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A Steinberg Cross Section for
Non-Connected Affine
Kac–Moody Groups

Stephan Mohrdieck

Abstract. In this paper we generalise the concept of a Steinberg cross section to non-connected affine

Kac–Moody groups. This Steinberg cross section is a section to the restriction of the adjoint quotient

map to a given exterior connected component of the affine Kac–Moody group. (The adjoint quotient is

only defined on a certain submonoid of the entire group, however, the intersection of this submonoid

with each connected component is non-void.) The image of the Steinberg cross section consists of a

“twisted Coxeter cell”, a transversal slice to a twisted Coxeter element. A crucial point in the proof of

the main result is that the image of the cross section can be endowed with a C
∗-action.

1 Introduction

The aim of this paper is the construction of a Steinberg cross section, a section to the

adjoint quotient map for non-connected affine Kac–Moody groups. This work gen-
eralises previous results known for connected semisimple algebraic group which were
proven by Steinberg [St]; see [Moh] for the non-connected case, [Br] for connected
affine Kac–Moody groups and also [Mok2] for a weaker result in the indefinite case.

The adjoint quotient is the quotient with respect to the conjugacy action. In general,
for Kac–Moody groups the existence of an adjoint quotient, even in the affine setting,
is a complicated issue; but, recently, there has been some progress in this direction,
see [Mok1]. Applications of the Steinberg cross section are found in the theory of

principal bundles over an elliptic curve as well as in singularity theory [HS].

An affine Kac–Moody group is a semidirect product L̂G := L̃G ⋊ C̃∗ of C
∗ with

the centrally extended holomorphic loop group corresponding to a simple algebraic
group G which might be non connected. Here the loop group is the group of open

loops introduced in [TL], i.e., the group of paths from C to the universal cover G̃

of G whose endpoints differ by an element of the group of covering transforma-

tions. If we restrict ourselves to a cyclic subgroup Σ of the component group and
consider only central extensions of this subgroup, then its central extensions are clas-
sified by a multiple of a certain fundamental level k f (Theorem 3.2). Furthermore
the translation action of C on the group of open loops descends to a C

∗-action on the

central extension. Now, the adjoint quotient map χ is defined using the characters
χΛ0

, . . . , χΛs−1
, χδ of the generators Λ0, . . . , Λs−1, δ of Σ-fixed point weight lattice:

L̂G<1,τ ∋ g 7→ (χΛ0
(g), . . . , χΛs−1

(g), χδ(g)).
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626 S. Mohrdieck

Here, L̂G<1,τ is the intersection of the connected component of the Kac–Moody
group corresponding to a fixed generator τ of Σ with the submonoid of all elements

having a C̃∗ component smaller than 1.

We construct a local section S : C
s × D∗ → L̂G<1,τ to the adjoint quotient map

whose image consists of a “twisted Coxeter cell” U τ
cox coxτ ×D∗ ⊂ L̂G<1,τ . Our main

result (Theorem 4.2) states that the restriction S|Cs×{q̃} is a section to χ|
L̃G×{q̃}

for

|q̃| small. One of the key results for proving the theorem is the fact that the image of
Sq̃ := S|Cs×{q̃} can be endowed with a C

∗-action (Lemma 4.1) which has no analogue
in the finite dimensional situation, however see [Br] for connected affine Kac–Moody

groups.

Let us briefly explain how the section is used to give a new proof that the moduli
space of semistable bundles over the elliptic curve Eq̃ := C

∗/q̃Z with |q̃| < 1 in each

component is a weighted projective space (which was proven by different methods
in [Lo, FM, Sc]): Assume G to be connected with cyclic fundamental group which is
generated by τ . Set im S∗q̃ := im Sq̃\{(coxτ ,q̃ )}. Then there is a principal G-bundle
on Eq̃× im S∗q̃ with im S∗q̃ , such that over every point of im S∗q̃ the bundle is semistable

over Eq̃ and their isomorphism class is constant on C
∗-orbits. It can be shown that

this amounts to an algebraic isomorphism from im S∗q̃ /C
∗ to the moduli space of

principal G-bundles over Eq̃ whose topological type corresponds to τ . The details
will be published elsewhere [MW].

The paper is organised as follows: in Section 2 we fix our notation, introduce the
notion of twisted Coxeter elements and investigate its basic properties. Section 3 deals
with the classification of central extension for non-connected loop groups and their

representation theory. The definition of the adjoint quotient map and construction
recipe for the section will be contained in Section 4. In the Appendix we compile
tables containing several data appearing in this paper.

2 Symmetries of Affine Dynkin Diagrams

2.1 Notations and Basic Definitions

Throughout the article we use the following symbols: Let Π be a Dynkin diagram
of finite type of rank r with Cartan matrix C , Weyl group W, root system ∆ and its
dual ∆̌. The set of simple roots will also be denoted by Π := {α1, . . . , αr} and the

corresponding simple reflections by si , i ∈ {1, . . . , r}. We write Q = Z∆ for the root
lattice, Q̌ for the co-root lattice, P := Hom(Q̌, Z) for the weight lattice and P̌ for the
co-weight lattice.

Now let us fix similar notations for the corresponding affine untwisted root sys-
tems, using the conventions of Kac’s book [Ka]. Thus, we have the affine Dynkin

diagram Π̂, the affine Cartan matrix Ĉ , which has rank r + 1, the affine Weyl group

Ŵ = Q̌ ⋊ W, root system ∆̂, the set of simple roots Π̂ = {α0, . . . , αr}, the cor-
responding set of simple reflections by {s0, . . . , sr}, and the set of simple co-roots
ˇ̂
Π := {α̌0, . . . , α̌r}. The free complex vector space generated by

ˇ̂
Π is denoted by h

′

,
its dual by h

′∗ and the minimal imaginary root by δ = a0α0 + · · ·+ arαr . The natural
numbers ai appearing in this equality are called the Kac labels. Similarly, there are the
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dual Kac labels ǎi . For any W-stable lattice with Q̌ ⊂ χ̌ ⊂ P̌ (i.e., χ̌ is the co-character

lattice of a simple algebraic group with Dynkin diagram Π), we set Ŵ(χ̌) := χ̌ ⋊ W.
Furthermore, we introduce the vector space h := h

′

⊕ Cd, its dual h∗ and extend the

roots to linear forms on h via:

αi(d) := 0, i ∈ {1, . . . , r}(1)

δ(d) := 1.(2)

The Ŵ-action extends to h by imposing si(d) := d − αi(d)α̌i . Then we define the

affine co-root lattice by
ˇ̂
Q := Z〈α̌0, . . . , α̌r, d〉, the weight lattice P̂ := Hom(

ˇ̂
Q, Z)

as its dual with dual basis {λ0, . . . , λr, δ}, and the cone of dominant weights P̂+ :=
N0〈λ0, . . . , λr〉 ⊕ Zδ.

