--- vy, + I} have precisely « elements in common.
Also B and B + (2m + 1) have precisely 2a2.+, elements in common since
2m +1= —(2m + 1) modulo 4m + 2.

Now if B intersects B+ 1, B+2,---, B +(4m + 2) in either m or m + 1
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elements then B*, the complement of B in the set of residues modulo 4m + 2
intersects each block B +1,---, B +(4m +2) in the remaining m or m +1
elements. Similarly for B +1, B +2,--- B + (4m + 2) we find the desired
intersection with B and B° of either m or m + 1 elements. Since the
differences in B are the same as in B + [, the existence of a block B, in which
each difference ! occurs m or m + 1 times except 2m + 1 for which 2am .1 is m
or m + 1, implies the existence of a C(2,2m + 1,4m + 2). By taking B and B¢
as the first round and forming 4m + 1 other rounds by generating B + i, B + i
for i =1,2,---,4m +1 we obtain such a C(2.2m + 1,4m +2).

With this approach a computer search generated the following difference
blocks for m = 2,4,5,6 and showed none existed for m =3,

m= B={1,2,3,4,7}

m= B =1{1,2,3,4,5,7,10, 14, 15}

m=5 B={1,2,3,4,57810,14,15,18}

m= B =1{1,2,3,4,5,6,8,11, 14, 16, 18,22, 23}.

If B contains m even (odd) integers and m + 1 odd (even) integers then
we can add a new round in which 1 block contains the even integers and the
other block contains the odd integers from the residues modulo 4m + 4. We
note that this is the case in the blocks displayed for m = 2,4 and 5.

Another construction is possible using the method of differences and a
well-known result of Bose. The configurations obtained are also relatively
close to the upper bound of Theorem 3.2. We shall form a difference block B
with the elements being taken from GF(p®) where p® =1 mod 4. Since p# 2
if the non-zero field element y occurs as a difference A, times then B and
B +y will have precisely A, elements in common. The following result is
taken from Bose (1947).

LEmMMA 4.6. Let p® =4n+ 1 where p is a prime and write the non-zerc
elements of GF(p®) which are squares (the quadratic residues) a:
x" x%, -, x*" 72 (x is a primitive element). Then among the totality of differ-
ences of the quadratic residues every non-zero quadratic residue occurs n — 1
times and every quadratic non-residue occurs n times.

Letting B ={»,x%x% - --,x*"?} we see that B intersects B +)
(y EGF(p){0}) in n or n + 1 elements since »© + y = . Letting the blocks
B,B+x° B+x,--,B+x""" represent one block from each round of a

C(2,2n +1,4n + 1) defined on the variety set GF(p*)U{»} we have the
following result.
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THEOREM 4.7. If p® =4n + 1 then 4n+1=R(2,2n+1)=4n +4.

Cordes showed that R(2,3) = 10. Using this, the difference blocks given
earlier, and the recursive constructions, the following small values are
bounded as shown below

11=R(2.5) =12
I5=R(2.7) =16
19= R(2,9) =20
23=R(2,11)=24
26= R(2.13)= 28

Now R (2,5)=12 as the following 12 rounds shows,

12345 678910
123910 45678
145910 23678
124610 35789
12478 356910
12579 346810
23479 156810
235810 146709
245609 137810
345710 12689
13489 256710
13567 248910

The above C(2.5,12) was obtained by an exhaustive computer search.
Also obtained in this fashion was a (C(3.4,7) which originally motivated
Cordes. This shows that R(3,4) =7 and is shown below,
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