Now let us give a description of the automorphism group Aut(Π̂), i.e., the group

of all those permutations τ of the index set {0, . . . , r} satisfying Ĉτ (i)τ ( j) = Ĉi j for all

i, j ∈ {0, . . . , r}. The following lemma can easily be derived from results in [Bo, VI,
§2] or [Hu, §4.5]:

Lemma 2.1 The automorphism group Aut(Π̂) is a semidirect product:

(3) Aut(Π̂) = P̌/Q̌ ⋊ Aut(Π) = Ŵ(P̌)a ⋊ Aut(Π).

Here Aut(Π) is the group of symmetries of the Dynkin diagram of finite type Π and

a := {x ∈ R ⊗ Q̌ | αi(x) ≥ 0, i ∈ {1, . . . , r} and θ(x) ≤ 1} the fundamental alcove.

We can lift the Aut(Π̂)-action to h by imposing ατ (i)(d) = αi(τ (d)) for any τ ∈

Aut(Π̂).

Note that all of the notions introduced above can also be defined for twisted affine
root systems, twisted by an automorphism σ ∈ Aut(Π). If we want to stress the fact

that we are dealing with the twisted case we shall write Π̂(σ) for the twisted affine

Dynkin diagram, Ĉ(σ) for its Cartan matrix, and so on. For instance, as an analogue
of Lemma 2.1 we have:

(4) Aut(Π̂(σ)) = Pσ/Qσ
= Ŵ(P)(σ)a,

the superscript σ denoting the σ-invariants.

In the sequel Ĉ denotes any affine Cartan matrix, either twisted or untwisted.

An important tool for the understanding of the representation theory of the non-
connected affine Kac–Moody groups is the folding of Dynkin diagrams. This was

considered first by Jantzen [Ja] in the finite dimensional case and by Fuchs, Schwei-
gert and Schellekens [FSS] for affine Kac–Moody algebras.

Let us summarise the construction recipe here. To a pair (Ĉ, τ ) consisting of an

affine (twisted or untwisted) Cartan matrix Ĉ and a symmetry τ ∈ Aut(Π̂) thereof

we associate another Cartan matrix τĈ according to the following rule: denote by Σ

the cyclic group of Aut(Π̂) generated by τ and assume τ to be of order N .
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Using I for the index set {0, . . . , r} set ti := 3 − 1
|Σi |

∑N−1
k=0 Ĉiτ k(i). For all cases

except A1
2, ti is the number of all elements in the Σ-orbit of i adjacent to i (including

i itself). Taking a look at the Cartan matrices of affine type we see ti ≤ 2 except for
the case A1

n with τ being the cyclic permutation of order n + 1 where we have ti = 3.

Now we define the matrix C̃ by taking for its columns the sum over all Σ-orbits of

the columns of Ĉ and multiplying with ti |Σi|. (Here Σi is the stabiliser of i ∈ I in Σ.)

(5) C̃i j :=
t j

|Σ j |

N−1∑

k=0

Ĉiτ k( j).

Definition 2.2 The square matrix obtained from C̃ by removing redundant co-

lumns and rows is called the folded Cartan matrix and denoted by τĈ . Its Dynkin

diagram is called the folded Dynkin diagram τ
Π̂.

The folded Dynkin diagrams associated to all pairs (Ĉ, τ ) can be found in the
Appendix, Table 1.

Here and for the rest of the paper we use the following symbols for the specific
symmetries of the Dynkin diagrams (the vertices of the Dynkin diagrams are labelled

as in [Br]): Except for the D4-case the automorphism group of the Dynkin diagrams
of finite type is trivial or Z/2Z. In case of existence the corresponding non-trivial

symmetry lifts uniquely to an element σ ∈ Aut(Π̂). In the remaining case D1
4 we

use σ for the order 2 symmetry interchanging the vertices with label 3 and 4 while

fixing the remaining ones and ρ for the element of order 3 permuting the labels 1, 3, 4
cyclically and fixing the other two. We denote by γ the only nontrivial automorphism
in the cases of A1

1, B1
n, C1

n, E1
7, A2

2n+1, D2
n. In the A1

n, n ≥ 2-case, the symmetry γ raises
the index by +1 and in the E1

6-case γ is given by γ(0) = 1, γ(1) = 5, γ(2) = 4,

γ(3) = 3, γ(4) = 6, γ(5) = 1 and γ(6) = 0. In the D1
n-case γ is the element of order

4 acting by γ(0) = n, γ(1) = n − 1, γ(n − 1) = 0 and γ(n) = 1.

2.2 Twisted Coxeter Elements

In this subsection we generalise the notion of a twisted Coxeter element which was
introduced by Springer [Sp] for finite Coxeter groups.

The twisted Coxeter element plays a key role in our investigation.

Fix any element τ ∈ Aut(Π̂) acting with s orbits on the Dynkin diagram. After

relabelling the index set we can assume that the set {0, . . . , s− 1} is a set of represen-
tatives of τ -orbits on I.

Definition 2.3 The element coxτ := s0 · · · ss−1τ ∈ Ŵ ⋊ Aut(Π̂) is called a twisted

Coxeter element of Ŵ ⋊ Aut(Π) corresponding to τ .

Remark

(i) Observe that we get back the usual definition of a Coxeter element for τ = e.
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(ii) Twisted Coxeter elements can be defined for arbitrary, not necessarily affine,
generalised Cartan matrices. Lemma 2.4, Proposition 2.5 and Corollary 2.6 still

hold in this more general context.

Applying [Sp, Lemma 7.5] (see also [Bo, Lemma 1, p. 117]) to our situation
yields:

Lemma 2.4 If the Dynkin diagram Π̂ contains no cycles, the twisted Coxeter element

coxτ is unique up to conjugation with elements in Ŵ.

Remark In case of the Dynkin diagram A1
r and τ , the cyclic permutation of order

r+1, it is easily verified that the corresponding twisted Coxeter element is also unique

up to conjugation in Ŵ, e.g., s1τ = s1(s0τ )s1. But for σ = τ l with l|r + 1, we can

indicate a counterexample:

Consider the case (A1
5, τ

2) with τ ∈ Aut(Π̂), τ (i) = i + 1 mod 5. As twisted
Coxeter elements we can choose (s0τ )2

= s0s1τ
2 or s0s3τ

2. Since the characteristic
polynomials for their action on h ′ are (t − 1)(t5 − 1), resp., (t2 − 1)(t4 − 1), they
cannot be conjugate.

We investigate the action of coxτ on the vector spaces h and h ′. In particular we
are interested in the multiplicity of eigenvalue 1. Our first result is a generalisation of
[Co, Theorem 3.1]:

Proposition 2.5 Let τ ∈ Aut(Π̂) be a diagram automorphism and si1
, . . . , si p

simple

reflections with the i j lying in distinct Σ-orbits on I. Then the following is true for any

x ∈ h or x ∈ h ′:

(6) si1
· · · si p

τ (x) = x ⇐⇒ si j
(x) = x and τ (x) = x.

Proof Clearly, the right-hand side implies the left one. For the other direction, note

that we have the following equivalence:

(7) si1
· · · si p

τ (x) = x ⇐⇒ τ (x) − x = si p
· · · si1

(x) − x =

p∑

j=1

c jα̌i j
,

for certain c j ∈ Z. Taking the sum over the Σ-orbit of the terms on the left and right
of this equation we obtain:

(8)

p∑

j=1

d j

∑
(Σ-orbit of α̌i j

) = 0,

for d j = c j |Σα̌i j
|. The condition on i1, . . . , i p yields c j = 0. This implies:

(9) Cα̌i p
+ x ∋ si p

(x) = si p−1
· · · si1

(x) ∈ x +

p−1⊕

j=1

Cα̌i j
.
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Since the affine spaces on the right and left intersect only in x, we get si p
(x) = x. Now

the statement follows by induction.

Note that the restrictions α0|hτ , . . . , αs−1|hτ are linearly independent while the re-
strictions α0|h ′τ , . . . , αs−1|h ′τ satisfy the one equation (the ai being the Kac labels):

(10) a0|Σα0
|α0|h ′τ + · · · + as−1|Σαs−1

|αs−1|h ′τ = 0.

Therefore, the proposition implies:

Corollary 2.6 Denote by hτ the fixed point subspace of h. Then the following result

holds:

(11) {x ∈ h, coxτ (x) = x} = hτ ∩

s⋂

i=0

(ker αi |hτ ) = Cc = C

r∑

i=0

ǎiα̌i .

Similarly, for h ′ we have:

(12) {x ∈ h ′, coxτ (x) = x} = Cc.

Our next aim is to calculate the multiplicity of (t-1) as factor of the characteristic
polynomial of coxτ . Since the element δ is fixed by the si and by τ we have:

τ (d) = d + h, with h ∈ h ′(13)

si(d) = d + hi , with hi ∈ h ′.(14)

Hence, coxτ has upper triangular shape with respect to the direct sum decomposition
h = Cd

⊕
h ′. Thus, 1 is a zero of the characteristic polynomial of coxτ on h with

multiplicity at least 2. In fact, even more is true:

Proposition 2.7 The multiplicity of 1 as zero of the characteristic polynomial of coxτ

on h ′ is two and hence, is three on h.

For τ = id this statement follows from the list of the characteristic polynomials

which were computed by Coleman [Co, Table 3]. For non-trivial τ the characteristic
polynomials of the twisted Coxeter elements have been calculated by the author and
are compiled in Table 1 of the Appendix. Here, we have made the following choices
for coxτ

= si1
· · · si p

τ in the A1
n, n ≥ 2-case: coxτ

= si1
· · · si p

τ , where the i j have

smallest index among all indices in its orbits and they are in increasing order i1 <
i2 < · · · < i p.

For the construction of the C
∗-action on the Steinberg cross section in Section 4

we need a solution b ∈ h ′ to the equation (coxτ −1)(b) = c =
∑r

i=0 ǎiα̌i . For

deriving an explicit solution we make the following choices for the twisted Coxeter
elements. In the A1

n case we use coxτ as above. For the cases B1
n, A2

2n−1 we take coxτ
=

s1 · · · snτ . In the case of E1
6 and the automorphism τ = γ, we choose coxτ

= s1s2s3τ .
In the D1

n we make the following choices: if 0 and 1 lie in the same orbit of the exterior
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automorphism we take representatives of Σ-orbit of minimal possible index in I\{0}
and multiply them in the order of increasing index. Finally, we multiply the result

with the automorphism τ from the right. In all the other cases, i.e., C1
n, D2

n+1, E1
7,

E1
6 and σ and all the other automorphisms of D1

n we choose representatives of the Σ

orbits of least possible index which we multiply in increasing order and finally we
multiply the result with the automorphism τ from the right. A calculation yields the

following generalisation of [Br, Proposition 10] for τ 6= id:

Proposition 2.8 Let Π̂ be an affine Dynkin diagram, Ŵ its Weyl group, τ ∈ Aut(Π̂)
an exterior automorphism, and coxτ the twisted Coxeter element. Then there are an

element b ∈ N〈
ˇ̂
Π〉 and a number k ∈ N such that (coxτ −1)(b) = kc, which are

uniquely determined by requiring them to be minimal and b − c /∈ N〈
ˇ̂
Π〉. The number

k as well as the element b expressed in the basis
ˇ̂
Π are listed in the Table 2 in the Appendix

for τ 6= id.

Now consider those positive roots βi = s0 · · · si−1αi , i ∈ {0, . . . , s − 1} that are
mapped to negative ones by coxτ −1

= τ−1ss−1 · · · s0.

Lemma 2.9 The s-tuple (β0(b), . . . , βs−1(b)) coincides up to a factor p (listed in Table

2 of the Appendix) with the s-tuple of the dual Kac labels of the folded Dynkin diagram
τ
Π̂. (In the cases where there is no folded Dynkin diagram, i.e., the cases A1

n, τ with

τ = γ, we set ǎτ
0 = 1.)

Proof For any λ ∈ h∗ and reduced expression w = si1
· · · sit

∈ Ŵ the following
formula can be proven by induction:

(15) λ − w(λ) =

t∑

j=1

λ(α̌i j
) si1

· · · si j−1
(αi j

).

Now set α̃i := 1
|Σi |

∑N−1
l=0 τ l(αi). Applying the formula above to the case w =

s0 · · · ss−1 ∈ Ŵ and λ = τ l(αi) yields:

(16) α̃i − coxτ (α̃i) = α̃i − s0 · · · ss−1(α̃i) =
1

|Σi |

N−1∑

l=0

s−1∑

j=0

Ĉ jτ l(i)β j .

Evaluating the result on the element b yields:

(17)
1

|Σi|

N−1∑

l=0

s−1∑

j=0

Ĉ jτ l(i)β j(b) = α̃i(b) − coxτ (α̃i)(b)

= α̃i(b − coxτ −1(b)) = α̃i(kc) = 0.

Thus the s-tuple (β0(b), . . . , βs−1(b)) is mapped to zero by the matrix

diag(t−1
0 , . . . , t−1

s−1) τĈ.

Recall that the ti are the numbers used in (5). This clearly implies the result.
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3 Affine Kac–Moody Groups

3.1 Affine Kac–Moody Groups

Let us briefly describe the construction of affine Kac–Moody groups for non-con-
nected and non-simply-connected underlying Lie group G. Dealing with underlying
groups in this generality we obtain new results. The line of reasoning presented is

an adaption of the one suggested by Toledano Laredo [TL], where the connected but
non-simply-connected case is dealt with.

Assume G to be an algebraic group over C with simple identity component G0 and
Lie algebra g. If G is not connected itself we assume that G is a semidirect product

G0⋊Γ with Γ < Aut(Π) being a subgroup of the automorphism group of the Dynkin
diagram Π of G0. Denote by G̃ the universal cover of G0 and by Z ∼= π1(G0) the kernel
of the covering map.

Instead of working with the loop group itself we use the group of “open loops”

with “boundary values” in Z:

(18) LZ,ΓG̃ : {X : C → G̃ ⋊ Γ, X holomorphic , X(t)X(t + 1)−1 ∈ Z}.

Endowed with the compact-open topology it becomes a topological group. Note that
its identity component is the usual loop group associated to the universal cover G̃ of
G0 and that its component group is given by π1(G0) ⋊ Γ. Its Lie algebra is the loop

algebra Lg.
Furthermore, there is an action of C on LZ,ΓG̃ by translations:

(19) (s.X)(t) := X(t − s), ∀s, t ∈ C and X ∈ LZ,ΓG̃.

For the construction of central extensions of this group it turns out to be conve-
nient to consider elements of the co-character lattice χ̌(T) := Homalg gr(C

∗, T) ⊂

Homalg gr(C
∗, T) ⊗ R as open loops. To β̌ ∈ χ̌(T) we associate the open loop, also

denoted by β̌:

(20) β̌(t) := exp(2πitβ̌).

By this identification, we obtain Q̌ = χ̌(T̃) ⊂ LG̃. This implies:

(21) LZ,ΓG̃ ∼= (LG̃ ⋊ χ̌(T))/χ̌(T̃) ⋊ Γ ∼= LG̃ ⋊ (χ̌(T) ⋊ Γ)/χ̌(T̃).

Since we are only interested in a single exterior component of LZ,ΓG̃ we restrict

ourselves to a cyclic subgroup Σ ⊂ π0(LZ,ΓG̃) = Z ⋊ Γ generated by τ = ρσ
with ρ ∈ Z and σ ∈ Γ. Denote by LΣG̃ the subgroup of LZ,ΓG̃ having component
group Σ.

There is a fundamental co-root λ̌ρ (respectively, λ̌ρ = 0, for ρ = id) with λ̌ρ +

χ̌(T̃) = ρ. Considering λ̌ρ as an open loop the element λ̌ρσLG̃ generates the com-
ponent group of LΣG̃. Indeed, if p is the order of the diagram automorphism ρσ we
see that (λ̌ρσ)p ∈ χ(T̃). Furthermore, we have 1 = (ρσ)p

= ρσ(ρ) · · ·σp−1(ρ)σp

which implies σp
= 1. Thus, (λ̌ρσ)p

= λ̌ρ + σ(λ̌ρ) + · · · + σp−1(λ̌ρ) has even
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to be σ-invariant. Hence, we get an identification LΣG̃ = (LG̃ ⋊ Σ̃)/Σ̃
p, where

Σ̃ :=< λ̌ρσ >. Note, that the group Σ̃ is Z unless ρ = id in which case it is finite.

For the translation action we calculate:

(22) s.λ̌ρσ = exp(−2πisλ̌ρ) λ̌ρσ.

The Kac–Moody group will be a central extension of the following semidirect

product:

(23) LΣG̃ ⋊ C = ((LG̃ ⋊ C) ⋊ Σ̃)/Σ̃
p.

Using [TL, Lemma 3.1.1], we see that any central extension of LG̃ ⋊ C is uniquely

determined by its restriction L̃G̃0 to LG̃, up to a character of C which we fix to be the
identity, and is a semidirect product

L̃G̃ ⋊ C = L̃G̃ ⋊ C.

For lifting the action of λ̌ρσ to this centrally extended group we consider the action
on its Lie algebra

Lie L̃G̃ ⋊ C

k

= L̃g
k
⊕ Cd,

which has the following form (here d =
1

2πi
d
dt

is the derivation and k the level of the
central extension):

(24) ˜Ad(λ̌ρσ)(x + bd + ac) = Ad λ̌ρ(x) +
b

2πi
λ̌ρ

d

dt
λ̌−1

ρ + bd

+
(

a +
k

2πi

∫ 1

t=0

〈
λ̌−1

ρ

d
dtλ̌ρ, σ(x)

〉
dt

+ b
k

8π2

∫ 1

t=0

〈
λ̌−1

ρ

d

dt
λ̌ρ λ̌−1

ρ

d

dt
λ̌ρ

〉
dt

)
c.

This allows us to consider the semidirect product L̃G̃ ⋊ C

k

⋊ Σ̃ for the central
extension of LG̃ of level k.

Set β̌ := (λ̌ρσ)p, a generator of Σ̃
p. A calculation similar to the proof of [TL,

Proposition 3.2.2], yields:

(25) ˜Ad(λ̌ρσ)(
˜̌β) = (−1)k〈λ̌ρ,β̌〉.

Now the proof of [TL, Proposition 3.3.1] implies that N := {(β̌n, 1, β̌−n), n ∈ Z} ⊂

(L̃G̃
k

⋊ C) ⋊ Σ̃ is a normal subgroup if and only if this expression is equal to 1. This
motivates the following definition:

Definition 3.1 The smallest positive integer k such that k〈λ̌ρ, β̌〉 ∈ 2Z is called the
fundamental level of LG̃0 ⋊ Σ and will be denoted by k f .
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Remark the fundamental levels are compiled in Table 1 of the Appendix.
As a summary we get:

Theorem 3.2 Every central extension of LΣG̃⋊C is uniquely determined by the level k

of its restriction to LG̃ which has to be a multiple of k f and a character of C.

Definition 3.3 The quotient group L̂ΣG̃
k

:= ((L̃G̃
k

⋊C)⋊Σ̃)/N is called the affine

Kac–Moody group corresponding to G and Σ.

Remark Let q be the smallest positive integer such that qλ̌ρ ∈ Q̌. It follows from

(22) that λ̌ρσ fixes the translation by q. Thus we effectively obtain an action of C̃∗ :=

C/qZ.

The case of twisted Kac–Moody groups can be treated along the same line of rea-

soning. We restrict ourselves to defining the twisted “group of open loops” with
“boundary values” in Zσ having |π1(G)σ| many connected components:

(26) LZG̃(σ) := {X ∈ LG̃, σ(X(e2πi/sz))X(z)−1 ∈ Zσ}.

The corresponding Kac–Moody group is denoted by L̂Zσ G̃
k

(σ).

3.2 Representation Theory

Here we shall give a brief account on the representation theory of the Kac–Moody

groups L̂ΣG̃
k

, respectively, L̂Zσ G̃
k

(σ). For the simplicity of the exposition we will

formulate the results only for the non-twisted case L̂ΣG̃
k

.
The representation theory has already been investigated, see [FSS, We2, TL]; see

also [Ja] for the finite dimensional situation.
Denote by V (λ)an the irreducible highest weight module of the identity compo-

nent L̂Zσ G̃
k

(σ)0 with highest weight λ ∈ P̂+ and by V (λ)ss its Hilbert space comple-
tion with respect to the hermitian form introduced by Garland [Ga]. (Note, that we
require λ(c) to be a multiple of k.)

The representation theory for the non-connected Kac–Moody groups L̂ΣG̃
k f

can
be obtained by a kind of Mackey induction with respect to the component group

Σ ∼= L̂ΣG̃
k f

/L̂G̃
k f

. We denote by P̂+k the set of dominant weights of level k. the
following theorem was proven by [We2, Theorem 2.8] and [TL, Theorem 6.1]. (Note
that [TL] considers only projective representations.)

Theorem 3.4 Let k be multiple of k f . To each Σ-orbit I ⊂ P̂+ there are |Σ|/|I|

many non-isomorphic irreducible representations of L̂ΣG̃
k f

whose restrictions to L̂G̃
k f

decompose into a direct sum:

(27) V (I)an
=

⊕

λ∈I⊂P̂+

V (λ)an.
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We shall give some details of the induction procedure. Recall that Σ is generated by
the element τ = ρσ with ρ ∈ Z and σ ∈ Γ. Using Lemma 2.1 we can uniquely asso-

ciate an element β̌ρwρ ∈ Ŵ(P̌)a representing the element ρ ∈ Aut(Π̂). Interpreting

β̌ρ as open loop t 7→ exp(2πitβ̌ρ) and choosing a representative n ′
wρ

∈ NLG̃(T) of

minimal possible order, here T ⊂ G̃ is a maximal torus of LG̃, we define nτ as a lift

of β̌ρn ′
wρ

σ in L̃ΣG̃
k f

preserving its order.

Now consider the irreducible representation V (I)an where n
|I|
τ acts as the identity

on V (I)an
λ for every highest weight vector λ ∈ P̂+k. This condition determines the

module V (I)an uniquely. It is easy to see that we obtain a unitary action of nτ on

V (λ). Thus, there is a L̂ΣG̃
k f

= L̃ΣG̃
k f

⋊ C̃∗-action by requiring d to act trivially on

the highest weight spaces V (I)an. (Recall that we have a q-fold cover C̃∗ → C
∗ which

acts on L̃G̃
k f

.) Denote the elements of C̃∗ by q̃.
We define the sets

L̂ΣG̃
k f

q̃ := L̃ΣG̃
k f

× {q̃} and L̂ΣG̃
k f

<1 :=
⋃

q̃, |q̃|<1

L̂ΣG̃
k f

q̃ .

Then we have the following result, see also [We2, Corollary 2.9]:

Corollary 3.5 Let k be a multiple of k f and I ⊂ P̂+ka Σ-orbit as above. For any

q̃ ∈ C̃∗ with |q̃| < 1 and any g ∈ L̃ΣG̃
k f

the operator gq̃−d : V (I)an → V (I)an

uniquely extends to a trace class operator on V (I)ss :=
⊕

λ∈I V (λ)ss.

Let us define the character χI : L̂ΣG̃
k f

<1 → C for (g, q̃) ∈ L̂ΣG̃
k f

<1 by:

(28) χI(g, q̃) = TrV (I)ss (gq̃−d).

For g ∈ L̃G̃
k f

= L̃ΣG̃
k f

0 we clearly obtain χI(g, q̃) =
∑

λ∈I χλ(g, q̃). Since nτ acts as
unitary operator, the following result holds, see [We2, Corollary 2.10:].

Corollary 3.6 The functions χI are holomorphic and invariant under conjugation.

4 The Quotient Map and the Cross Section

This section contains our main result. For the readability of the exposition the rea-

soning will be carried out for the Kac–Moody groups L̂ΣG̃
k f

, being still valid for

the twisted groups L̂Zσ G̃
k f

(σ). As before, we write τ = ρσ for the generator of its
component group Σ.

A set of dominant generators of the fixed point weight lattice P̂Σ is given by

{Λ0, . . . , Λs−1, δ} where we use Λi := 1
|Σi |

∑ord τ
j=1 λτ j (i).

Note that in general the Λi do not coincide with the sum over Σ-orbit of λi ; a
certain rational multiple of δ night have to be added.
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Taking a look at Table 1, one observes that the level of the irreducible L̂g
k
-module

V (Λi)
an is a multiple of the fundamental level k f of LΣG̃ and thus gives rise to an

irreducible representation of L̂ΣG̃
k f

on V (Λi)
an, by Theorem 3.4. Corollary 3.6 then

implies that the characters of these representations are holomorphic and conjugacy

invariant functions on L̂ΣG̃
k f

<1.
Motivated by the finite dimensional situation, see [St, Moh], we define the “quo-

tient map” (recall that D∗ is the punctured unit disk):

(29)
χ : L̂ΣG̃

k f

<1,τ → C
s × D∗

(g, q̃) 7→ (χΛ0
(g, q̃), . . . , χΛs−1

(g, q̃), χδ(g, q̃) = q̃).

Its restriction of χ to the set L̂ΣG̃
k f

q̃,τ will be denoted by χq̃.
We proceed by indicating the construction recipe for S. Let {α0, . . . , αs−1} be a set

of representatives of the s Σ-orbits on Π̂. For each index i consider the corresponding

canonical embedding φi : SL2 → L̂ΣG
k f

, the corresponding root group Xαi
: C →

L̃ΣG̃
k f

0 , i.e., im Xαi
= φi(( 1 C

0 1 )), and ni := φi(( 0 −1
1 0 )) ∈ N

L̂ΣG̃
k f
0

(T̂) a representative

of the simple reflection si ∈ Ŵ. Recall the definition of nτ ∈ N
L̂ΣG̃

k f (T̂) from the

previous section. We introduce the section S:

S : C
s × C

∗ → L̂ΣG̃
k f

τ , q̃(30)

(c0, . . . , cs−1, q̃) 7→ (X0(c0)n0 · · ·Xs−1(cs−1)ns−1nτ , q̃).(31)

Remark Note that S(0, . . . , 0, 1) = n0 · · · ns−1nτ is a representative of the twisted
Coxeter element.

Set Sq̃ := S|Cs×{q̃}.
The image im Sq̃ of the section can be endowed with a C

∗-action: Recall the defi-

nition of the parametrisation of the centre ι : C
∗ → L̂ΣG̃

k f

0 , the element b ∈
ˇ̂
Q, and

the number k b ∈
ˇ̂
Q appearing in Proposition 2.8. (The pedantic reader might object

that the {α0, . . . , αs−1} must be chosen as in the paragraph preceding Proposition
2.8.) We define the C

∗-action by:

C
∗ × im Sq̃ → im Sq̃(32)

(u, Sq̃(c0, . . . , cs−1)) 7→ ι(u)kµb(u)Sq̃(c0, . . . , cs−1)µb(u)−1.(33)

A simple calculation using Lemma 2.9 and Table 2 yields:

Lemma 4.1 For the C
∗-action we obtain explicitly:

(34) ι(u)kµb(u)Sq̃(c0, . . . , cs−1)µb(u)−1
= Sq̃(ukΛ0(c)c0, . . . , ukΛs−1(c)cs−1).
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Here comes our main result:

Theorem 4.2 For small |q̃| the map Sq̃ is a section to χq̃, i.e., χq̃ ◦ Sq̃ : C
s → C

s is an

isomorphism.

The proof will proceed in the following way: First, we will show that the Jacobian of

the map χ◦S is a unit in the ring C{q̃}, the ring of convergent power series. Then the
isomorphism follows by exploitation of the C

∗-action on the section and the quotient
space.

The first step is carried out using representation theory. Fix some dominant and

Σ-invariant Λ. Denote by V (Λ)an
µ the weight space of V (Λ)an of weight µ and by iµ

and pµ the corresponding canonical inclusion and projection.
The following immediate lemma describes the action of certain group elements

on the weight spaces:

Lemma 4.3 Let us keep the notation as above. Then, for all v ∈ V (λ)an
µ and t ∈ T̂

one obtains:

(i) t.v = µ(t)v,

(ii) nw.v ∈ V (Λ)an
w(µ), for all w ∈ Ŵ,

(iii) nτ .v ∈ V (Λ)an
τ (µ), if τ (Λ) = Λ.

(iv) Xα(c).v = v +
∑∞

j=1 c jv j with v j ∈ V (Λ)an
µ+ jα.

Our interest is to determine those weights µ fulfilling:

(35) pµS(c0, . . . , cs−1, q̃)iµ 6= 0.

Obviously, the following identity holds:

(36) pµS(c0, . . . , cs−1, q̃)iµ = q̃µ(d) pµS(c0, . . . , cs−1, 1)iµ.

There is a first result:

Lemma 4.4 For any weight µ of V (Λ)an with Λ Σ-invariant the following holds:

(37) pµS(c0, . . . , cs−1, q̃)iµ = q̃µ(d) pµXα0
(c0)n0iµ · · · pµXαs−1

(cs−1)ns−1iµ pµnτ iµ.

Furthermore, this is only non-vanishing if µ ≺ Λ, τ (µ) = µ and µ dominant.

Proof The statement follows by straightforward computation using Lemma 4.3,

compare also [Br, (35)] and [Moh, (27)].

Let us introduce the set D(Λi) := {µ ∈ P̂Σ+ | V (Λi)
an
µ 6= {0}}. Consider some

µ =
∑s−1

j=0 m jΛ j + nδ ∈ D(Λi). For the central variable c, the equality Λi(c) = µ(c)

implies (for the stabiliser Σi of αi in Σ):

(38)

ord τ∑

l=1

ǎτ l(i)

|Σi |
=

s−1∑

j=0

m j

ord τ∑

l=1

ǎτ l( j)

|Σ j |
,
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Using the relation τ ǎi =
∑ord τ

l=1

ǎ
τ l (i)

|Σi |
(recall that we set τ ǎ0 = 1 in the case A1

n, γ

with γ a generator of P̌/Q̌) and setting ni(µ) := max{n ∈ Z | µ + nδ ∈ D(Λi) for
µ ∈ D(Λi) we have shown the following statement:

Lemma 4.5 Any element µ ∈ D(Λi) has one of the following forms:

(i) µ = Λi + nδ, n ≤ ni(Λi) = 0,

(ii) µ = Λ j + nδ with i 6= j and τ ǎi =
τ ǎ j , n ≤ ni(Λi) ≤ 0,

(iii) µ =
∑

j m jΛ j + nδ with
∑

j m j ≥ 2 and m j = 0, if τ ǎi ≤ τ ǎ j and

n ≤ ni(µ) ≤ 0.

The set D(Λi) mod Zδ is finite.

Proof By assumption there are non-negative integers kl, 0 ≤ l ≤ r satisfying:

(39) Λi − µ = Λi −
(∑

j

m jΛ j + nδ
)

=

r∑

l=0

klαl.

Evaluating this formula on the derivation d yields −n = k0, whence the lemma.

Choose some Σ-invariant dominant weight µ =
∑s−1

i=0 miΛi + nδ of the represen-
tation V (Λi)

an
µ . By Lemma 4.3 there exits a linear map ΦΛi ,µ satisfying

pµS(c0, . . . , cs−1, q̃)iµ = q̃−ncm0

0 · · · c
ms−1

s−1 ΦΛi , µ.

This implies:

(40) χi(S(c0, . . . , cs−1, q̃)) =

∑

µ=
∑ s−1

i=0
miΛi +nδ

µ≺Λi

q̃−ncm0

0 · · · c
ms−1

s−1 Tr |V (Λi )µ
ΦΛi , µ.

Application of Lemma 4.5 yields the existence of holomorphic functions ai, a j i ∈
C{q̃} and of a polynomial P ∈ C[c0, . . . , cs−1]{q̃} with vanishing constant and linear
terms and independent of those c j with τ ǎ j ≤

τ ǎi , such that:

(41) χi(S(c0, . . . , cs−1, q̃)) = ai(q̃)ci +
∑

j 6=i,τ ǎ j=
τ ǎi

a j i(q̃)c j + P(c0, . . . , cs−1, q̃).

Using χδ ◦ S(c0, . . . , cs−1, q̃) = q̃, the determinant of the Jacobian J of χ ◦ S : C
s ×

C
∗ → C

s × C
∗ has the shape:

(42) det Jχ ◦ S = det




∂χ0◦S
∂c0

· · · ∂χ0◦S
∂cs−1

...
...

...
∂χs−1◦S

∂c0
· · · ∂χs−1◦S

∂cs−1


 .

After reordering the index set {0, . . . , s− 1} in increasing order of the τ ǎ j the matrix

( ∂χi◦S
∂c j

) will have upper block triangular shape with blocks A1, . . . , Ap on the diagonal
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implying: det Jχ ◦ S =
∏p

i=1 det Ai . Using (41) it only depends on q̃: det Jχ ◦ S ∈
C{q}.

Concerning the blocks, the following statement is true:

Proposition 4.6 For all i the determinant det Ai is a unit in the ring C{q̃}.

Before proving this statement we show the following auxiliary result:

Lemma 4.7 Let us keep the notation as above. Then

(43)
∂χi ◦ S

∂ci

(c0, . . . , cs−1, q̃) = ai(q̃), and ai(0) 6= 0.

Proof The first part of the statement follows immediately from (41). The second

part is proven in [Br, Lemma 8].

Proof of the Proposition First, note the following statement which can be proven
as the Claim in [Br, p. 997]

Let Λ j1
, . . . , Λ jl

, l > 1 be distinct fundamental roots of the invariant lattice

P̂Σ+ having the same dual Kac labels, then n ji
(Λ ji+1

) ≤ 0 (with l + 1 = 1) and
this inequality is strict for at least one i ∈ {1, . . . , l}.

Assume Ai to be a square matrix of size l. Then, we get for its determinant:

(44) det Ai = (Ai)11 · · · (Ai)ll +
∑

σ∈Sl\{id}

sgn σ
l∏

j=1

(Ai) jσ( j).

By Lemma 4.7 the first term on the right-hand side is a unit in C{q̃}. Combining the

claim above and Lemma 4.5 implies that the second sum is contained in q̃C{q̃}.

Proof of Theorem 4.2 Proposition 4.6 proves that Sq̃ is a local isomorphism for
small |q̃|. Since χq̃ ◦ Sq̃ : C

s → C
s is equivariant with respect to the C

∗ actions on

the image and the preimage space keeping the positive weights and their multiplici-
ties the statement follows from [Sl, §8.1, Lemma 1].

A Appendix

In this appendix we compile the tables referred to in the text.
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type τ folded type k f χ(t)

A1

1 γ 0 2 (t − 1)2

A1

n γ 0 1 (t − 1)(tn − 1)

n even γ l, l|n + 1, l > 1 A1

l−1 1 (t − 1)(tn − 1)

σ A2

n 1 (t − 1)(tn − 1)

A1

n γ 0 2 (t − 1)(tn − 1)

n odd γ l, l|n + 1, l > 1, l even A1

l−1 1 (t − 1)(tn − 1)

n odd γ l, l|n + 1, l > 1, l odd A1

l−1
2 (t − 1)(tn − 1)

σ D2
n+3

2

1 (t2 − 1)(tn−1 − 1)

σγ C1
n−1

2

1 (t − 1)(tn+1 − 1)/(t + 1)

B1

n γ A2

2n−2 1 (t − 1)(tn − 1)

C1

n, n even γ A2

2n 1 (t2 − 1)(tn−1 − 1)

C1

n, n odd γ C1

n−1
2

2 (t − 1)(tn − 1)

D1

4 γ A2

2 2 (t2 − 1)(t3 − 1)

γ2 C1

2 1 (t − 1)(t4 − 1)

σ A2

5 1 (t2 − 1)(t3 − 1)

ρ D3

4 1 (t2 − 1)(t3 − 1)

D1

n γ A2

n−2 2 (t2 − 1)(tn−1 − 1)

n even γ2 C1

n−2 1 (t − 1)(tn − 1)

σ A2

2n−3 1 (t2 − 1)(tn−1 − 1)

n ≡ 0(4) γσ B1
n
2

1 (t4 − 1)(tn−3 − 1)

n ≡ 2(4) γσ B1
n
2

2 (t4 − 1)(tn−3 − 1)

D1

n γ C1

n−3
2

2 (t − 1)(tn − 1)

n odd γ2 C1

n−2 1 (t − 1)(tn − 1)

σ A2

2n−3 1 (t2 − 1)(tn−1 − 1)

γσ A2

n−2 1 (t − 1)(t2 + 1)(tn−2 − 1)

E1

6 γ G1

2 1 (t2 − 1)(t5 − 1)

σ E2

6 1 (t3 − 1)(t4 − 1)

E1

7 γ F1

4 2 (t3 − 1)(t5 − 1)

A2

2n−1 γ C1

n−1 1 (t − 1)(tn − 1)

D2

3 γ A1

1 1 (t2 − 1)2

D2

n+1, n even γ D2
n
2

+1
1 (t2 − 1)(tn−1 − 1)

D2

n+1, n odd γ A2

n−1 1 (t2 − 1)(tn−1 − 1)

Table 1: Folded Dynkin diagrams, fundamental levels and characteristic polynomials of the

twisted Coxeter elements
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type τ p k b

A1

1 γ 2 1 (1, 0)

A1

n γ l, l|n + 1 n + 1 l (n, n − 1, . . . , 1, 0)

n even σ 1 1 ( n
2
, n

2
, n

2
− 1, . . . , 1, 0, 1, . . . , n

2
− 1)

A1

n γ l, l|n + 1 n + 1 l (n, n − 1, . . . , 1, 0)

n odd σ 1 1 ( n−1

2
, n−1

2
, n−3

2
, . . . , 1, 0, 1, . . . , n−3

2
)

σγ 2 1 ( n+1

2
, n−1

2
, n−3

2
, . . . , 1, 0, 1, . . . , n−1

2
)

B1

n, n even γ 1 1 ( n
2
− 1, n

2
, n − 2, n − 3, . . . , 1, 0)

B1

n, n odd γ 2 2 (n − 2, n, 2n − 4, 2n − 6, . . . , 2, 0)

C1

n, n even γ 1 1 ( n
2
, n

2
− 1, n

2
− 2, . . . , 1, 0, 0, 1, . . . , n

2
− 1)

C1

n, n odd γ 2 1 ( n+1

2
, n−1

2
, n−3

2
, . . . , 1, 0, 1, . . . , n−1

2
)

D1

4 γ 2 1 (3, 1, 2, 0, 2)

γ2 2 1 (1, 2, 2, 1, 0)

σ 2 2 (3, 3, 4, 2, 0)

ρ 1 1 (1, 2, 1, 1, 0)

D1

n γ 2 1 ( n
2
− 2, n

2
, n − 4, . . . , 2, 0, 2, . . . , n − 6, n

2
− 1, n

2
− 3)

n even γ2 4 1 ( n
2
− 1, n

2
, n − 2, . . . , 2, 1, 0)

σ 2 2 (n − 1, n − 1, 2n − 4, 2n − 6, . . . , 4, 2, 0)

γσ 2 1 ( n
2
− 1, n

2
− 1, n − 4, . . . , 2, 0, 2, . . . , n

2
− 2, n

2
− 2)

D1

n γ 4 1 ( n−3

2
, n+1

2
, n − 3, . . . , 2, 0, 2, . . . , n − 5, n−1

2
, n−5

2
)

n odd γ2 4 2 (n − 2, n, 2n − 4, . . . , 4, 2, 0)

σ 1 1 ( n−1

2
, n−1

2
, n − 2, n, n − 3, . . . , 2, 1, 0)

D1

n, n odd γσ 2 1 ( n−1

2
, n−1

2
, n − 3, . . . , 2, 0, 2, . . . , n−3

2
, n−3

2
)

E1

6 γ 6 2 (3, 7, 8, 3, 4, 5, 0)

σ 2 2 (1, 5, 6, 3, 2, 3, 0)

E1

7 γ 4 2 (7, 10, 9, 4, 3, 6, 5, 0)

A2

2n−1, n even γ 2 1 ( n
2
− 1, n

2
, n − 2, . . . , 1, 0)

A2

2n−1, n odd γ 4 2 (n − 2, n, 2n − 4, . . . , 2, 0)

D2

n+1, n even γ 2 1 ( n
2
, n − 2, . . . , 2, 0, 0, 2, . . . , n − 4, n

2
− 1)

D2

n+1, n odd γ 2 1 ( n+1

2
, n − 1, . . . , 2, 0, 2, . . . , n − 3, n−1

2
)

Table 2: Values for p, k and b from Lemma 2.9 and Proposition 2.8
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